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Simple Summary: The Min pig is a national-level protected pig that is recognized as a rare animal in
China, lives in a constantly cold environment in the north of China, and has excellent characteristics
compared with other commercial pigs. The Min pig has the specific character of secondary hair
growth in winter and seasonal cycling. International research on hair follicles is mainly focused
on human and mice hair, including hair follicle regeneration and hair loss treatment. Research on
hair follicles in pigs is limited. The structure and morphology of hair follicles from Min pigs are
different from those of lean-type pigs, such as Yorkshire and Berkshire pigs, which do not grow
secondary hairs in the adult stage. In this study, there were significant gene expression differences
with high-throughput sequencing to determine the primary and secondary hairs. Based on skin
blocker experimental results, we can infer that the Wnt and BMP signaling could stimulate follicle
stem cells in the Min pig.

Abstract: In China, the national-level protected pig, the Min pig, is characterized by the development
of secondary hairs and hair follicles in winter. Factors that dominate the genotype in the growth of
secondary hairs are not clear through the concrete cell signaling pathways. This study compared hair
phenotypes based on morphological structure, transcriptomics, and potential targeting molecules in
the breeds of Min, Berkshire, and Yorkshire pigs. The results indicated that Min pigs have specific
characteristics for the growth of secondary hairs compared with the Berkshire and Yorkshire pigs.
The transcriptome analyses and quantitative reverse transcription-polymerase chain reaction results
revealed that secondary hair growth was activated by follicle stem cells. The specific inhibitors of
Wnt and BMP were studied using respective signals. The density of follicles, activity of follicle stem
cells, and relative gene expression results have shown that Wnt and BMP stimulate the activity of
follicle stem cells, and the Wnt signaling molecule has a significantly better effect than the BMP
signaling molecule on stem cells. Wnt and BMP can promote the growth of local secondary hair
and gene expression. Therefore, this study was conducted to verify the development mechanisms of
secondary hairs, which have potential applications in laboratory animals and comparative medicine.

Keywords: Min pig; follicle stem cell; BMP; Wnt

1. Introduction

Pigs are economically important in many countries worldwide, and pig breeding is
a matter of biosecurity. Gene studies indicate that pigs in Asia and Europe have evolved
independently of the wild boar subspecies [1]. Modern breeding practices have been
intensively pursued commercially for better growth, meat quality, and fertility traits in
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pig breeds, which has resulted in the loss of high genetic diversity under less selection
pressure and adaptation to the growing environments [2]. With the development of the
genome sequencing technologies, the study and selection of genetic phenotype signatures
among different breeds plays an important role in understanding the process of breed
development and the maintenance of human health [3].

Min pig is a national-level protected pig that is recognized as a rare animal in China,
and lives in a constantly cold environment in the north of China [4] and has excellent
characteristics, such as good meat quality [5], high fertility, and strong resistance to ad-
versity [4]. The Min pig has the specific character of secondary hair growth in winter
and seasonal cycling [6]. The primary hair cycling of the adult pig has passed through
one complete cycle per year with an annual cycle in domestic pigs. All these pig breeds,
namely, Yorkshire, Berkshire, and Min pigs, grow the secondary hairs in the period of fetal
porcine, but the first two lose them with growth into the adult stage whereas the Min pigs
do not. Most of the follicles in adult pigs are active for a 4-month period during autumn
and early winter. However, only 20% of the primary hair follicles are in anagen during
the remaining period from winter to the end of summer [7]. The domestic pig has been
found to have seasonal cycling of primary hair, which could re-grow in the next anagen.
However, there is no research on how the adult pigs grow secondary hairs with the whole
hair cycle. In comparison with other pig species, the characteristics of the secondary hairs
and hair follicles of Min pigs are significantly different than the domestic pig, which are
important factors contributing to the ability of Min pigs to adapt to an extremely cold
environment [5,8]. Meanwhile, our team studied the unique villous growth of Min pigs
through the determination of follicle phenotype and of hair follicles, and the acquisition of
sequencing data through RNA-seq to analyze differentially expressed genes in different
seasons [9]. The most important is that the Min pig grows new secondary hairs every cold
season. Hair follicle growth follows a definite pattern, which probably depends on hair
density and/or the mammalian group, despite the general parallels in hair follicle and hair
fiber differentiation.

The structure and morphology of hair follicles from Min pigs are different from those
of lean-type pigs, such as the Yorkshire and Berkshire pigs, which do not grow secondary
hairs in the adult stage. Animals usually have specific features, such as a thicker coat
and secondary hairs, which reduce heat loss from the animal and cold skin irritation for
their protection and functioning in cold environmental conditions [10,11]. All of these
characteristics come from the evolutionary selection pressure to adapt to extreme living
conditions, such as temperature and diet [12,13]. Increasing evidence has established
an important relationship between secondary hair characteristics and marker-assisted
selection for animals with secondary hairs, which correlated with a shorter calving interval
in Morada Nova sheep [2].

At present, international research on hair follicles is mainly focused on human hair,
including hair follicle regeneration and hair loss treatment [14]. Research on hair follicles
in pigs is limited. The cell biology of pigs is closest to that of humans, though, and it is of
great importance to study the growth mechanism of pig hair follicles, since such studies
can assist in the development of treatments for human hair loss. The earliest research
on pig skin was the development of fetal porcine skin from 41 days of gestation back to
birth [15]. The growth of hair in domestic pigs was not affected by the breeding season.
Most importantly, there was no research on the regeneration of secondary hairs in any other
adult pig. Our team focused on the regeneration of secondary hairs for Min pigs in the cold
season, and this study provides a crucial animal model for studying the development of
secondary hair follicles. Moreover, it was not clear that the secondary hairs possess the best
stem cell properties stimulated by various signaling pathways in the adult Min pigs. To
this end, we studied the difference in hair morphology and structure in three pig breeds,
namely, Min pig, Yorkshire pig, and Berkshire pig, using high-throughput sequencing to
determine gene expression differences. Thus, the present study was conducted to evaluate
the relationship between the signaling pathway of stem cells and the hair morphological



Animals 2023, 13, 1239 3 of 16

structure in Min pigs and its contribution to the thermoregulatory mechanisms in hair
regeneration and hair loss.

2. Materials and Methods
2.1. Animals and Sample Preparation

The Min, Yorkshire, and Berkshire pigs were procured from the Experimental Base
of the Animal Husbandry Institute, Heilongjiang Academy of Agricultural Sciences. This
study was conducted following the animal welfare guidelines of the World Organization
for Animal Health. All the pigs were killed under pentobarbital sodium anesthesia. All the
clinical animal samples used in this study were approved by the Committee on Ethics of the
Heilongjiang Academy of Agricultural Science. Nine 7-month-old pigs (male/female) were
randomly selected from each species (Min pig, Yorkshire pig, and Berkshire pig). All 9 pigs
weighed approximately 100 kg, and the body length was approximately 120 cm in the
winter. There were 3 pigs per pen with an equal number of barrows and gilts. Pens were
subjected to the same dietary treatments as the nutrient requirements of swine, and they
were balanced based on pen weight at the start of the study. The feeding and management
conditions were similar for all pigs. Skin samples (25 mm2) were obtained from the skin
tissue of Min, Yorkshire, and Berkshire pigs at the hair follicle developmental stages. The
Min pigs could only grow the secondary hair follicle in the cold season, and the Yorkshire
and Berkshire pigs could not grow the secondary hair follicle in adult life. The telogen
of the secondary hair follicle is from June to October, and the anagen is from December
to May of the next year in Min pigs. Skin tissue from the front shoulder of each pig was
selected. The hairs were extracted by surgical forceps from the skin, and the bottom of
hairs were cut to collect the hair follicle for RNA extraction. We obtained 30 lateral primary
hair samples and 30 secondary hair samples within each skin tissue as technical repeats in
the hair follicle development stage. The primary hair samples and secondary hair were
obtained from the Min pig. The Yorkshire and Berkshire pigs were obtained for primary
hair samples, which did not grow the secondary hair. The samples of the secondary hair
were instead of skin tissue. A total of hairs of Min, Yorkshire, and Berkshire pigs were
obtained in each pig for this study [16,17]. Hair length was measured using a Vernier
caliper. A stereomicroscope was used to observe and analyze the distribution and number
of secondary and primary hairs in Min pigs. All samples were immediately frozen in liquid
nitrogen. All the samples were performed for three replications, and all the groups were
examined as independent measurements.

2.2. Histological Study of Hair Follicle and Skin with H&E Staining

Hair follicle and skin tissue samples were collected (2 × 2 cm) from Min, Berkshire,
and Yorkshire pigs for histological analysis. The slices of skin from the scapula were
fixed with 4% formaldehyde for 2 days. Thereafter, they were dehydrated using different
concentrations of alcohol. Xylene was used twice to make the tissue of the skin transparent
for approximately 1.5 h each time when the stove was transparent through light at 50 ◦C.
The dehydrated tissues were then waxed for paraffin embedding. The slices were roasted
briefly in a temperature box at 60 ◦C, and the paraffin in the tissue space was removed
using xylene [18]. The slices were washed three times with phosphate-buffered saline (PBS,
pH = 7.4) and 0.25% trypsin for antigen repair. The paraffin sections were stained with
1% hematoxylin and 0.5% eosin (H&E) for histological examination using a light microscope
(Olympus, Tokyo, Japan). The dewaxed sections were used for immunofluorescence assay.

2.3. RNA Extraction

The hair follicles of the primary and secondary hair samples were collected by hair
extraction; they were pulled out to add in the Trizol for the next step of RNA extraction. The
hair follicles and skin tissues were ground in liquid nitrogen and mixed with 1 mL Trizol,
followed by incubation for 2–5 min at room temperature (RT). Total RNA was extracted
using Trizol reagent (Invitrogen, San Diego, CA, USA), treated with TURBO DNase I
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(Ambion, TX, USA) for 30 min, and purified using a 2100 Bioanalyzer Nanochi (Agilent
Technologies, Palo Alto, CA, USA) according to the manufacturer′s instructions. The RNA
was further treated with phenol-chloroform and washed twice. Subsequently, the RNA-
containing supernatant was transferred to a new tube, followed by ethanol precipitation,
washing, and dissolution in diethyl pyrocarbonate-treated water. For high-throughput
sequencing, there were at least 50 hair follicular units in one sample and for the reverse
transcription-polymerase chain reaction (qRT-PCR) experiment, there were at least 200 hair
follicular units in one sample.

2.4. RNA-Seq Experiments

TRIzol reagent (Invitrogen) was used to extract RNA from the hair follicles and skin
tissues according to the manufacturer’s instructions. A 2100 Bioanalyzer Nanochip (Agilent
Technologies) was used to determine RNA purity. The TruSeq RNA Sample Prep V2
kit (Illumina, San Diego, CA, USA) was used to construct libraries for sequencing, as
previously mentioned [19]. Reverse transcriptase and random primers were added to the
reverse transcription for the interrupted mRNA fragments to synthesize the first strand of
cDNA. Finally, adaptors were ligated to the fragments, which were used to construct the
library and sequenced on an Illumina/Solexa HiSeq2000 platform.

2.5. Analysis of RNA-Seq Datasets

After high-throughput sequencing, the high-quality clean data were used for further
analyses. All the transcriptome data were uploaded to the NCBI. There were 18 samples
of Accession numbers (SRR15291738 to SRR15291755). Furthermore, the Q30, Q20, GC
content, and sequence duplication levels of the efficient data were calculated. The pig
genome sequence (Sus10.2) and annotation files were downloaded from the Ensemble
database [20]. After quality control analysis of the original sequencing dataset, the RNA-seq
sequences were compared with the pig genome using TOPHAT and TAIR10 annotations as
references [21,22]. Using the transcriptome assembled by Trinity as the reference sequence,
the clean reads of each sample were aligned back to the reference sequence [23]. The
sequencing output data were analyzed for a single sample, and Cufflinks software was
used to calculate the fragments per kilobase of transcript per million mapped reads (FPKM)
and the log2FC values of each unigene expression in each sample [24,25]. FPKM represents
the number of aligned transcripts per thousand bases per million aligned fragments.

2.6. Differential Expression Analysis

This experiment classified the different genes expressed in the three breeds of pigs,
compared them in the different samples, and conducted a correlation analysis for the
different biological replicates. FPKM was used to calculate the gene expression, which
could eliminate the influence of gene length and sequencing data quality on epigenetic
expression. After regular logarithmic conversion, the sample data were used for principal
component analysis (PCA). The R package gmodels (http://www.r-project.org/ (20 April
2019)) was used to perform the PCA. A weighted gene co-expression network analysis
software package in R language was selected to build a co-expression network. The co-
expression network was used as shown in the heatmap [26]. For analysis of RNA-seq
datasets, the Deseq R software package (1.10.1) was used to analyze the differences in gene
expression [27,28]. To control the error discovery rate, the Benjamini-Hochberg method was
used to adjust the p-value. Gene expression was normalized with a fold change greater than
2 and a significance p-value less than 0.05. A Benjamini-Hochberg adjusted p-value/false
discovery rate (FDR) less than 0.05 indicated differentially expressed genes [29].

2.7. Quantitative Reverse Transcription-Polymerase Chain Reaction

SuperScript III (Invitrogen) and Oligo (dT) primers were used to reverse transcribe
a total of 1–2 µg of DNase I (RNeasy mini kit)-treated RNA. The synthesized cDNA was
subjected to quantitative PCR analysis using the SYBR Premix Ex Taq (Takara) in a Bio-Rad

http://www.r-project.org/
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CFX96 real-time PCR system [19,30]. All qRT-PCR reactions were performed for three
replications in each cDNA sample, and all the groups were examined as independent
measurements to adequately support statistics in the experiments [31]. The Livak method
(2-∆∆CT method) was used to calculate the fold change compared to the Yorkshire pig
group. All primer sequences used for qRT-PCR are listed in Table 1.

Table 1. Primer sequence for qRT-PCR.

Gene NCBI Accession Sequence (5′-3′)

BCL2 XM_001927592.3 F: ATGTTCAGGTCCAAACGCTCGG
R: CTGCCCTTGCTCCCATCCTC

SMAD6 XM_003480446.3 F: GCGGCGACTTTGGCGAAGT
R: GCGTCCCGGGGCCGCCGCAG

Neuropeptide W NM_213786.1 F: CCTCCGGAGCCAGTTCCTGG
R: AGTAACAGCAATGCCAGCAGCC

keratin XM_003126159.4 F: CTCACCTATAGCACCACCCC
R: GAGAGCAGCGAAGGGTCTTT

BMP NM_001201485.1 F: CCCAAATTCCCCTCTCACCC
R: GCTACCGTCAGGCTGATACC

neuro NM_001123152.1 F: ATGTCCATCTTGTTTTATAT
R: CTGGTAATTTTCCTGAAGGTCC

2.8. Wnt and BMP for Hair Growth in Min Pig

Salinomycin sodium salt (Synonyms) and LDN-212854 are inhibitors that exhibit high
selectivity for Wnt and BMP, respectively [32,33]. All the inhibitors were dissolved in
sunflower oil, which was also used in the control group. The concentrations of Synonyms
and LDN-212854 were resolved at 2.5 mg/mL and 5 mg/mL in sunflower seed oil for the
cutaneous application, respectively, which is acceptable for external use on the skin, as
described previously [34,35]. The Min pigs were shaved dorsally in the anagen period of
5 months for males and females in the cold season. Vehicle control and test compounds
were topically applied on the shaved skin every other day for the 3-week duration of the
experiments. Skin pigmentation and hair growth were monitored and documented, and
the samples were dissected for the next experiments, including qRT-PCR and immunoflu-
orescence, with the experimenter(s) being blind to the treatment conditions. All these
experiments were repeated more than six times for male and female Min pigs.

2.9. Immunofluorescence

The freezing tissue slices were washed thrice with 0.01 M PBS and fixed with 4%
paraformaldehyde at RT for 15 min. 0.4% Triton (Triton X-100) in the PBS was used to treat
and permeabilize the section slides for 2 h at room temperature (RT). The section slides
were blocked with 0.3% bovine serum albumin in PBS for 20 min and incubated for 45 min
with the specific antibody, Lgr5, at RT. The secondary antibody, goat anti-rabbit fluorescein
isothiocyanate isomer (FITC) (Abcam, Cambridge, UK), was incubated with the section
slides for 30 min at RT. Finally, the samples were washed and examined using a Zeiss
Axioplan2 microscope (Carl Zeiss, Oberkochen, Germany).

2.10. Statistical Analysis

All the samples were performed for three replications, and all the groups were exam-
ined as independent measurements to adequately support statistics in the experiments. The
average duration of recovery and colonization over time were compared between groups
using repeated-measure analysis of variance with Bonferroni’s correction using the SPSS
software 25.0 (IBM). Statistically significant effects (p < 0.05) were further analyzed, and
mean values were compared with Tukey’s honestly significant difference test.
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3. Results
3.1. Observation of the Hair of the Three Pig Breeds

The hair phenotypes of the three pig breeds, Min, Yorkshire, and Berkshire pigs, are
shown in Figure 1A. As shown in Figure 1A, the black primary hairs of the Min pigs
were sparse and the skin surface was covered with black secondary hair. The skin of the
Yorkshire pigs showed only sparse primary hairs. The skin of the Berkshire pigs had black
and white primary hairs. As shown in Figure 1B, the primary and secondary hair lengths
of the three breeds were analyzed using a Vernier caliper. There were no secondary hairs in
the Yorkshire and Berkshire pigs; however, the length of the secondary hairs in Min pigs
was approximately 35.5 mm. As shown in Figure 1C, sections of Min pig skin showed
follicle growth patterns and follicle density. As shown in Figure 1D, the Min pig had the
longest primary hairs compared to the Yorkshire and Berkshire pigs. The primary hairs of
the Berkshire pigs were longer than those of the Yorkshire pigs. The difference in primary
hair length was significant in different pig breeds (p < 0.05). As shown in Figure 1E, the
primary and secondary hair densities of Min, Yorkshire, and Berkshire pigs were analyzed.
There were no secondary hairs in the Yorkshire and Berkshire pigs. The average secondary
hair density of the Min pigs reached approximately 57 in a 5 mm2 area. The number of
primary hairs from the Min pigs was lowest compared with the Yorkshire and Berkshire
pigs (p < 0.05), and the number of primary hairs from the Berkshire pigs was higher than
that from the Yorkshire pigs. These results also show that the total number of primary and
secondary hairs in the black breed, such as Min pig and Berkshire pig, would have a much
higher density than that in the white breed of Yorkshire pig.
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Figure 1. The hair phenotype for three breeds of Min pig, Yorkshire pig, and Berkshire pig. (A) Skin
and hair phenotypic observation for three breeds. (B) Primary hair and secondary hair phenotypic
observation for three breeds pigs. (C) The shaved hair of three breeds pig were observed with the
stereoscopic microscope. (D) The length of primary hairs and secondary hairs were calculated from
three breeds. (E) The number of primary hairs and secondary hairs were analyzed for each breed in
5 mm2. * p < 0.05.

3.2. Histological Analysis of Skin and Follicle Morphology

Hair follicle structure was observed in the Min, Yorkshire, and Berkshire pigs (Figure 2).
Under high magnification, the outer root sheath cells were observed (Figure 2A), indicating
that the secondary hair follicles were in the anagen phase. The hair follicles of the Berkshire
(Figure 2C) and Yorkshire pigs (Figure 2B) were sparse and there was no secondary hair
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in these two breeds of pig, and these results were the same as the phenotype for the skin
and hairs of Berkshire and Yorkshire pigs in Figure 1. Overall, the Min pigs could grow out
the secondary hairs whereas the Berkshire and Yorkshire pigs do not have secondary hairs,
which was the major difference in hair phenotypes in these three pigs.

Animals 2023, 13, x  7 of 16 
 

three breeds. (E) The number of primary hairs and secondary hairs were analyzed for each breed in 

5 mm2. * p < 0.05. 

3.2. Histological Analysis of Skin and Follicle Morphology 

Hair follicle structure was observed in the Min, Yorkshire, and Berkshire pigs (Figure 

2). Under high magnification, the outer root sheath cells were observed (Figure 2A), indi-

cating that the secondary hair follicles were in the anagen phase. The hair follicles of the 

Berkshire (Figure 2C) and Yorkshire pigs (Figure 2B) were sparse and there was no sec-

ondary hair in these two breeds of pig, and these results were the same as the phenotype 

for the skin and hairs of Berkshire and Yorkshire pigs in Figure 1. Overall, the Min pigs 

could grow out the secondary hairs whereas the Berkshire and Yorkshire pigs do not have 

secondary hairs, which was the major difference in hair phenotypes in these three pigs. 

 

Figure 2. The hair follicle of primary hair and secondary hair samples were studied from the Min 

pig, Berkshire pig, and Yorkshire pig for histological analysis. Tissue sections of the hair follicles of 

Min pigs, Yorkshire pigs, and Berkshire pigs in (A–C). (A) The secondary hair follicles of Min pigs 

with the outer root sheath cells. (B,C) The secondary hair follicle of Yorkshire pigs and Berkshire 

pigs did not develop under the skin, which indicates that the hair follicle is in the telogen phase. 

The magnification of the microscope was 200×. 

3.3. Differentially Expressed Genes 

The study compared the gene expression in the primary and secondary hair follicle 

tissues from three pig breeds, which had good consistency in gene expression in each 

sample from the same group and across the same breeds. The results showed the cluster-

ing of gene expression in the skin and follicle tissues from Min, Yorkshire, and Berkshire 

pigs (Figure 3A). PCA clustering successfully separated hair tissues from the primary and 

secondary hair follicles in the three breeds (Figure 3A), which showed the significant dif-

ference and consistency between the different groups of samples. The generalized linear 

model was applied to identify gene expression in the primary and secondary hair follicle 

tissues from the Min, Yorkshire, and Berkshire pigs (Figure 3B). The expression of a total 

of 547 genes was significantly upregulated in the hair follicle and primary hair tissues. 

The results showed that 194 genes were significantly differentially expressed in the pri-

mary hairs of Min, Yorkshire, and Berkshire pigs, as indicated in the heat map (Figure 3C). 

The differences were very significant in the Min pigs compared with the Yorkshire and 

Berkshire pigs. The gene expression in the Berkshire pigs showed similarities to that in 

the Yorkshire and Min pigs, and the similarities compared with the Yorkshire pigs were 

more significant than those with the Min pigs. The comparison of the gene for the different 

expression between the secondary hair follicle and primary hair tissues of Min pigs was 

analyzed in the heat maps (Figure 3D). There were 194 genes in the secondary hair follicle 

tissues that were significantly differentially expressed compared with those of the primary 

hair tissues of Min pigs. As shown in Figure 3D, the difference in gene expression was 

significant between the secondary hair follicle and the primary hair tissues of Min pigs. 

Figure 2. The hair follicle of primary hair and secondary hair samples were studied from the Min
pig, Berkshire pig, and Yorkshire pig for histological analysis. Tissue sections of the hair follicles of
Min pigs, Yorkshire pigs, and Berkshire pigs in (A–C). (A) The secondary hair follicles of Min pigs
with the outer root sheath cells. (B,C) The secondary hair follicle of Yorkshire pigs and Berkshire
pigs did not develop under the skin, which indicates that the hair follicle is in the telogen phase. The
magnification of the microscope was 200×.

3.3. Differentially Expressed Genes

The study compared the gene expression in the primary and secondary hair follicle
tissues from three pig breeds, which had good consistency in gene expression in each
sample from the same group and across the same breeds. The results showed the clustering
of gene expression in the skin and follicle tissues from Min, Yorkshire, and Berkshire
pigs (Figure 3A). PCA clustering successfully separated hair tissues from the primary
and secondary hair follicles in the three breeds (Figure 3A), which showed the significant
difference and consistency between the different groups of samples. The generalized linear
model was applied to identify gene expression in the primary and secondary hair follicle
tissues from the Min, Yorkshire, and Berkshire pigs (Figure 3B). The expression of a total of
547 genes was significantly upregulated in the hair follicle and primary hair tissues. The
results showed that 194 genes were significantly differentially expressed in the primary
hairs of Min, Yorkshire, and Berkshire pigs, as indicated in the heat map (Figure 3C).
The differences were very significant in the Min pigs compared with the Yorkshire and
Berkshire pigs. The gene expression in the Berkshire pigs showed similarities to that in
the Yorkshire and Min pigs, and the similarities compared with the Yorkshire pigs were
more significant than those with the Min pigs. The comparison of the gene for the different
expression between the secondary hair follicle and primary hair tissues of Min pigs was
analyzed in the heat maps (Figure 3D). There were 194 genes in the secondary hair follicle
tissues that were significantly differentially expressed compared with those of the primary
hair tissues of Min pigs. As shown in Figure 3D, the difference in gene expression was
significant between the secondary hair follicle and the primary hair tissues of Min pigs.
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Figure 3. The study compared the gene expression in the primary hair and hair follicle tissues from
three pig breeds with high-throughput sequencing. Hierarchical cluster analysis of gene expression
based on mRNA sequencing data. A Principal component analysis of gene expression in skin and
follicle tissues in three breeds. (A) The PCA clusterization successfully separated hair follicle tissues
from primary hair and secondary hair samples, and the samples are plotted across the two most
variable components (PC 1and PC 2). Cond 1 and Cond 2 represent the secondary and primary
hairs, respectively. (B,D) Gene clustering is rather based on primary hair and secondary hair tissues.
The expression values for each gene are arranged in the heat map. (B) The primary hair and hair
follicle tissues from the Min pig, Yorkshire pig, and Berkshire pig were compared with the gene
expression. (C) The primary hair follicle tissues from the Min pig, Yorkshire pig, and Berkshire pig
were compared with the gene expression. (D) The primary hair and hair follicle tissues of Min pigs
were compared with the gene expression. Blue indicates the genes with greater expression, and red
indicates the genes with lower expression.

3.4. Quantitative Real-Time RT-PCR for the Gene Expression

To verify the results of transcriptomic analysis, the seven differentially expressed genes
(NeuroW, BCL, Smad, neuro, BNIP3L, keratin, and BMP) were selected for revalidation in
the primary hair and hair follicle tissues from the three breeds using qRT-PCR (Figure 4).
The Yorkshire pig was used as the control group, which was compared with the Min
and Berkshire pigs. The qRT-PCR results confirmed that five genes were significantly
differentially expressed between the Min and Berkshire pigs in the primary and secondary
hair follicle tissues. There was a significant change in the gene expression in these seven
genes. Both primary and secondary hair follicle increased the gene expression in these four
genes in the Min pigs compared with the Berkshire pigs, such as NeuroW, Smad, neuro,
and BMP (Figure 4A,C,D,G). The expression of BCL and BNIP3L (Figure 4B,E) were only
increased in the primary hair follicle from the Min pig, which was higher than the Berkshire
pigs at the mRNA level. The keratin expression (Figure 4F) in the Berkshire pigs was the
highest compared with that of the primary and secondary hair follicle tissues of the Min
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pigs. The qRT-PCR results were consistent with the RNA-Seq results. This demonstrates
the reliability of the data.

Animals 2023, 13, x  9 of 16 
 

tissues of the Min pigs. The qRT-PCR results were consistent with the RNA-Seq results. 

This demonstrates the reliability of the data. 

 

Figure 4. The 7 differentially expressed genes (NeuroW, BCL, Smad, neuro, BNIP3L, keratin, BMP) 

were selected for the analysis of revalidation with the qRT-PCR in the primary hair and hair follicle 

tissues from three breeds (A–G). The GAPDH was used as a reference gene to normalize q-PCR 

data. Bars represent the standard and error. * p < 0.05. 

3.5. Density of the Follicles under the Wnt and BMP Pathways 

To determine the effects of the Wnt and BMP pathways on hair follicle growth, we 

examined hair growth in the hair follicle stem cells with the antagonist of Wnt and BMP 

pathways in Min pigs. As shown in Figure 5, the number of hair follicles was higher in the 

control group than in the Wnt antagonist salinomycin sodium salt-treated group, the BMP 

antagonist LDN-212854-treated group, and both the Wnt-BMP antagonist-treated groups. 

The number of hair follicles in the Wnt antagonist group was lower than that in the BMP 

antagonist group. The number of hair follicles in the Wnt-BMP antagonist group was the 

lowest compared with that of the Wnt antagonist, BMP antagonist, and control groups. 

The results indicate that Wnt and BMP can stimulate the growth of hair follicles, and the 

effect of Wnt was better than that of BMP in the growth of hair follicles in Min pigs. Both 

Figure 4. The 7 differentially expressed genes (NeuroW, BCL, Smad, neuro, BNIP3L, keratin, BMP)
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Bars represent the standard and error. * p < 0.05.

3.5. Density of the Follicles under the Wnt and BMP Pathways

To determine the effects of the Wnt and BMP pathways on hair follicle growth, we
examined hair growth in the hair follicle stem cells with the antagonist of Wnt and BMP
pathways in Min pigs. As shown in Figure 5, the number of hair follicles was higher in the
control group than in the Wnt antagonist salinomycin sodium salt-treated group, the BMP
antagonist LDN-212854-treated group, and both the Wnt-BMP antagonist-treated groups.
The number of hair follicles in the Wnt antagonist group was lower than that in the BMP
antagonist group. The number of hair follicles in the Wnt-BMP antagonist group was the
lowest compared with that of the Wnt antagonist, BMP antagonist, and control groups.
The results indicate that Wnt and BMP can stimulate the growth of hair follicles, and the
effect of Wnt was better than that of BMP in the growth of hair follicles in Min pigs. Both
Wnt and BMP functioned in stimulating the growth of primary and secondary hairs in the
Min pigs.
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Figure 5. The hair follicle growth under the antagonist of Wnt and BMP were analyzed with the
phenotype of hair growth, and both primary hairs and secondary hairs were calculated in the hair
follicle stem cells with the pathways for Min pigs. The phenotype of the secondary hairs of Min pigs
under stereomicroscope and the number of primary hairs and secondary hairs were analyzed for
each breed in 5 mm2. Bars represent the standard and error. ** p < 0.01, * p < 0.05.

3.6. Wnt and BMP Signaling Molecules Stimulate the Hair Follicle Stem Cell Differentiation

The effects of the Wnt and BMP pathways on hair follicle growth were studied. Hair
follicle stem cells were studied with the marker, Lgr5, in the hair follicles of the frozen
sections from Min pigs. It is common knowledge that the inhibition of hair follicle stem
cells can cause failure to induce follicle growth. The antagonists Wnt and BMP were used
to study hair follicle stem cells. We analyzed the expression of genes in hair follicle stem
cells from Min pigs using immunofluorescence staining. The antagonisms were resolved
with sunflower oil and the samples served as the control group in the study. The protein
level of Lgr5 in the hair follicle stem cells was the highest in the control group of sunflower
oil. The results (Figure 6) indicated that the protein levels of Lgr5 in the BMP and Wnt
groups decreased in the hair follicle stem cells compared with that of the control group. The
number of hair follicle stem cells in both the Wnt and BMP antagonist groups decreased
significantly compared to that of the control group. The protein level of Lgr5 in the Wnt
antagonist group was lower than that in the BMP antagonist group. The protein level of
Lgr5 in the Wnt-BMP antagonist group was the lowest among the four groups. All these
results confirmed the phenotype of hair follicle growth.

3.7. Quantitative Real-Time RT-PCR Analysis Results

As shown in Figure 7, the result of qRT-PCR indicated that there was a significant
difference in the expression of the Wnt signaling pathway in hair follicle stem cells in the
synonym group compared with that in the control group. The Wnt/β-catenin antagonist of
synonyms was effective in inhibiting the expression of relative genes from these signaling
pathways, especially Wnt, which showed that the effective inhibitor synonyms of signal
transduction could reduce relative gene expression in the signaling pathway, decreasing the
Wnt expression. The hair follicle stem cell signaling pathways of BMP, TGF-β, and Smad1
were also examined, which was the downstream signal in the transduction pathways
Wnt and BMP. The gene expression of β-catenin and TGF-β were significantly decreased
compared with the inhibition of Wnt. The BMP inhibitor, LDN-212854, was added to
analyze its role in the signal transduction pathways of hair follicle stem cells. The expression
of the TGF-β signaling pathway was also significantly decreased in the LDN-212854 group
compared with that of the synonym group. However, the relative expression of Smad1
was also significantly lower than that in the synonym and control groups, which indicated
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that the inhibitor, LDN-212854, could also inhibit the expression of the relative genes in the
signaling pathway. Most importantly, the expression of the hair follicle stem cell signaling
pathway in the group with both synonym and LDN-212854 was lower than that in the other
three groups, which indicated that both the synonym and LDN-212854 were coordinative in
the inhibition of the hair follicle stem cell signaling pathway. Based on these experimental
results, we could infer that the Wnt and BMP signaling could stimulate follicle stem cells.
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4. Discussion

Chinese pig breeds were Chinese local breeds, which have many different characteris-
tics than European pig breeds. Therefore, these different phenotypes of hair from different
pig breeds may be based on their genetic inheritance. To date, most studies related to
the hair follicle development of domestic animals have focused on two aspects, namely,
morphology and molecular genetics [7,36,37]. The structure and morphology of hairs, such
as primary and secondary hairs, from Min pigs are different than those of lean-type pigs,
such as Yorkshire pigs and Berkshire pigs, which do not grow secondary hairs. Historically,
the Berkshire pig has a blood relationship with the Meishan pig, a breed of pig in China;
therefore, the coating thickness of the Berkshire pig is between that of the Min and Yorkshire
pigs [38,39]. Researchers have found that during skin follicle development in the Australian
cashmere goat, all primary follicles were present but only a few secondary follicles were
mature at birth, and the number of secondary follicles increased significantly faster than
that of primary follicles [40]. Their study is similar to this one on the Min pig, where the
secondary follicles mature with the character of seasonality. Therefore, the development
of hair follicles is largely influenced by genetics. With the changes in the environment of
animals in cold weather, the animals have specific characteristics that protect their functions
in such environmental conditions, such as thicker coats and secondary hair, which reduces
heat loss from the animal and cold skin irritation [41]. The results of a study revealed that
the differences in hair growth rate affect both sow parity and the number of piglets [42],
and hair growth and length may vary depending on cortisol concentrations caused by
downregulation of the hypothalamic-pituitary-adrenal axis [43]. These reproductive per-
formances and behaviors are present in the Min pigs. The color of hair played a role in the
growth of hair in our study comparing Min, Yorkshire, and Berkshire pigs, and the black
hair would grow much faster than the white hair in the pigs.

In this study, a direct comparison of the transcriptome dynamics for Min, Yorkshire,
and Berkshire pigs with the hair follicle recycling unexpectedly revealed the huge difference
between these two different types of hair follicles. The present study compared gene
expression in the primary and secondary hair follicle tissues from three pig breeds, which
showed a certain consistency in gene expression within each group. There was a significant
difference in gene expression between the secondary hair follicles and primary hair tissues
of Min pigs. Differentially expressed genes from the transcriptomic analysis of revalidation
indicated that there was a correlation in the gene expression in primary hair and hair follicle
tissues from the three breeds. A study compared differences in mRNA expression and
microRNA expression during the growth and repose stages of cashmere goat skin samples,
and it found that hair follicle initiation and development were related to MiR-195 and the
gene SMAD2, whilst protein-specific MiR-195 regulated the Wnt/β-catenin pathway in
the telogen-anagen hair follicle of the goats [44]. The WNT, BMP, TGF-β, and Hedgehog
signaling pathways were found in hair follicle cycling in both cashmere and milk goats
with the character of the seasonal development [45].

In this study, the library used for RNA sequencing was selected, and the qRT-PCR
revalidation showed that the data were reliable, and could be used for the subsequent
analysis and study of the co-expressed gene and differential gene expression in the hair
follicles from Min, Berkshire, and Yorkshire pigs. The screened genes also demonstrated
the concrete cell signaling mechanisms of primary hair and hair follicle development. High-
throughput sequencing analysis results showed that some of the significantly differentially
expressed genes were related to the neuronal and developmental signaling pathways in
the primary and secondary hairs [46–48]. After an in-depth study of the gene expression
differences in the three pig breeds, this study found that some signal factors related to hair
circulation can promote the proliferation of hair follicle stem cells and the growth of hair
follicles [49]. During hair follicle development, the Wnt and BMP signaling pathways can
stimulate hair follicle growth [50]. With genetics and chromatin landscaping, researchers
have found that the McSCs, BMP, and WNT pathways are stimulated following WNT-
mediated activation, thereby triggering the commitment of proliferative progeny [51]. BMP
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upregulates various signaling pathways, such as Ctnnb1, Lrp6, Bmpr1a, and PTEN, and
consequently induces hair cell differentiation, which has been a potential therapeutic target
for hair loss and the short-hair phenotype [52,53]. Reactome analysis revealed the strong
enrichment of DEGs in the TGF-β signaling pathways in hair follicle samples of milk goats,
but not in cashmere goats [44]. Compared with the study of hair follicle cycling in these
goats and pigs, we could find that hair follicle cycling was a characteristic of interspecific
difference or seasonal effect.

Opinions differ regarding whether the hair growth pattern is controlled by a single
molecule of Wnt and BMP from stem cells [50,54]. Our results are the first to show that
Min pigs specifically activate the Wnt signaling molecule of the stem cell in their skin
with hair growth. Lgr5, which was used in our research on stem cells from Min pigs,
was identified as a marker during trafficking through stem cell properties and contributes
to hair follicle growth [55]. Damage-activated stem/progenitor cells in the hair follicle
play important roles in regenerating lost cells and in tissue repair. Lgr5 is known to
stimulate hair follicle development; however, the exact mechanism of the hair cycle is still
unclear [56]. The dynamic Wnt in the hair follicles of Min pigs suggests a link between
the skin and hair systems. Subcutaneous fat, leptin, and neural and stem cell molecules
in hair have a thermoregulatory function in the dermal papilla of hair follicles, which
coordinate the function of the skin and hair in response to the external environment and
may have implications for the evolution of integuments in Min pigs. This study found that
the skin and hair of Min pigs have a specific character in the development mechanisms
of secondary hairs, which may have potential applications in laboratory animals and
comparative medicine.

5. Conclusions

The national-level protected Min pig has the specific character of secondary hair
growth in winter and seasonal cycling, which is different from Yorkshire and Berkshire pigs.
The structure and morphology of hairs, such as primary and secondary hairs, from Min
pigs are different from those of lean-type pigs, such as Yorkshire pigs and Berkshire pigs,
which do not grow secondary hairs. The development of hair follicles is largely influenced
by genetics, and a direct comparison of the transcriptome dynamics for Min, Yorkshire,
and Berkshire pigs with hair follicle recycling unexpectedly revealed the huge difference
between these two different types of hair follicle. Our results are the first to show that
the Min pig specifically activates the Wnt signaling molecule of the stem cell with Lgr5 in
the skin with hair growth, which was used in our research on stem cells from Min pigs,
which was identified as a marker during trafficking through stem cell properties, and which
contributes to hair follicle growth. The research on the skin and hair of Min pigs shows the
specific character of the development mechanisms of the secondary hairs, which may have
potential applications in laboratory animals and comparative medicine.
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