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Simple Summary: Have you ever thrown away food that you didn’t eat? Most people do this all
around the world but throwing away food can actually harm the environment. One way to reduce
this harm is by turning the food scraps into animal feed. This not only helps the environment but
also makes livestock production cheaper. Different technologies have been developed to make a
safe and healthy animal feed from food waste. This helps us to get rid of waste by giving animals a
new source of protein and recycling the discarded food waste. This article talks about how to turn
food waste into animal food and its advantages. However, it is important to make sure the feed is of
high quality and safe for the animals. It is also important to do research and development to make
even better food-waste-based animal feed by reducing production costs and waste disposal, thereby
making things better for both the animals and the environment. Overall, using food waste as animal
food is a good waste management idea that provides food security and preserves the environment.
So, next time when you have some leftover food, remember that it could be turned into something
useful instead of being thrown away.

Abstract: The growing population and healthy food demands have led to a rise in food waste
generation, causing severe environmental and economic impacts. However, food waste (FW) can
be converted into sustainable animal feed, reducing waste disposal and providing an alternative
protein source for animals. The utilization of FW as animal feed presents a solution that not only
tackles challenges pertaining to FW management and food security but also lessens the demand for
the development of traditional feed, which is an endeavour that is both resource and environmentally
intensive in nature. Moreover, this approach can also contribute to the circular economy by creating a
closed-loop system that reduces the use of natural resources and minimizes environmental pollution.
Therefore, this review discusses the characteristics and types of FW, as well as advanced treatment
methods that can be used to recycle FW into high-quality animal feed and its limitations, as well as the
benefits and drawbacks of using FW as animal feed. Finally, the review concludes that utilization of
FW as animal feed can provide a sustainable solution for FW management, food security, preserving
resources, reducing environmental impacts, and contributing to the circular bioeconomy.

Keywords: food waste (FW); animal feed; recycling; waste management; treatment technology

1. Introduction

Food waste (FW) is described as the loss of food that occurs at the end of the food
chain. This loss of food results in a loss of resources such as labour, water, energy, and land
that were used in production, as well as losses for retailers and customers [1]. Exorbitant
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amounts of food are wasted worldwide as a result of differences in food production,
transportation, and consumption [2]. Compounding issues include the ongoing creation of
garbage and the concurrent migration of people from rural to urban areas. Because of the
variety in generation patterns, chemical and physical characteristics, as well as underlying
challenges and differences in assessing their growing volume, managing food loss and
waste is a huge task [3]. By 2050, researchers estimate that 68% of the world’s population
will reside in urban areas, leaving only 30% of the population to produce the vast quantities
of fruits, vegetables, and animal products needed by urban dwellers [4]. The features and
composition of wasted food in various studies have also been summarized in the process of
evaluating the policies and treatment alternatives in light of their significance in choosing
the best prevention policies and treatment approaches [5]. Whereas the latter has been
explored in terms of the recovery (reuses and recycle) and disposal of the FW hierarchy,
the former has been illustrated via an analysis of the policies and regulation systems that
have been enacted [6]. This has been utilized to gain understanding of the motivations
guiding initiatives to handle FW sustainably [7]. “Circular economy” and “bioeconomy”
are concepts on the cutting edge of change. According to the Circular Economy Action
Plan [8], “circular economy” is defined as the long-term conservation of product value,
materials, and resources in the economy with reduced waste generation. FW, in particular,
is an important aspect of the circular economy and should be considered at various levels
throughout the value chain. Food that is excreted and digested ends up as organic waste,
energy recovery, or landfill disposal. Reduction of food loss and waste is a serious challenge
in India, which needs to feed its rapidly growing population (1.7 billion by 2050) [9]. In
order to alleviate the environmental burden that is caused by FW, alternative methods are
required to repurpose FW into uses with a higher value [10,11]. This will minimize the
impact that FW has on the environment and promote the long-term sustainability of our
system of obtaining food [12]. The utilization of FW as an alternative source of animal
feed contains a significant amount of promise for the purpose of overcoming the existing
precarious situation, which is characterized by excessive costs and an inadequate supply of
livestock feed [13,14]. This review discusses a complete explanation of the FWs and types,
nutritive attributes of FWs, meat quality and animal growth, energy consumed to produce
animal feed, types of FWs for animal feed, and the methods of converting FWs into animal
feed, as well as the limitations of this process and the benefits and drawbacks of using FWs
as animal feed.

2. Food Waste and Types

Depending on its nature and origin, FW can be categorized in a variety of ways.
On the basis of their primary natural resource, FW can be classified as either plant or
animal derived [15]. Similarly, FW may be classed as raw or uncooked FW, cooked FW,
or semi-cooked FW, depending on the cooking method. Food is transported from the
producer to the customer via a variety of routes during the production process, and waste
is created at each of these levels. Agriculture is the first link in the food chain. As a result,
growers are regarded as the main producers. At the secondary level of the human food
chain, warehouses and businesses such as flour mills and food preservation mills can be
thought of as primary distributors [16]. Due to the fact that they create processed food
ingredients, they might also be considered secondary producers [17]. Markets, hotels, and
restaurants are categorized as secondary and direct distributors at the third level of the
human food chain [18]. Customers (also known as consumers) represent the apex of the
food chain. Based on this human food chain, FW can be classified as follows: (i) agro
FWs—that comes from farmers, (ii) industrial FWs—generated by wholesalers, (iii) market
FWs—fresh and uncooked food made by secondary distributors, (iv) hotel and restaurant
FWs—additionally generated by secondary distributors in the form of cooked products,
and (v) domestic FWs—generated by customers. FW is divided into three types based on
its physical state: solid FWs, semisolid FWs, and liquid FWs. Figure 1 depicts the overall
classification of FWs.
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3. Nutritive Attributes of FWs

The nutritional value of FW or loss per day has been estimated to be approximately
1200–1500 food calories [19]. Carbohydrates make up around 30 to 60% of FWs, whereas
proteins range from 5 to 10%, and fats make up 10 to 40% [20]. The nutrients that are present
in foods that are discarded are lost when those items are wasted. The generation of FW,
measured in grammes per person per day, can be broken down into the following categories:
cooked food (56%), vegetables (18%), fruits (16%), dairy (3%), and cereals (4%) [21]. Most
food waste is a good source of nutrients for animals to eat. Therefore, FWs can be used as
an alternative to feed for animals. It is thought that 1 tonne of dry FW could be used instead
of the same amount of maize grain to meet an animal’s protein needs [22]. FW can be used
instead of maize, which is a main feed source and has 8 to 10 percent protein [23]. Organic
waste is being composted with the help of insects, which is a new trend. Insects are also
being used as animal food because they are more nutritious than other foods. The fact that
a mature larva of the black soldier fly Hermetiaillucens has 40 to 45% protein in biomass and
up to 35 percent fat by dry weight demonstrates its usefulness as animal feed [24]. A study
on H. illucens demonstrated that the fly can ingest a variety of organic wastes, including
poultry feed, pig liver, pig manure, kitchen trash, vegetables and fruits, and rendered fish,
with kitchen waste exhibiting the highest fly biomass output [24].The concentration of
bioactive chemicals and polyphenols in food waste peel, pomace, and seeds is double that
of the edible component used in animal feed production. The chemicals found in FW have
anti-cancer, anti-bacterial, anti-oxidative, and immune-stimulant properties in vertebrates,
as well as being linked to a lower prevalence of cardiovascular disease [25].FW has dyes
such as carotenoids from tomato peel and carrot pomace, anthocyanin from banana bracts,
and betalains from beetroot pulp. These dyes have anti-oxidant activities that can be used
to protect living systems from oxidative damage by removing oxygen free radicals and
making foods more stable by preventing lipid peroxidation in animals [25].

4. Food Waste in Animal Feed Production

Three times as much food is wasted as is produced each year (or 1.3 billion tonnes) [26].
“Food waste” is commonly used to describe the phenomenon of food spoilage in the last
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phases of the food supply chain, including retail and final consumption. “Food loss” is the
term used when food is wasted during the production, post-harvest, and processing phases
of the food supply chain. As one of the most underutilized resources, micronutrients in
food are lost at an alarming rate due to FW. ”Food waste” is the term for wasting ideal
nutrients meant for human consumption, which normally have good nutritional value.
From the early and intermediate stages of the food supply chain, losses in impoverished
nations substantially outweigh the FW that occurs in retail and ultimate consumption, it
may be concluded that the bulk of food spoilage occurs during manufacture, transit, and
warehousing [27]. Despite the importance of decreasing FW, the circular economy, which
sees waste as a valuable resource, calls for the reintroduction of food scraps into the food
supply chain [28].

Scientists from around the country (Table 1) are largely working on reintroducing food
waste and surplus vegetables and fruits into the food chain as animal feed [29]. Instead
of feed grains or protein sources, livestock ranchers have historically fed their animal’s
food scraps [30]. Farmers can increase their earnings by utilizing food scraps to lower the
cost of animal feed. Another key advantage is the reduction of environmental difficulties
caused by the decomposition of such wastes. The use of industrial FW as animal feed
comes with a number of drawbacks in addition to the benefits that were discussed before.
These drawbacks include a lack of safety, an unpredictable nutrient profile, and expensive
production costs. Because they include a high percentage of water, food scraps are more
likely to deteriorate during the collection, transportation, and storage processes. As a
consequence of this, the quality of animal feed that is manufactured from FW suffers
during the processes of garbage collection, transportation, and storage [31]. In addition,
commercial FW (namely waste from the food service and retail sectors) varies in both
quantity and homogeneity and its nutritional make-up is inconsistent [32]. Manufacturers
of recycled animal feed have addressed these challenges with innovative thinking and now
successfully recycle FW into animal feed at a relatively low cost [33].

Table 1. Country and households’ food waste.

Country Study Area Food Waste
(kg/Capita) Reference

India Andhra Pradesh, Rajam 58 [34]
Pakistan Gujranwala 88 [35]
Australia Nationwide 102 [36]

China Urban China 150 [37]
Japan Nationwide 64 [38]

Viet Nam Da Nang 67 [39]
Israel Nationwide 105 [35]

Bahrain Nationwide 132 [40]
Lebanon Beirut 105 [41]

United States of America NS 59 [42]
Saudi Arabia Nationwide 105 [43]

Denmark NS 79 [35]
Mexico Nationwide 94 [44]

Germany NS 75 [45]
Hungary NS 94 [46]

Italy NS 67 [47]
Netherlands NS 50 [48]

Brazil Nationwide 60 [49]
Nigeria Sapele 189 [50]
Kenya Nairobi 99 [35]

South Africa Nationwide 134 [51]
Spain NS 78 [52]

NS—Not specific.
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Particle solids from the waste solids separation process can be used in animal feed.
These items can be used to dry or pellet FW for sale as animal feed. Animal feed has long
been used and will continue to be utilized in the production of meat and poultry. Animal
feed frequently contains blood, feathers, and bones that have been processed into a meal.
Leftover meat that is deemed unfit for human eating is either sold to rendering enterprises
or sent directly to them in order to prepare animal and pet meals [53]. The use of these
resources benefits both the environment and the economy. This is due to the way they are
marketed in comparison with other fats, vegetable oils, and proteins.

It has been common practice for many years to incorporate food scraps and other
forms of trash into the diets of animals, particularly those that are kept on farms [54].
According to the FAO, around 30 percent of all of the world’s cow feed is comprised
of waste or leftovers from the production and processing of food goods [55]. However,
a sizeable amount of freshly produced food might be better suited for use as animal
feed rather than being disposed of in landfills, where it would add to the greenhouse
effect by releasing methane [56]. Landfills are one of the most significant contributors
to the problem [57].This would be the environmentally preferable alternative. Reusing
nutrients for feed through more circular systems can also assist to reduce the significant
environmental impacts of growing feed crops, such as the consumption of land, energy,
and water, while simultaneously improving food security by reducing FW and increasing
food production [58]. Despite its apparent simplicity, returning FW into the food chain
presents numerous obstacles. The ideal feed option for livestock must always be available
and affordable. The pros and cons of reintroducing this waste into the food supply chain, as
well as the environmental consequences, must also be considered [59]. Converting “waste
into development potential” can be an effective strategy for preserving sustainability in the
livestock industry [60].

According to Moult et al. [61], people think about environmental effects other than
greenhouse gas emissions when they think about the possibility of using food waste as
animal feed. Retailers’ choices regarding the handling of food waste are heavily influenced
by considerations of their effect on the environment. Greenhouse gas (GHG) production,
water consumption, and contamination of water, air, and soil systems are all examples [62].
Any way of getting rid of food waste will have a different carbon footprint depending on
what kind of food is being thrown away and how it is thrown away. The average amount
of methane captured by landfills around the world is 20% (landfills with no gas collection
equipment) [63]. Due to the rules stated above in the UK, some of these ways to get rid of
food are fictional, such as turning it into raw meat or feeding it to animals. However, they
are still included in the list of GHG emissions so that the full picture can be seen.

During the manufacturing process, food waste can be generated from products that
are damaged or of poor value that are abandoned in the field. Damage to the food while it
is being transported, deterioration or contamination with bacteria while it is being stored,
and losses while it is being processed all contribute to the wastage of food [64]. Food is
thrown away in the retail system as a result of handling-related damage, a dearth of cold
storage, and inadequate inventory management. Overbuying, improper storing, excessive
preparation, improper portioning or heating, and inadequate reading of product labels are
the primary causes of food waste produced by individual consumers [65]. An increased
risk of infection occurs in a cyclical food system due to the retention and accumulation of
microbial pathogens.

5. Methods of Converting FWs into Animal Feed

A range of processing processes are used to increase the nutritional content, digestibil-
ity, feeding efficiency, removal of toxins, pathogen sanitation, removal of non-edible compo-
nents, feasibility for long-term storage, transportability, and marketability of FW [66]. FWs
converting to a value-added product, such as animal feed, can enhance food efficiency by
lowering the cost of animal feed, resulting in higher profitability for farmers and decreased
environmental consequences caused by FW disposal [67]. Processing foods by changing
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their physical (and seldom chemical) qualities is a crucial stage in any such conversion
process to improve feed quality, stable feed in the animal diet, and decrease loss during
feeding [68]. The methods for processing FW concentrate primarily on feed conversion
efficiency, higher feed intake, and cattle health, with decreased digestive diseases. Several
processing techniques, including dehydration and/or drying, pelleting, extrusion, fermen-
tation, silage production, etc., can be utilized to convert food scraps into animal feed. In
order to transform a certain type of FW into an acceptable animal feed, these processing
technologies are either combined or used independently. Conversion of FWs into animal
feed by each producer is shown in Figure 2.
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5.1. Solar Drying

The Gorgan University of Agricultural Sciences and Natural Resources in Iran de-
veloped and produced a waste dryer with a 25 kg capacity [69]. Figure 3 depicts the
device’s major components. According to Bulgakov et al. [70] a vibrating dryer for FWs
was simulated. Their theoretical studies have revealed that this form of drier is able to
minimize humidity as a guarantee. Song et al. [71] also created a food waste dryer. If water
is evaporated by the drier, the drying rate will be 19.65 percent, and if a mixture of water
and other substances is dried, the rate will be 3.85 percent. In order to create animal feed,
Rahmani et al. [69] studied the energy and exergy of semi-industrial FW drying equipment.
The amount of energy that is being used, as well as the amount of lost exergy and the rate
at which the potential is being improved, grows as the temperature rises [69]. The amount
of energy needed to make feed from FW is 18.30 MJ/kg, which is 1.8 MJ/kg less than the
amount of energy needed to make feed from corn [69]. Producing animal feed from FW
is a viable option because it requires less resources and costs less money compared with
other feed sources [69].
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5.2. Spray Drying

Spray drying is one of the simplest ways to extend the shelf life of liquid extracts
and improve the organoleptic features of products by converting extracts into a stable dry
powder (Figure 4). With spray drying, liquid feeds (extracts) are atomized into the drying
chamber, then the resulting droplets pass through a hot-air (or sometimes nitrogen) stream
to evaporate [72]. The evaporation of water takes place at a faster pace when the droplets
themselves are smaller since this increases the surface-to-mass ratio. Because of the speed
and intensity with which this procedure is carried out, there is very little heat damage
caused to sensitive material.
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Several studies have employed microencapsulation by spray drying to create antho-
cyanin concentrates from sources such as grapes, cranberries, Roselle black carrots, hibiscus
extracts, blueberry by-products, blackcurrants, bayberry juice, and many more [73,74]. An
enormous amount of waste and by-products are produced during the processing of the
plants used in the food, beverage, cosmetic, and pharmaceutical industries [75]. Peels,
husks, unused plant components (seeds, roots, and broken leaves), and oil seed cakes
are a few examples of plant by-products. Some non-plant businesses, such asthe fish
and meat sectors, also produce waste and by-products. According to the FAO, without
retail and consumer generated waste, 13.7% of all food is discharged as by-products and
waste [76]. On the other hand, Gustavsson et al. [77] found that a third of the weight of all
the food produced globally is regarded as waste. According to Red Corn et al. [78], over
a quarter of all edible food is wasted. The phrases most frequently used to define losses
during production, post-harvesting, and processing are “food wastes”, “food losses”, and
“waste of plant origin”. Numbers are inconsistent and widely variable due to reporting
differences; however, anywhere between 6% and 25% of the total amount of food produced
is thrown away as waste [79]. One of the key objectives for sustainable development is
the reduction and reuse of FW. Several sectors suffer large financial losses as a result of
underutilizing by-products. Additionally, producers typically have to cover the cost of
waste transportation and disposal [80].

5.3. Dehydration

For the management of home FW and pre-treatment using dehydration of FW seg-
regated at source, the study’s methodology involved the use of a cutting-edge household
garbage dryer. In this study, a novel approach for the separation and dehydration of FW
separated at source is presented together with the methodology and findings of the first
pilot-scale demonstration [81].The sanitary dehydration of FW at the source resulted in
a large mass reduction, approximately 70% w/w, due to the removal of moisture content
throughout the drying process, while the energy requirements remained economically
acceptable [82].The created biomass’s low water content avoids biological decomposition,
limits odour emissions, and so minimizes the frequency with which residential trash must
be collected. Additionally, dry biomass is considerably easier to handle than wet FW. More-
over, the waste can be used in environmentally friendly and alternative methods to create
high-value goods such as compost, bioethanol, biogas, animal feed, and thermal energy [83].
This is demonstrated by the waste’s evaluated physicochemical properties. Table 2 lists
certain FWs and their basic processing techniques for the production of animal feed.

Table 2. Techniques of analyzing different FWs and their use as animal feed.

Food Waste Processing
Techniques Waste Amount Animal Feed Reference

Grape stems Single-cell
production (SCP) 7.5% Ruminants [84,85]

Mango peeling

Dehydration and
consolidation using
either paddy or corn

stalks

7–24% Broilers [86]

Restaurant FWs

Composition
contains corn,

soybean meal, and
other dietary
supplements

45% Pigs [87,88]
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Table 2. Cont.

Food Waste Processing
Techniques Waste Amount Animal Feed Reference

Pulp from a
citrus fruit

The process involves
drying and then
composing the
paddy or corn

stalks.

10 million MT of
waste each year

Milk-producing
cows [89–92]

Banana peel
Drying and

composition with a
standard diet

3.5 MT per year

20 percent for
growing pigs

and 30 percent
for rabbits.

[93,94]

Banana leaves Ensiling with wheat
straw (75/25) 31%

Cows and other
animals that

give milk
[95,96]

Kitchen wastes
Drying/high
temperature
composting

37% Pigs [97,98]

Mango seeds
Bread waste

Seasonal fruits
Pomace of fruits

and olives
Lemon peel and

non-sterilized
fish waste

Ethanolic extract
Solid-state

fermentation
Ruminal

fermentation
Fermentation
Fermentation

42%

Broiler chickens
Pigs

Cows and other
animals that

give milk
Milk-producing

cows
Broilers

[99–104]

5.4. Freeze Drying

High-quality fruits and vegetables that have been dehydrated are frequently processed
via freeze-drying. During freeze-drying protection, the water solid-state, low temperatures,
and moisture sublimation processes preserve the fundamental structure and shape of the
products, which also have a low bulk density, high porosity, and a stronger rehydration.

To remove the unfrozen solvent from a liquid formulation solvent, a desorption process
must be used after the solvent has been extracted, frozen, and subjected to low pressure to
cause the solvents to sublimate [105]. As a result, the process of drying can be broken down
into two stages: sublimation (also known as primary drying) and desorption (also known
as secondary drying). This is because both stages involve two processes that are equally as
significant: freezing, in which almost all of the solvent is transformed into a solid that is
frozen, and drying, in which the mixture almost completely gets rid of all of the solvent
(frozen or unfrozen) [106].

In the process of freeze-drying, the food is first frozen, which consolidates it. The size
and development of ice crystals depend on the freezing rate; sluggish freezing results in
larger or smaller ice particles [107]. Only high-value foods such as coffee, ingredients for
ready-to-eat meals (fruits and vegetables or meat and fish), and aromatic herbs are typically
freeze-dried in the food industry. The solid waste produced during lengthy human-crewed
space trips has been extensively handled by the MEADOW processor freeze-drying solid
waste [108]. The two main drying techniques investigated were freeze-drying and vacuum-
drying. A Peltier condenser collects wastewater vapour in either mode or transforms
it back into relatively pure water. The dried waste product has less water activity than
what is necessary for bacteria to continue their metabolic activity. The treated waste must
be contained and kept in a way that prevents water from being reabsorbed for it to be
stable. Many studies have shown that freeze-drying is an effective method for minimizing
FWs [109]. However, they argued that freeze-drying was an inappropriate way to dispose
of garbage due to its high cost. Yet, the unique circumstances will aid in minimizing waste
for animal feed [110].
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5.5. Microwave Drying

Processing agricultural crops after harvest effectively uses microwave drying. The
drying sector can benefit greatly from three main factors: its speed, low energy usage, and
good product quality [111]. The development of new technologies has made it possible to
monitor and manage an increased number of parameters during the drying process. These
characteristics include temperature, weight, power, aroma, and others. According to Bai
et al. [112], the increased relative humidity of convection air may be a significant component
that slows drying while preserving the quality of the products’ interior or exterior surfaces.
The volatile compounds that are continuously released from the material being dried during
microwave drying are transported by convection air. The moisture transport equation,
whose driving force depends on the concentration difference, is comparable to the diffusion
model for volatile chemicals [113]. There is very little research on using high humidity
throughout the drying process [114]. Moreover, these works solely used natural, sun, and
convective drying processes; microwave drying was not used. Microwave drying, which
could be a valuable technique for processes such as drying vegetables and fruits in closed
packages, requires research on the impact of high humidity on the drying rate as well as the
product quality [115]. In this study, an effort is made to track and manage the convective
air’s humidity in an effort to solve the issue. For this, a novel microwave drying technology
was created. The system included three subsystems: a one-way air flow control system
for removing the gaseous moisture, a thermostatic microwave heating system with online
mass weighting, and a humidity measuring system [116]. Since waste foods are simple to
obtain and have highly volatile chemicals, they were chosen as the drying samples. For
the objective of changing the relative humidity surrounding the samples, various plans
were made. Analysis and discussion were conducted on the connections between relative
humidity and drying speed as well as between relative humidity and product quality [117].
The findings will be used to support the claim that high humidity improves the quality of
the produced products.

5.6. Silage

Agriculture has undergone significant changes since the 1960s, with a focus on using
science to produce crops, increased mechanization, and larger livestock farms [118]. With
better animal diet and genetics, there was an increase in output per head of livestock.
Between 1975 and 2000, the production of silage dry matter (DM) increased across the
majority of European nations [119]. A decrease in hay output and an increase in the size
of animal farms over that time period both contributed to this in part. In contrast, hay
production increased substantially in the US during the same time period, with crops such
aslucerne being cultivated expressly for that purpose [120]. The US had a similar pattern.

Farmers can employ grains and other commercial feeds, conserve seasonally surplus
grass or other fodder crops, or a combination of these methods to manage seasonal feed
shortages. Before to the 1960s, fodder was primarily stored as hay, typically gathered at
a mature growth stage and vulnerable to weather uncertainties throughout the lengthy
intervals between cutting and harvest [119]. This definition of silage refers to the collection
and storage of fermented materials such as fermented whole-crop cereals, fermented crop
by-products, and moist grass for use as livestock feed. Crop production, engineering,
chemistry and biochemistry, microbiology, and animal nutrition are a few of the scientific
and technological fields that are involved in the conservation process [121]. Because of this,
the successful production of silage necessitates an understanding of the critical physical,
chemical, and biological elements affecting the entire conservation process, among which
oxygen and water are the most crucial, at least in terms of nutrient losses. Silage plays
two crucial roles in the nutrition of livestock: (i) it serves as a preserved source of digestible
nutrients in diets for high-producing animals to maintain optimal rumen function and
lowers the risk of diseases such as rumen acidosis and displaced abomasa; and (ii) it serves
as a supplemental feed to be used when the rate of pasture growth is insufficient in relation
to animal needs, such as in the winter and during dry spells [122,123].
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6. Meat Quality and Animal Growth

The proportion of FW that was employed in meals (the replacement rate) ranged from
10% all the way up to 100% in the various feeding experiments that were conducted [124].
Responses in terms of animal weight increase and/or feed use efficiency vary based on
the animal species and physiological stage, as well as the length of the feeding trial, the
type of FW, and the substitution rate [125]. A number of studies found no difference when
comparing diets with substitution with diets without substitution [126–128]. On the other
hand, other studies found that diets with substitution caused poultry [129] and pigs [130] to
gain less weight. The findings of various investigations were compiled by Guo et al. [131],
who found that pigs with a substitution rate of 50% had a growth rate that was 13% slower.

The quality of meat has been studied by comparing diets with and without food
waste [132]. For instance, Katajajuuri et al. (1998) [133] discovered that pork from animals
given heat-treated FW was comparable in flavour and quality with meat from pigs fed
a maize–soy diet, as rated by a panel of volunteers. Giamouri et al. [134] revealed that,
through blind tasting, panellists preferred the softness of lean meat from pigs fed a diet
of liquid food waste over that of animals fed a regular diet. Using linear mixed models
to examine the impacts of the inclusion of FW in pig diets, with the original data gath-
ered from many studies, Giamouri et al. [135] found that feeding FW had no impact on
16 of 18 pork quality measures (e.g., juiciness, dressing percentage, meat colour, fat-free
lean percentage, flavour, overall palatability, etc.). The discovered effects of two criteria
(monounsaturated fats and marbling) were “weak and did not detrimentally affect pork
quality or value”. The researchers concluded that including food waste into diets resulted
in pork of comparable quality with that generated by animals fed normal diets [135].

7. Energy Consumed to Produce Animal Feed

Corn is one of the most commonly utilized products for animal feed. To determine
the energy (Equation(1)) required for manufacturing animal feed from corn, it is necessary
to compute all the energy entering the farm per kg of corn. Livestock production rises by
an average of 2.46% each year [136], whereas the demand will rise owing to population
expansion. Many sources (fossil energy, water, and land) are utilized to generate livestock,
poultry, and aquatic feed, but the energy required for maize production in Iran comprises
machinery, human labour, seeds, fertilizers, chemicals, and water. According to Banacian
and Zangench [137], each kg of corn requires an average of 7.24 MJ of energy to grow.
Similarly, Rahmani et al. [69] assumed that transporting maize to the feed mill consumed
0.4 MJ per kg of corn energy. Furthermore, the energy required for the conversion of corn-to
corn guten feed has been calculated to be 12.46 MJ/Kg. Eventually, the production of each
kg of livestock feed is calculated to be 20.10 MJ per kg.

EUCM = ∑ EUIF + EUTR + EUPR (1)

where EUCM is the energy consumed to produce animal feed, EUIF is the total energy input
to the farm, EUTR is the energy consumption for transportation, and EUPR is the total
energy consumption for processing.

8. Types of FWs to Animal Feeds

A wide variety of domestic animals receive their nutrition from a variety of food scraps
and waste products of the food industry. The total digestible nutrients (TDN) indicates the
total amount of a meal or diet’s fat, protein, and carbohydrates that are digestible. Energy
that can be digested is directly linked to TDN. The TDN is beneficial for cattle cow diets
that are mainly foragebased. TDN values frequently underestimate the worth of giving
concentrate in comparison to forage. Conversion and processing of food wastes not only
prevents waste putrefaction but also helps to conserve abandoned food resources and
transform them into economically viable goods [13]. Conversion and processing of FWs
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avoid putrefaction of wastes. Table 3 outlines several types of FW and the various species
of animals that can benefit from its consumption as feed.

Table 3. Types of FWs/by-products and their uses as animal feed.

Food Wastes Constituent Animals That Consume It Reference

Potato waste

Similar to that of corn
and barley in terms of
energy
Crude protein (CP): 7.6%,
Ether extract (EE): 7.0%,
Crude fibre (CF): 4.0%

Excellent source of energy
for cattle feed, 10% to 20%
as feed pellets; also used for
pigs and goats

[138,139]

Banana root bulbs

Excellent supply of
carbohydrates
CP: 12.0%, Total
digestible nutrients
(TDN): 50.0%

Adult cattle can be fed
20–25 kg per day after
cleaning and for pig feeding

[139,140]

Apple waste CP: 12.0%, TDN: 60.0%

30% of this trash can
completely replace corn in
the feed of poultry and
cattle after being chopped,
ground, and dried

[139,141]

Rice husk CF: 39.0–42.0%, EE:
0.8–1.2%, CP: 2.9–3.6% Cows, horses, and buffaloes [139,142]

Oil cakes Vitamin-B- and
protein-rich food Cows, goats, and horses [139,143]

Barley by-products Protein 27.0–30.0%, TDN:
65.0% Dairy cows [139,144]

Citrus by-products:
citrus peel, pulp,
rag, seeds

Total sugar (TS):
10.2–16.5%, Crude fat:
1.2–2.2%, CP: 2.2–4.2%,
CF: 5.7–8.6%,
Nitrogen-free extract
65.0–75.0%

Adult cows 10 kg/day, up to
45% of the main source of
energy for beef and other
cattle

[139,145,146]

Tea waste TDN: 58%, CP: 17.94%,
Tannic acid: 1.9%

10–15% mixed with a tasty
component are fed to cattle [139,147]

Mango seed kernel TDN: 55.0%, Protein 6%

20 to 40% for growing calves
and buffaloes, 10% for milch
cattle, 50% for ruminants,
and also as fish feed

[139,148]

Coconut meal TDN: 70.0–75.0%, CF:
10.0%, CP: 25.0–30.0%

Dairy cows can benefit from
a highly helpful protein
supplement that boosts milk
fat content; also used for
goat.

[139,149,150]

Carrot waste
TDN: 75.0–80.0%, Protein
10.0–15.0%, Rich in
vitamin A

For cattle, 20 kg/day [138,139]

Rice bran de-oiled

TDN: 55.0–65.0%, CP:
13.0–16.0%, excellent
source of protein,
minerals, carbohydrate,
vitamins, and high
phosphorus content
(1.3%)

Cattle, pigs, broiler, fish, and
ruminants [139,151,152]
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Table 3. Cont.

Food Wastes Constituent Animals That Consume It Reference

Jackfruit waste
CP: 7.9%, CF: 14.1%,
Calcium (Ca): 0.8%,
Phosphorus (P): 0.1%

Cattle, goats, etc. [138,139]

Tomato waste TDN: 55.0%, CP: 15.0%
For adult cows up to 50%,
and for milch cows and
poultry up to 16%

[138,139]

Tamarind
seedpowder TDN: 64.0%, CP: 12.0% Cattle, broilers, and bullocks [139,153]

Groundnut meal
TDN: 75.0–85.0%, Protein
40.0–50.0%, High fibre
content

Cattle, goats, buffaloes,
sheep, and pigs [139,154]

Citrus molasses
TDN: 65.0–75.0%, CP:
10.0–14.0%, Sugar content
41.0–43.0%

5–10% in the diets of broiler
chickens and ruminant feed [139,155]

Wheat bran
TDN: 65.0–70.0%, CP:
13.0–16.0%, High
phosphorus content

Cows, pigs, and goats [139,156]

Tapioca waste TDN: 60.0–65.0%, CP:
8.0–12.0%

In order to maintain cattle
body weight, 30% of tapioca
waste can be fed to adult
cattle.

[139,157]

Coffee husk CP: 7.0–8.0%, Ca: 0.51%,
P: 0.25% Cattle [139,158]

Soybean meal
TDN: 75.0–84.0%, CP:
45.0–55.0%, Rich in Ca
and P

Livestock animal and cattle [139,159]

Beet molasses TDN: 65.0–75.0%, CP:
6.0–10.0% Cows and buffaloes [139,160]

8.1. Poultry Feed

Poultry is an important component of livestock. Chickens are in such high demand
because they are robust animals that mature very quickly in the majority of the world’s
regions. Many people throughout the world rely heavily on chicken meat and eggs as a
source of protein, as seen by the 25.2 million metric tons (MMTs) of chicken produced in
the US alone in 2017 and the expected 83.9 MMTs of broiler output globally in 2018. By
2050, it is anticipated that worldwide meat production willincrease by 66% and that of
industrialized nations will increase by 78% [161].

In broiler and layer diets, it is crucial to maintain a balance of nutrients including
energy, crude protein, and crude fibre. Analyzing the nutrient makeup of chicken diets is
necessary. A well-designed diet based on the nutritional needs of the animal and nutrient
analyses of the feed ingredients may boost the animals’ feed conversion ratio. According
to numerous studies, when compared with a conventional maize and soy diet, broilers
fed food waste consisting of trash from various foods supply chain segments at different
percentages performed noticeably similarly. The manufacturing and processing industry
produces meat meal, cornflake leftovers, carrot top hay, and dried tomato pomace. Broiler
feed has been successfully formulated from bakery trash. Truong et al. [56] discovered that
56-day-old broilers fed only corn/soy had no significant variations in body weights or feed
conversion ratios when dried bakery goods up to 10% was added. Additionally, Siddiqui
et al. [162] discovered that when compared with 42-day-old broilers fed only corn/soy,
the addition of up to 30% dried bakery waste did not significantly alter body weight, feed
conversion ratio, or feed intake. When broilers were given beef meal at 65 and 80 g/kg feed
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in a corn/soy-based diet, they had equivalent daily weight gain, daily feed intake, and feed
conversion ratio to birds fed with a full corn/soy diet [163].

8.2. Fish Feed

Fish meal is the most valuable commodity in fish farming. Soybean hull, barley, corn,
wheat, and other by-products can be used to replace more expensive feed ingredients [164].
Utilizing the by-products of industries that process mangoes allows for the production of
freshwater fishes such ascarp and rohu. Fish wastes, including bones, heads, and intestines,
as well as FWs such asgroundnut cake, palm kernel cake, wheat bran, rice bran, maize bran,
and calf blood, can be used in fish feed production. FW fish feed is generally composed of
fruit wastes such as peels with some fruit flesh from pineapple, watermelon, cantaloupe,
blackberry, banana, and apple, as well as vegetable wastes such aslettuce, spinach, and so on.
Fish feed consists of cereals such as rice bran, soybean meal, rice grain, and spaghetti. The
fish feed that was prepared consisted of 60 to 70 percent animal by-products (beef, pork, and
chicken) and 30 to 40 percent fish (salmon, etc.) [165]. Carrots have been utilized with mixed
results as a source of natural colours. The cichlid fish (Cichlasomaseverum) receives 50 mg/kg
of total pigments from a diet comprising carrots, resulting in the fish’s colour [139]. There
was an increase in pigmentation in prawns given 10 percent frozen carrot tips. Organic
wastes suchspent grain from breweries, palm kernel cake, and groundnut cake are used to
make more fish meals. Garlic peel has been reported to have immunostimulant properties
in aquaculture and to protect African catfish Clariasgariepinus from illness [166]. It also
boosted resistance to infection by Aeromonashydrophila [167].

8.3. Cattle Feed

Large volumes of crop-based biomass produced by contemporary agri-food systems
are unsuited for direct human consumption but may be used to feed animals for the produc-
tion of meat, milk, and eggs. Fundamental problems with satisfying the increasing demand
for food availability and justice, as well as the urgent need to reduce the impact of food
on climate change, environmental degradation, and unsustainable resource exploitation
are at the core of the problem [168]. Strategies that encourage circularity and increase
the agri-food systems’ potential for regeneration are crucial in this situation. Indigestible,
unpleasant, or unwanted biomass (IUUB), which is often unsuited for direct human con-
sumption, is the principal way that biomass materials escape the food supply chain [169].
These materials frequently still contain high levels of proteins, carbs, and other macro-and
micronutrients. Due to farm animals’ natural capacity to digest a range of biomass, these
nutrients may be recycled by feeding cattle [170]. Consequently, increasing food production
while reducing the strain on resources, the environment, and the climate may be accom-
plished by maximizing the use of IUUB materials through livestock feeding [171]. FWs
or discards from different points in the food supply chains that are often not suitable for
human consumption. Over the globe, a staggering 1140 MMTs of agricultural wastes and
600 metric tons (MTs) of industrial by-products are frequently utilized as feedstuffs [172].
Yet, there are still enormous quantities of undiscovered resources available for up-cycling
using livestock. This is especially true for FWs/discards, which are now estimated to
be between 1300 and 1600 MTs globally and 2500 MTs are expected to rise in the future
decades [173] the effectiveness of ensiling to preserve leftover fruits and vegetables. On
dairy farms, ensiling is a routinely utilized microbiological technique that serves the spe-
cific aim of preserving recently harvested feed crops (around 35%) for lengthy storage and
feeding [174].

The most effective method is probably using animal feed since it converts FW into food
that is high in protein while using very little infrastructure. The World Wildlife Fund (WWF)
estimates that by-products from food production and processing make approximately 30%
of the feed given to animals globally. Manufacturers and grocery stores supply the vast
bulk of the 10% of extra food in the US that is delivered to feed animals [175,176]. Yet,
14.7 MTs of food waste remain that could be utilized as animal feed [177]. The majority of
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this is disposed of in landfills, which emit methane. Using waste alternatives might assist
in preventing further land conversion for producing feed crops according to the WWF,
which claims that all food waste to feed component manufacture had a beneficial influence
on land usage.

8.4. Swine Feed

Swine may integrate dietary fatty acids into meat [178]. Georganas et al. [178] con-
ducted a trial in which pigs were fed only boiled restaurant garbage (26.59% CP, 7.33%
total lipids) without any additional food in comparison with a control group that was fed
a typical diet (20.21% CP, 15.67% total lipids). Dried ripe banana peels can make up to
20% of the food of developing pigs and 30% of the diet of rabbits [25]. Pigs are mostly fed
scraps from kitchens, such as uneaten food and vegetable peels, in addition to other readily
available crops and the by-products of agricultural production. Pigs can be directly fed the
scraps of fruit and vegetable products that are discarded at marketplaces. The majority of
studies on the effect of feeding pigs waste food has been conducted with animals weighing
between 50 and 250 pounds [179]. Pigs that are finished off on food scraps often reach
a weight of at least 400 pounds before being slaughtered. Intake estimates range from
approximately 8 to 10 lb (asfed) per pig per day for pigs weighing less than 100 to 200 lb or
more for pigs weighing more than 250 lb [180]. Domesticated pig production in India is
mostly reliant on unprocessed agricultural and household waste for the fulfilment of pig
diets, whereas the cost of feeding contributes to around 80% of the total expense associated
with pork production across the globe [181].

9. Safety Policies

Untreated FW may contain pathogens that cause disease. This was demonstrated by
the 2001 outbreak of foot-and-mouth disease in the United Kingdom, which was caused by
feeding uncooked food waste to pigs. In the same year, the United Kingdom government
prohibited the use of FW in animal feeding, and one year later, the European Union issued
a similar prohibition. The prohibition does not apply to FWs that contain no meat, fish, or
other animal products [182]. These wastes, however, are limited to specific manufacturing
by-products and account for a small proportion of EU food wastes. Appropriate heat
treatments can make recovered feeds safe for animals by deactivating potentially harmful
bacteria and/or viruses that may be present in these types of feeds; we believe that heat-
treated waste should be exempt from the ban. Heat treatments can include prolonged
heating to temperatures above 70 ◦C for more than 30 min in order to ensure the safety of the
feed produced. Furthermore, when offering leftover human food to animals, disease issues
become less important because human food specifications are generally more stringent
than animal feed specifications. Furthermore, heat treatment would alleviate problems
that arise after waste generation. Unfortunately, current EU bans restrict recycling FW as
animal feed, allowing only 3 million tons of manufacturing food losses to be recovered as
animal feed out of the 102.5 million tons of FW produced in the EU each year [183].

10. Conclusions and Future Perspectives

All across the world, people often throw away a wide variety of food items. Due to
the fact that it includes a lot of nutrients, FW can have a number of negative consequences
for the environment if it is not properly disposed of or handled. These include, but are
not limited to, greenhouse gas emissions, eutrophication, and acidification. Converting
food scraps into useful animal feed is a viable solution that can help reduce environmental
damage. Though it is normal practice to use leftovers from human meals to feed livestock,
scientifically authorized production methods and certified quality feed production are
essential for healthy livestock production in all regions. Diverse technologies have been
developed for the safe conversion of FW into various dry and liquid livestock feeds. Animal
feed made from FW not only replaces commercial feed but also cuts the cost of livestock
production. Turning FW into animal feed is one way that can contribute to the creation of a
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circular economy as well as the achievement of sustainable development. Nevertheless,
certification and quality control require a complete characterization of the many forms of
FW both before and after the process of conversion into feed. There is an immediate demand
for research and development in technology that can convert wasted food into animal
feeds that are healthier and more economically viable as well as other useful products. The
techniques that are being developed will make it possible to generate data that will be
essential in enabling the commercial inclusion of animal feeds that are derived from waste
materials to end users. The incorporation of low-cost FW-derived items into animal diets
will, in the future, provide the opportunity to reduce production expenses, which account
for a significant portion of overall poultry and swine production costs. These expenses
account for the opportunity to reduce production costs. Those active in the business world
could have a significant incentive to become involved with the practice of using FW as
animal feed if they are guaranteed that the practice is safe and of high quality. Last but not
least, recycling food scraps for use in animal feed has the potential to improve both food
safety and environmental conditions.

Future research must address multiple crucial issues. First, systematic sample collec-
tion and comprehensive nutrient analysis are required to provide more accurate information
on the complete nutrient profile of pre-treatment food waste and, more importantly, post-
treatment feed products in terms of concentration, variability, and bioavailability of key
nutrients. This information is crucial for the incorporation of feeds derived from food
waste into the precision feeding routine of modern animal production systems. Second,
a quantitative assessment is required to link feed grain replacement with resource and
environmental benefits throughout the entire food system, including major resource indices
such as land, water, energy, fertilizer, and other agricultural inputs and environmental
parameters such as soil erosion, nitrogen losses, and greenhouse gas emissions. The sci-
entific and policymaking communities, as well as the public and private sectors, would
all benefit from the new understanding provided by this information. The development
of effective interventions to support and promote the adoption of food waste recovery for
animal feeding also requires input and feedback from stakeholders, such as feed suppliers,
livestock producers, food waste emitters, and consumers. The re-feed strategy’s full range
of costs and benefits, as well as any potential broader impacts, must be examined in-depth
in economic analyses in order to provide the fundamental framework required for the
creation of sound, successful, and path-altering policies.
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