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Simple Summary: In this study, the bacterial community structure and composition in the skin
ecosystem of Barbour’s seahorses (Hippocampus barbouri) were assessed by the high-throughput
sequencing of 16S rRNA genes, with particular emphasis on members belonging to the Aeromonadaceae
family due to its implications for the health of fish species. The results revealed that sequences
affiliated with the Aeromonas genus were found in the skin of Barbour’s seahorses, with abundances
being slightly similar between female and male specimens. Comparative analysis also demonstrated
that the presence of Aeromonas species in the skin of Barbour’s seahorses was strongly influenced by
the surrounding sediment. These findings could be used as a baseline for further studies about the
role of Aeromonas species in the normal and disturbed microbiota associated with seahorses.

Abstract: Although several studies have described the bacterial community composition associated
with marine fish, there is limited information related to seahorses. Moreover, previous studies have
demonstrated that the skin microbiota is useful for determining health status and common disorders
in the host. This study, therefore, aimed to explore the skin bacterial community composition in
Barbour’s seahorse (Hippocampus barbouri) using high-throughput sequencing of 16S ribosomal
RNA genes. Water and sediment samples from the surrounding environment were also analyzed
for comparative purposes. The results revealed that sequences affiliated with the Shewanellaceae
family were dominant in the skin of female Barbour’s seahorses and sediment samples, whereas
sequences affiliated with the Bacillaceae family were dominant in the skin of male Barbour’s seahorses.
Interestingly, sequences affiliated with the Aeromonas genus were found in the skin of Barbour’s
seahorses, whose abundance was slightly similar between the female and male specimens. Further
comparative analysis showed that the presence of Aeromonas species in the skin of Barbour’s seahorses
was strongly influenced by the surrounding sediment. Given that some Aeromonas species are known
to be important pathogens in humans and fish, these results may be used for further research on the
dependency of the skin microbial composition on the environment as well as determine whether the
presence of Aeromonas and other detected species has implications on seahorse health.
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1. Introduction

Although seahorses (Hippocampus) play important roles in the ecosystem, they are
constantly at risk because of trade for medicinal and ornamental purposes [1]. Like other
fish species, seahorses are intimately in contact with a complex and dynamic microbial
world in which a large fraction of these microorganisms adhere to and colonize epithelial
surfaces. However, in seahorses, the microorganisms are attached only to the mucous
layer of a unique type of surface cell—the flame cone cells, which are found exclusively
on seahorses [2]. Despite such unique features, seahorses are not exempted from diseases.
In fact, some studies have reported skin diseases of diverse etiology in wild and farmed
seahorses [3,4]. The fish skin microbiota possesses distinct physicochemical properties that
have evolved to reside with the host and help regulate host–microbe interactions [5,6]. This
regulation includes enhancement of the epithelial barrier, development of the immune
system, and nutrient acquisition [7,8]. In fish species from large-scale production facilities,
the mucosal microbiota is vital in protecting the host from pathogens by stimulating the
immune system; however, the complex interactions of the mucosal microbiota with the
pathogens and the fish skin immune system have remained unexplored [5]. In order to
address these concerns, it is essential to explore the bacterial composition in the cutaneous
mucus of seahorses. In a recent study carried out by our research team, we observed the
presence of Aeromonas species in the cutaneous mucus of healthy Hippocampus barbourin [9].
It should be noted that Aeromonas species are ubiquitous bacteria primarily recovered from
aquatic ecosystems [10], as they are commonly found in freshwater bodies, estuaries [11],
and even in seawater [12]. Some Aeromonas species are typically known as opportunistic
pathogens as they cause severe disease outbreaks in wild and pond-raised freshwater
fish [13]. For instance, Aeromonas salmonicida subsp. salmonicida is a ubiquitous Gram-
negative bacterium that causes furunculosis in wild and captive salmonids (e.g., salmon and
trout). This disease results in high morbidity and mortality rates and has become a major
threat to the aquaculture industry [14]. Moreover, Aeromonas hydrophila, commonly found in
the aquatic ecosystem, is considered as an important foodborne bacterial zoonotic pathogen
in aquaculture. This infectious agent is a leading cause of mortality in economically
important fish species from Southeast Asia such as the striped snakehead or snakehead
murrel (Channa striata). Despite implications for fish health [15], there is limited information
on the prevalence of these bacterial species in seahorses.

Until the last decade, our knowledge of microbial communities associated with fish has
largely been based on the use of traditional culture-based methods. Although useful, these
data are limited and biased toward cultivable members of the community [16]. However,
the study of microbial ecology has dramatically changed due to the implementation of
cutting-edge sequencing technologies (such as Illumina or Oxford Nanopore), which
provide new ways to study microbial communities, thereby overcoming these limitations
based on culture-dependent approaches [17]. These approaches have provided a more
accurate picture of microbial communities in a particular habitat following the extraction
of all genetic material, followed by sequencing and bioinformatics analysis. By providing
a large amount of data with high accuracy and low cost, high-throughput sequencing
technology has fundamentally altered the way that research has been conducted in the
past and made it possible to understand microbial diversity at a much larger scale [18].
Consequently, high-throughput sequencing technology can make an in-depth analysis
of the bacterial community structure and abundance efficiently [19], not only in fish but
also in other organisms. Given this, a full picture of the bacterial community composition
associated with seahorses can be obtained, thereby increasing our knowledge of the role of
skin microbiota in the health and disease of seahorses. This technology has therefore taken a
giant leap forward in evaluating microbial communities in seahorses. In this study, we used
the Illumina sequencing technology method based on 16S rRNA gene sequencing to explore
the bacterial community structure and composition in the skin ecosystem of Barbour’s
seahorses (Hippocampus barbouri), with particular emphasis on members belonging to the
Aeromonadaceae family due to its implications for the overall health of fish species.
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2. Materials and Methods

A gratuitous permit from the Department of Agriculture, Bureau of Fisheries and
Aquatic Resources (DA-BFAR) was requested and granted under the project “Seahorses and
Pipefishes with Pharmaceutical Potentials from selected areas in Mindanao, Philippines”
with GP No. 0184-19. Eleven healthy Barbour’s seahorses weighing an average of 7.07 g
and samples from the surrounding environment (water and sediment) were collected from
coral reefs off the coast of Cantiasay Island, San Pedro, Surigao del Norte. The water had
an average temperature of 23.6 ◦C during the sampling period. Each sample was separately
and immediately transported to the Molecular Systematics and Oceanography Laboratory
of the Premier Research Institute of Science and Mathematics (PRISM), Mindanao State
University—Iligan Institute of Technology for further analysis. Seahorses were gently
washed with sterile seawater twice to remove debris without compromising the micro-
bial community on the skin [20]. Skin mucus samples were then collected by scraping
the seahorse’s dorsal surface using a sterile swab [21], which were placed into a 2 mL
microcentrifuge tube and stored at −65 ◦C until DNA extraction.

Genomic DNA was extracted from the skin microbial community of six female Bar-
bour’s seahorses (HBFS) and five male Barbour’s seahorses (HBMS) as well as from water
(WS) and sediment (SS) samples. Samples were pooled according to their origin and the
HiPurA™ DNA Purification Kit (HIMEDIA; Mumbai, India) was used for DNA extraction
according to the manufacturer’s instructions. Briefly, 1 mL of water lysis solution and
samples were individually added to the Hi-Water bead tubes, which were horizontally
vortexed at maximum speed for 5 min. These mixtures were centrifuged at 5000 rpm
for 1 min, and the supernatants were transferred to 2 mL collection tubes and approxi-
mately 600–650 µL of each supernatant was recovered. The mixture was then centrifuged
at 13,000 rpm for 1 min at room temperature and the supernatant was transferred to a
new 2 mL collection tube without disturbing the pellet. A volume of 200 µL of inhibitor
removal solution was added to each supernatant, and the tubes were briefly vortexed
and incubated at 4 ◦C for 5 min. The homogenates were then centrifuged at 13,000 rpm
for 1 min at room temperature, whose supernatants were transferred to 2 mL collection
tubes without disturbing the pellet. A volume of 650 µL of binding solution was added
to the pellet and mixed by vortexing briefly. Approximately 650 µL of this homogenate
was loaded onto the HiElute Miniprep Spin Column, which was centrifuged for 1 min at
13,000 rpm. The flow-through was discarded. We repeated loading the remaining solution
of 650 µL of binding solution and the pellet onto the HiElute Miniprep Spin Column and
then centrifuged for 1 min at 13,000 rpm at room temperature. Then, 650 µL of diluted
wash solution was added to the column and centrifuged at 13,000 rpm for 1 min. The
flow-through was discarded, and then re-used the same 2.0 mL collection tube with the
column. A volume of 650 µL of wash solution was added to the column and centrifuged
at 13,000 rpm for 1 min. Again, the flow-through was discarded and centrifuged again
at 13,000 rpm for 2 min to dry the column. The column was then placed in a new 2.0 mL
collection tube and 100 µL of elution buffer was added. The solution was incubated for
5 min at room temperature, which was further centrifuged at 13,000 rpm for 1 min. The
eluted DNA was then transferred to a new tube for storage at −20 ◦C.

Extracted DNA samples were sent to Macrogen Inc. (Seoul, Republic of Korea) for
amplification, purification, quality check, and high-throughput sequencing on the Illu-
mina MiSeq platform based on universal primers targeting the V3–V4 regions of the 16S
rRNA gene. Raw data were processed using the Quantitative Insights into Microbial
Ecology (QIIME 2) pipeline [22]. Operational taxonomic units (OTUs) were defined at
99% sequence similarity of the 16S rRNA genes. This value was used to define a core set
of representative sequences, which were used for phylogenetic analyses. The weighted
UniFrac test was applied to determine whether two or more communities had the same
structure [23]. A heatmap was also generated showing the relative abundance of OTUs
assigned to the Aeromonadaceae family across the samples, which were classified using
the EzBioCloud database [24]. Phylogenetic analyses were performed by using MEGA
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version 6.0 [25]. Distances (distance options according to the Kimura 2-parameter model)
and clustering with the neighbor-joining method were determined by using bootstrap
values for 1000 replications.

3. Results and Discussion

After normalizing to avoid any bias due to the difference in the total number of se-
quences, the bacterial community structure was analyzed using the weighted UniFrac test
(sensitive to abundances of taxa), whose results demonstrated that the relative abundance
of OTUs (defined at 99% similarity) was significantly different (p < 0.001) among groups.
Overall taxonomic characterization of the bacterial community was then conducted at the
family level (Figure 1A). Sequences affiliated with the Shewanellaceae family were dominant
in the skin of female Barbour’s seahorses (HBFS) and sediment samples (SS) (41.6 and
37.8%, respectively), whereas sequences affiliated with the Bacillaceae family were domi-
nant in the skin of male Barbour’s seahorses (HBMS) (59.1%). Moreover, water samples
(WS) were dominated by sequences affiliated with the Flavobacteriaceae and Vibrionaceae
families (7.2 and 6.7%, respectively). Although sequences affiliated with the Aeromonadaceae
family were found in all samples, their abundance was very low in the water samples
(0.4%). Specifically, sequences affiliated with the Aeromonadaceae family had relative abun-
dances of 7.6 and 5.5% in the skin of female and male Barbour’s seahorses, respectively.
Interestingly, a relatively high abundance of sequences affiliated with the Aeromonadaceae
family was found in the sediment samples (21.4%). Because members belonging to this
family have important implications for the overall health of fish species [26], a phylogenetic
analysis was carried out to establish their taxonomic affiliation. Representative nucleotide
sequences of OTUs assigned to the Aeromonas genus are available in Supplementary Mate-
rial File S1. A phylogenetic dendrogram of selected OTUs was then constructed using the
neighbor-joining method (Figure 1B), which revealed that these OTUs grouped with known
Aeromonas species. The closest described relative of OTU 6 and OTU 588 was A. taiwanen-
sis LMG 24683, whereas OTU 91 was closely related to A. tecta CECT 7082, OTU 104 to
A. sanarellii LMG 24682, OTU 462 to A. bivalvium CECT 7113, OTU 582 to A. jandaei CECT
4228, and OTU 708 to A. rivipollensis LMG 26313. Although Aeromonas species share high
levels of similarity based on 16S rRNA gene analysis [27], our analyses provide valuable
information on the diversity of Aeromonas species, thereby validating the reliability of
our findings. The above-mentioned Aeromonas species have also been observed in fishes
intended for human consumption such as largemouth bass [28], sushi [29], tilapia and
salmonids [30], seafood [10], and bivalve mollusks [31], whereas other Aeromonas species
have been reported to be present in environmental samples [32–35] and in clinical sam-
ples that can be isolated from fish, and has characteristics of virulence and antimicrobial
resistance that are comparable to isolates from humans [36].

Although the abundance of sequences affiliated with the Aeromonas genus was slightly
similar between the female and male Barbour’s seahorses, there were differences in terms
of diversity. In fact, the detected OTUs in the skin of female Barbour’s seahorses were
affiliated with A. bivalvium, A. jandaei, A. sanarellii, A. taiwanensis, and A. tecta, whereas the
detected OTUs in the skin of male specimens were affiliated with A. taiwanensis and A. tecta.
Surprisingly, sequences affiliated with A. taiwanensis were highly abundant in both cases.
To the best of our knowledge, this is the first time that A. taiwanensis has been detected in
seahorses. This is of special relevance because A. taiwanensis was originally described on
the basis of one strain recovered from the wounds of hospitalized patients in Taiwan [33].
Moreover, A. taiwanensis has been isolated from wastewater in Portugal [37] and from the
feces of a patient with diarrhea in Israel [38].

It should be noted that environmental factors and microbiota composition are inti-
mately related and have a significant impact on host health. As the skin epithelial surface is
in direct contact with the surrounding environment, a comparative analysis was carried out
to establish the potential influence of sediment or water on the presence and abundance of
Aeromonas species in the skin of Barbour’s seahorses (Figure 2). The results showed that the
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presence of Aeromonas species in the skin of Barbour’s seahorses was strongly influenced
by the sediments. Previous studies have suggested that the structure and composition of
the skin microbiota are likely to be impacted by several variables including abiotic factors
linked to the geographic locality, mineral content, temperature, and season as well as biotic
factors related to the presence of other microorganisms, nutrient potential, or antimicrobial
components of fish mucus [39]. Given the interface influencing this skin microbiota, water
and sediments were considered [40], and in this case, the sediments had a higher influence
on the skin microbiota of Barbour’s seahorses. Therefore, it appears that seahorses possess
an epidermal cell type that is particularly suited for the effective adhesion of microorgan-
isms from their environment. This is because the surface coat of the seahorse epidermis
comprises several types of mucopolysaccharides: the glycocalyx, the cap of the flame
cone cells, which is a mucopolysaccharide–protein complex, and the mucus secreted by
unmodified cells, which resembles that of goblet cells [2]. Our findings were also supported
by recent studies suggesting that the sampling site is a factor because the areas where
the sediments were collected had a great impact on the skin microbial communities [41],
and that the skin microbiome assemblage of marine organisms is strongly associated with
the surrounding sediments [42]. In some aquacultural setups, for instance, sediments are
known to be one of the primary sources of microbiota in fish, with fish microbiota also
settling on the sediments [43]. This claim, therefore, provides evidence for the relationship
between the microbiota composition on H. barbouri skin and sediments. Generally, this
implies that the microbiota of marine animals including seahorses may contain significant
information about how animals and the environment interact as well as about the ocean
ecosystem [44].
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Some studies on the microbial composition and pathogens in seahorse species have
been published such as phylogenetic characterization of bacterial communities in H. guttula-
tus [45] and H. barbourin [9], bacterial communities in the intestinal tract of H. kuda (Tanu
et al., 2011) [46], assessment of pathogenic bacteria from H. erectus [47] and H. haema [48];
however, no studies have been conducted on the prevalence and diversity of Aeromonas
species in H. barbouri. Our findings show that the presence of Aeromonas species in the skin
of H. barbouri could indicate health and disease clues. Therefore, an in-depth understanding
of the dynamics and diversity of the Aeromonas species could provide us with reliable
evidence on why they inhabit the skin mucus of H. barbouri. The genus Aeromonas is a
member of the Aeromonadaceae family, which consists of facultatively anaerobic, Gram-
negative, non-spore-forming bacilli or coccobacilli that are generally motile bacteria and
commonly found in aquatic environments, some of which can cause disease in humans,
fish, and other aquatic animals [49,50]. This genus comprises 36 species that are considered
autochthonous of aquatic environments [51]. Numerous aquatic animals, mostly fish and
corals, are involved in pathological interactions with various species of Aeromonas [10]. As
inhabitants of marine environments, fish and other seafood are the most common sources
for isolating these microorganisms [52], supporting their occurrence in seahorses. Moreover,
some Aeromonas species are known to be opportunistic pathogens for fish. When handling
fish, working in aquaculture, or keeping fish as pets, Aeromonas spp. can infect the skin and
soft tissue, which may lead to injuries [53]. Under stressful conditions such as an increase
in water temperature, poor water quality, excessive handling, etc., Aeromonas spp. can
cause epidemic outbreaks [54]. Few known species are frequent etiological agents of fish
disease such as the motile Aeromonas septicemia (MAS), caused by virulent A. hydrophila, A.
caviae, iA.veronii, which is responsible for ulcerative syndrome in catfish and A. salmonicida,
which is responsible for furunculosis in salmonids [55]. However, the severity of disease
cases depends on the concentration of these microorganisms [56]. Some changes in the
skin microbiota based on its phylogenetic composition may affect its functions, thereby
upsetting its homeostatic interactions with the host and eventually favoring disease devel-
opment [40]. Considering that H. barbouri specimens in this study were directly collected
from the wild with no trace of skin disease, they can be considered as apparently healthy.
As a result, further research is needed to understand the differences in the composition of
healthy and diseased H. barbouri.
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4. Conclusions

High-throughput sequencing based on 16S rRNA amplicon sequencing technology
revealed the presence of sequences affiliated with Aeromonas species in the skin of Barbour’s
seahorses. Interestingly, Aeromonas species were also observed in the sediments, which
seem to be the most probable source of these species. Although some Aeromonas species
are known to be important pathogens, the presence of these species in this study may not
have affected the health status of Barbour’s seahorses yet. Therefore, further studies are
required to explore the implications of Aeromonas species and other detected species on
seahorse health.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ani13071241/s1. Supplementary Material File S1: Representative
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