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Simple Summary: The present review highlights and examines the importance of animal models in
relevant topics concerning current human and animal health. Over the past five years, different animal
species have been used to study pandemics, such as the 2019 Coronavirus, diabetes, and obesity.
Through murine, primate, porcine, and even aquatic models (e.g., zebrafish), several neurological,
behavioral, cardiovascular, and oncological disorders are being understood while developing new
therapeutic approaches. Nematodes and arthropods are some of the new alternatives for biomedical
science; however, regardless of the species, many animal research studies show the vital role of
animal models in advancing biomedical research.

Abstract: Animal research is considered a key element in advance of biomedical science. Although
its use is controversial and raises ethical challenges, the contribution of animal models in medicine is
essential for understanding the physiopathology and novel treatment alternatives for several animal
and human diseases. Current pandemics’ pathology, such as the 2019 Coronavirus disease, has been
studied in primate, rodent, and porcine models to recognize infection routes and develop therapeutic
protocols. Worldwide issues such as diabetes, obesity, neurological disorders, pain, rehabilitation
medicine, and surgical techniques require studying the process in different animal species before
testing them on humans. Due to their relevance, this article aims to discuss the importance of animal
models in diverse lines of biomedical research by analyzing the contributions of the various species
utilized in science over the past five years about key topics concerning human and animal health.

Keywords: translational research; animal research; laboratory animals; rodents; primates; pigs;
zebrafish; nematodes

1. Introduction

The use of animals in scientific research is controversial [1]. However, the transforma-
tion of medicine from an art to a science can be mainly attributed to using a wide range
of animal models [2], selected according to their functional and genetic characteristics
for specific research lines [3]. Animal models contribute significantly to the advance of
biomedical science through their meaningful contributions to our growing understanding
of pathological and biological processes [4]. Moreover, they enable the development and
testing of drugs, vaccines, and surgical techniques applicable to human and veterinary
medicine [5].
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The term “animal model” comes from the Latin animae (alma or spirit) and the word
model, which means to imitate or be similar to [6]. Animal models are based on the
principle of comparative medicine [7] as instruments that can replicate physiological and
pathological processes [8]. The species is selected according to each project’s objective and
hypothesis [3] but also considers biological, anatomical, functional, and genetic similarities
to humans or other animals [6]. Today, most of the species utilized in biomedical research
are rodents [9], as they are deemed ideal models for studying pathologies that affect human
populations due to their physiological homology [10], which allows them to be employed
to further our understanding of such processes as sepsis, obesity, cancer, organ transplants,
and biological development, among many others [11,12].

The species used in experimentation are not limited to small mammals. Rhesus mon-
keys (Macaca mulata) are utilized to study high-priority diseases such as the pandemic
caused by the severe, acute respiratory syndrome type 2 coronavirus (SARS-CoV-2) [13]. Do-
mestic pigs (Sus scrofa) are crucial for organ transplant medicine and immune therapies [14].
New species, including some invertebrates such as fruit flies (Drosophila melanogaster), are
used to study neurological disorders such as epilepsy [15], nematodes such as Caenorhabditis
elegans to study obesity [16], and aquatic models, such as the zebrafish (Danio rerio), to treat
metabolic disorders, including diabetes [17].

The broad range of species used in research has brought exponential advances in
medicine, especially with the introduction of genetically modified (transgenic) animals [18]
and the implementation of supporting technologies such as nanotechnology and artificial
intelligence [19]. In light of this, this article aims to discuss the importance of animal
models in diverse lines of biomedical research by analyzing the contributions of the various
species utilized in science over the past five years concerning key topics of human and
animal health.

2. Search Methodology

The literature search was performed in the Web of Science, Scopus, and PubMed.
Keywords related to the use of animal models applied to current research priorities were
searched to select the relevant articles, for example, “emerging infectious disease”, “dia-
betes and obesity”, “neurodegenerative diseases”, “pain therapies”, “surgical techniques”,
“cancer models”, and “alternative animal models”. The search was limited to articles pub-
lished in English in the last five years (2019–2023) and related to human and non-human
medicine and therapeutics.

3. A Review of Animal Experimentation

Animal models are essential for several biomedical research fields such as cancer
biology and therapeutics, neuroscience, pharmacology and toxicology, neurobiology of
diseases, endocrinology, public health, palliative medicine, also, in studies in human
and animal biology and for the discovery and testing of new drugs, vaccines, and other
biologicals (e.g., antibodies, hormones) whose validation requires preclinical studies in
animals [6,20]. Currently, these models address current research priorities, considered as
those imposing major global threats to human and animal health. These include diseases
that have afflicted humankind or increased exponentially in recent years such as SARS-
CoV-2, different types of cancer and their therapy, cardiovascular diseases, metabolic and
neurodegenerative disorders, and experimental refinement of surgical techniques to treat
these issues [21]. The models may involve complete animals or only particular cells, tissues,
organs, genes, or other agents that reproduce pathological processes (Figure 1) [8,22].
Species include rats, mice, guinea pigs, dogs, rabbits, birds, ruminants (cows, sheep),
horses, fish, frogs, monkeys, cats, reptiles, squid, crabs, bees, chimpanzees, hamsters, sea
slugs, pigs, nematodes (roundworm), fruit flies, and protozoans, among others [7].
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Figure 1. Classification of various animal models. The animals used in science can be divided into
five broad types. (a) The main ones are models in which animals are induced to present a pathology
similar to one that affects humans or other animals by administering drugs or other biologicals,
inflicting injuries, or subjecting them to stress or other environmental conditions. In contrast, models
based on spontaneous changes (b) include animals where the normal course of their life predisposes
them to develop a specific disease. (c) Genetically-modified test subjects are animals with knockin or
knockout genes or proteins. In contrast to using healthy animals (e), negative models (d) employ
individuals that are not susceptible to certain diseases but serve to evaluate susceptibility to a specific
pathology. TBI: traumatic brain injury.

The importance of animals in medical science is reflected, for example, in the percent-
age of Nobel Prizes studies in Physiology or Medicine using animal models (90%) [5]. From
1901 to 2020, two-thirds of those awards (186 of 222 projects [7]) employed animal models
to understand pathogenic mechanisms, metabolic diseases, diagnostic and therapeutic
procedures, develop vaccines, or test the efficacy of novel drugs [22]. At least 144 species
used in those animal-based studies were mammals, and 42% were rodents [7]. Dogs were
the first animal model used in metabolic research on gastric secretions [23] and for discov-
ering insulin [24]. To date, rodents are the predominant species in research (Table 1) [9].
However, non-mammal species are trending, and the number of animals depends on the
country and its legal regulation regarding the use and reporting of animals in research.
Moreover, in some countries, there is no official annual report on animal research (e.g.,
South America), and not every country counts the same animals (e.g., the United States
does not consider rats, mice, fish, birds, amphibians, reptiles, and cephalopods, they are
not covered by the Animal Welfare Act). Although it might differ, Tables 1 and 2 show an
overview of the use of animals according to species in some countries and a summary of
the reported statistics worldwide.
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Table 1. Overview of the number of animals used in research, according to the species.

Country Year Specie Percentage (%) Reference

European Union 2019

Rodents 61.9

[25]

Fish 24.6
Birds 6.2

Amphibians 0.5
Cephalopods 0.2

Dogs 0.1
Non-human primates 0.07

Other mammals 6.5

Canada 2020

Birds 50.0

[26]

Rodents 24.5
Fish 11.7

Cattle 11.3
Amphibians 1.1

Pigs 0.4
Dogs 0.2

Non-human primates 0.1
Reptiles 0.1

Other animals 0.5

United Kingdom 1 2021

Mice 68.2

[27]

Fish 12.9
Rats 6.5
Birds 8
Dogs 0.14

Non-human primates 0.09
Cats 0.01

Other animals 3.3

United States 2 2019

Guinea pigs 23

[28]

Rabbits 18
Hamsters 12

Non-human primates 9
Dogs 7
Pigs 6
Cats 2

Sheep 2
Other species 21

South Korea 2017

Rodents 91.8

[29]

Fish 3.3
Birds 2.3

Rabbits 1
Non-human primates 0.08

Amphibians 0.07
Other species 1.21

Total 3,085,259
1 Excluding Northern Ireland; 2 Rats, mice, fish, birds, amphibians, reptiles, and cephalopods are not included.
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Table 2. Approximate of the number of animals used in research worldwide between 2019–2020.

Country Number of Animals References

United States 20,000,000–24,000,000

[30–32]

China 16,000,000
Japan 11,000,000

European Union 9,400,000
Australia 6,700,000
Canada 5,067,778

South Korea 4,141,433
United Kingdom 3,300,000

Norway 2,282,710
Germany 2,151,805

France 1,865,403
Spain 761,012

Mexico 685,315
Switzerland 556,107

Belgium 437,275
New Zealand 240,000

Several Nobel Prizes have been awarded for animal research, and the increasing
number of animal models in different countries demonstrates these studies’ importance
for scientific advancement [7]. However, just as necessary, their use also entails ethical
challenges that require surveillance through laws, norms, guides, and strict bioethical
committees to monitor the use and care of laboratory animals based on the principles of the
3Rs [33]. In this regard, for 50 years, the National Center for the Replacement, Reduction,
and Refinement of Animals in Research (NC3Rs) has promoted Russel and Burch’s initiative
of the 3Rs to reduce, replace, and refine procedures to improve the conditions of animals
used in experimental protocols [34].

These norms differ from one nation to the next. However, one guide recognized in-
ternationally is ARRIVE (Animal Research: Reporting of in vivo Experiments), developed
in 2010 to improve the in vivo experiments description to increase the reproducibility of
results, refine the stages of study design, and clearly report the methods so they can be
repeated and tested [35]. A second guide is PREPARE (Planning Research and Experimen-
tal Procedures on Animals), which seeks to determine and guarantee quality control in
animal studies [36]. Today, for any experimental protocol requiring animals, proposals
such as the Animal Study Registry (ASR) help researchers thoroughly plan their study
design, methods, and statistical analyses to ensure transparency and reproducibility in their
results [37]. Additionally, it is essential to mention that Ethic Committees must approve
current experimental protocols within each institute to promote an appropriate use and
care for animals in research.

Animal models certainly provide valuable information on the nature of diseases [38].
However, it is important to remember that inter-species limitations exist in anatomy,
metabolism, physiology, and genetics [39], so a single preclinical model cannot represent
all aspects of pathogenesis due to differences in resistance or susceptibility [38]. Currently,
many animals used in biomedical studies undergo some genetic modification, such as
transgenesis or the utilization of knockout or knockin genes, to visualize specific changes
that would take years to develop under normal conditions [40]. Therefore, the selection of
the animals depends on the specific research field; through their use, researchers develop
scientific knowledge focused on human and veterinary medicine.

4. Animal Models and Their Application in Distinct Fields of Current
Biomedical Science
4.1. Emerging Infectious Diseases

The SARS-CoV-2 virus is the etiologic agent of the coronavirus 2019 disease (COVID-
19) [41]. This disease has claimed the lives of over 6.3 million people worldwide since
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2019 [42,43]. The lack of knowledge of this virus and its rapid propagation at the onset of
the pandemic made it essential to determine its physiopathology and identify therapeutic
agents and vaccines that could mitigate its threatening consequences. These fundamental
issues were solved using in vivo assays that replicated the virus in animals to untangle
its pathogenesis, the immune response, and the adverse effects that might result from
the vaccines and therapies proposed before testing in humans and their release to the
public [41,44].

The choice of an animal model that would allow researchers to observe the histopatho-
logical, radiological, or immune changes that the virus caused required that the test an-
imals be susceptible to lung tissue damage and capable of developing an inflammatory
process [45]. Potential species included nonhuman primates, ferrets, rats, mice, Syrian
hamsters, lagomorphs, minks, cats, camelids, and even zebrafish [46].

The transgenic mice can express the human angiotensin-converting enzyme II (hACE2),
a functional receptor for the SARS-CoV-2 virus that mimics clinical signs observed in
humans [47]. Sun et al.’s [48] research with 4.5–30-week-old transgenic mice successfully
replicated the virus after intranasal and intragastric inoculation. It led to the discovery of
viral loads in the lung, trachea, brain, and feces. Those authors also detected an immune and
inflammatory response due to the presence of interleukins (IL). Adult mice showed more
lesions in the alveolar epithelial cells, focal pulmonary hemorrhage, and more significant
apoptosis of macrophages. Those findings concurred with human reports showing that
COVID-19 affected older adults more severely, with the over-65 population representing
80% of all hospitalizations and a 23-fold greater risk of mortality. Reports emphasized
clinical signs, such as respiratory distress and cytokine release syndromes [49]. Studies
with Syrian hamsters found that while the virus is lung-tropic and infects the respiratory
tract by binding to the ACE2 cell surface in the alveoli, causing pneumonia in 67% of the
animals, the gastrointestinal signs reported in humans are due to viral replication and
dissemination in enterocytes [50].

One animal model that shares multiple similarities with humans for the physiopathol-
ogy of the SARS-CoV-2 virus is based on Rhesus macaques, African green monkeys (Chloro-
cebus aethiops), and crab-eating macaques (Cynomolgus macaques) [51]. The latter has been
utilized to replicate the infection conditions in young (males and females of 3–9 years)
and old-aged animals (23–29 years-old females). After intranasal and intratracheal viral
inoculations, researchers found that nasal swabs (peak viral load of 106 copies/µL) had
higher viral loads than pharynx and rectal ones (a maximum of 104 copies/µL). Addition-
ally, viruses from nasal and pharynx samples were detected for longer periods in elderly
monkeys [52]. This relation between age and disease mortality was also reported in Rhesus
monkeys. Comparative studies of three nonhuman primates (three 3–5 years and two
15 years old macaques) infected intratracheally revealed that the viral replication detected
by nasopharyngeal and anal swabs was persistently detected from 3 days post-infection
(dpi) to 11 dpi in elderly animals. In older macaques, 104–107.5 copies/mL were also
detected (while young individuals had approximately 104 copies/mL), often accompanied
by the development of diffuse severe interstitial pneumonia [53].

The reinfection processes prevalent in human populations were replicated in studies
with C. aethiops. Infection in six animals caused signs such as fever (50%), hypercapnia
(66%), 2–7-fold increases in C-reactive protein concentrations (100%), and coagulopathy
(100%) were recorded. That research proved that anal, oral, and nasal swabs could detect
viral loads up to 15 dpi [44]. These findings are similar to those from other works with
M. mulata, where viral RNA was found in swabs from the nose, pharynx, and anus, with
amounts increasing up to 3 dpi (in an approximate range of 4–7 copies/mL) [53]. These
nonhuman primate models undoubtedly contributed significantly to our understanding of
the pathogenicity of COVID-19 and the physiological bases for implementing preventive
and diagnostic measures and treatment.

Another important aspect of using animals is that they helped understand the trans-
mission of the virus to other domestic species and showed that pets could acquire the



Animals 2023, 13, 1223 7 of 24

SARS-CoV-2 virus through contact with an infected human. However, there is no evidence
of active pet-to-human transmission [54]. Studies with dogs, pigs, chickens, and ducks
showed they were not susceptible to COVID-19 infection due to low viral replication [55].
Identifying susceptible species made it possible to choose appropriate models for develop-
ing and testing vaccines [55]. Ferrets, Syrian hamsters, rabbits, transgenic mice [47], and
cats were all found to be susceptible, the latter even vulnerable to airborne transmission
with the development of clinical signs such as hair loss and pulmonary alterations similar
to those seen in humans [56,57]. Apart from domestic cats, wild felines (tigers, lions, pumas,
snow leopards) [58] have been reported to show infections by this virus. Kang et al. [59],
who reported the first Delta variant (SARS-CoV-2 Delta) case in three domestic cats with
COVID-19-positive owners in China, insist that transmission to pets is a topic of concern
due to their possible role as silent intermediate hosts.

4.2. Endocrinology and Metabolic Pathologies

Obesity is a public health problem affecting over 600 million people worldwide [60].
Obesity and its associated metabolic syndromes have consequences such as knee osteoarthri-
tis, a disease prevalent in approximately 60% of the overweight population [61], but this is
also associated with cancer, cardiovascular disease, hypertension, coronary artery disease,
stroke, sleep apnea, asthma, gallstones, steatohepatitis, and dyslipidemia. Over one-third
of the world’s overweight or obese population is at risk of developing type 2 diabetes
mellitus [23]. Using rodent models, researchers have determined that one element that
promotes the development of type 2 diabetes mellitus is adipose tissue inflammation due
to insulin resistance and excess fat mass [62]. The increase in the presentation of these
comorbidities has led to the use of animal models to test new, improved strategies for
reducing the incidence of this disease.

The role of the different types of adipose tissue in humans and animals is a crucial
line of research that has developed with the use of rodents. For example, adipogenesis
suppression and the browning of white adipose tissue (WAT) [63] have been suggested as
strategies for preventing obesity [60]. The browning process creates a brown adipose-like
tissue (BAT) that can participate in thermogenesis by transforming caloric intake into
heat [64]. Since this is part of a central nervous system response to cold, certain medications
and exercise can trigger browning as has been observed in obese and lean rats subjected to
high-intensity training. In C57BL/6J mice, the transformation of beige adipocytes into WAT
can be promoted with diets complemented with resveratrol for 16 weeks, as this induces a
change in the intestinal microbiota in treated animals (p < 0.01) (increasing microorganisms
of the genera Bacteroides, Lachnospiraceae, Blautia, Lachnoclostridium, and Parabacteroides,
among others) that modulates lipid metabolism and has anti-inflammatory properties and
anti-obesity effects [65].

The importance of physical activity in treating these conditions has been demonstrated
in experiments with 48 Sprague-Dawley male rats, where aerobic exercise for 12 weeks
combined with prebiotic fiber supplementation prevented knee joint damage, dyslipidemia,
endotoxemia and normalized the effects of insulin resistance (p < 0.001) [61]. Studies
with these supplements as part of a therapeutic protocol in Wistar rats, administered in
presentations such as yogurt, have shown that supplementation with 5% of yogurt reduces
levels of oxidative stress (significant decreases in NO levels, p < 0.05), and had fewer
amounts of inflammatory cell infiltration and collagen deposits in the liver (p < 0.05) when
compared to animals fed high-fat diets. According to these studies, this supplement could
be a potential human therapeutic option [66].

Studies of the human genome have identified hundreds of genetic variants associated
with obesity and opened the way to examining these genes in species such as C. elegans, a ne-
matode capable of storing fat in the form of lipid droplets inside hypodermal and intestinal
cells. C. elegans has 14 genes that promote diet-induced obesity and three that prevent it [67].
Those genes are now recognized as potential targets for anti-obesity treatment. Ke et al. [68]
found that the knockdown of 23 fat-storing not only reduced excessive fat accumulation
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but also improved the health and lifespan of this species (p < 0.05). The inhibitory effect of
flavonoids such as butein on lipogenesis in C. elegans succeeded in reducing triglyceride
levels by up to 27% without altering food intake or energy expenditure, an effect due to
the downregulation of proteins involved in lipid metabolism [69]. Likewise, the appetite
suppressant effect of administering vegetable extracts from the Lentinus strigosus mushroom
(300 and 1000 µg/mL) to C. elegans functioned as a natural means of preventing obesity [70].
Studies of this kind allow researchers to address obesity as a complex pathology affected by
diverse factors: diet, physical activity, developmental stage, age, genes, and environmental
interaction [67].

Another animal species considered a promising model for studying metabolic syn-
dromes is the zebrafish (D. rerio). This species has genetic homology with humans, so
through genetic mutation, chemical induction, and changes in diet, they can be used to
study hyperglycemia, obesity, diabetes, and hypertriglyceridemia [71]. Pigs, meanwhile,
share similarities with humans in terms of organ size, lifespan, anatomy, physiology, and
metabolic profile [40]. A study of obesity in Iberian pigs showed the pathogenesis of
chronic kidney disease caused by overweight and obesity. Although the administration
of high-fat diets did not generate diabetes in those pigs by day 100, analyses revealed
hypercholesterolemia (142 ± 27 mg/dl), hypertriglyceridemia (75 ± 43), insulin resistance,
and glomerular hyperfiltration [72]. These effects also occur in humans [73] and have been
studied in obese male mice and ovariectomized females [74].

The domestic dog has been postulated as a valuable model for studying chronic mor-
bidities brought on by environmental conditions since they share morbidity and mortality
factors with humans. In this field, Hoffman et al. [75] reported that comorbidities behind
chronic conditions such as obesity, arthritis, hypothyroidism, and diabetes reported in hu-
mans were also present in 73,835 canines and that those dogs showed a positive association
between age and the number of morbidities (p < 0.001). Other studies have revealed that
obesity in dogs (137/198) is closely linked to the alimentary habits of their owners, finding
that the 79.8% of dogs from overweight owners (114 persons) were obese (p < 0.001) [76].
Therefore, studies of these animals could provide information on disease interaction.

4.3. Cancer in Biomedicine

According to the World Health Organization [77] and the National Cancer Institute [77,78],
the most common types of cancer in humans in 2020 were breast (2.26 million cases), lung
(2.21 million), colorectal (1.93 million), prostate (1.41 million), skin (1.20 million), and
stomach (1.09 million). These cancers cause 10 million deaths per year. Projections for 2022
estimate that around 1,918,030 new cancer cases will be diagnosed in the United States, with
350 cancer-induced deaths per day, making this disease a primary cause of mortality [79].
The pathogeny of these cancers and testing new treatment options is another field that
extensively uses animal models. Over 95% of studies use rats and mice to inject cancer
cell lines subcutaneously, study the primary cancer lesion, and follow its growth before
excising tumors [80,81]. However, one disadvantage of this subcutaneous tumor model, is
that injections in athymic nude mice may not accurately represent the interaction among
tumor cells, local stroma, and the tumor’s microenvironment, depending on its precise
location [82]. Contrarily, orthotopic murine models have been shown to replicate the tumor
microenvironment –including metastasis– when inoculated in the original anatomical site
of the tumor. In female BALB7c mice, inoculation of mammary cancer cell line 4T1 as
a fat pad tumor model showed that 50% of the animals had metastasis to the ovaries,
spleen, liver, and sternum. However, when compared to a heterotopic model, orthotopic
tumors were smaller (1993.7 ± 197.15 mm3 vs. 1078.4 ± 300.26 mm3, p < 0.05) and had a
significantly lower percentage of infiltrating cells (p < 0.05) [83]. Moreover, these orthotropic
models, together with in vivo optical metabolic imaging, are proposed as an approach to
studying how, for example, the fatty acid uptake by breast cancer cells increases accordingly
to tumor aggressiveness and metastatic process (p < 0.05) [84] Attacking this complication
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in tumor development is the principal objective of anticancer therapies, since most deaths
from prostate cancer, for example, are due to metastasis into bone structures [80].

Koosha et al. [85] used diosmetin, an anti-tumorigenic, in colon cancer xenografts in
24 male nude mice. Results showed that tumor volume in the group treated with 100 mg/kg
of diosmetin was significantly smaller than in the untreated group (264 ± 238.3 vs.
1428 ± 459.6 mm3, p < 0.01). Promisingly, the drug did not produce toxicity even when
administered at high doses. Studies of this kind show that laboratory animals allow re-
searchers to test new drugs and better understand disease development but also aid in
determining non-toxic doses that can be applied to humans or animals. Using these models
as translational media for studying cancer has also revealed the importance of identifying
the pain that animals may experience. Pain assessment is important in in human medicine
and laboratory animal welfare. In this regard, recognizing degrees of cancer-induced bone
pain has been studied by observing behavioral changes in rats and mice, where innate
behaviors, such as burrowing, are reduced 9 days after inoculation when compared to
control groups (p < 0.05) as a result of the nociception associated with the degree of severity
of cancer due to reduced bone density [86].

The fact that the canine and human genomes share a high degree of similarity (75%)
and that the risks of death due to neoplastic, congenital, and metabolic diseases are com-
parable means that the dog is an ideal translational model for studying human morbidity
and mortality [75,87]. For example, the percentage of neoplasia is similar between dogs
and humans (27.4 vs. 25.3%). However, because the types of cancer that affect each species
correlate only marginally (Spearman rank p = 0.661) [75], dogs have been replaced in many
preclinical studies by genetically-modified pigs [87].

Another novel anticancer strategy involves managing nerve-tumor interaction [88]
since tumor-specific denervation can suppress neoplasia growth [89]. A study by Kamiya
et al. [90] with female Balb/c-nu mice and the use of xenografts in Hras128 rats in a
model of chemically-induced breast cancer showed that sympathetic stimulation of the
nerves in tumors accelerated cancer growth but that parasympathetic stimulation reduced
growth and downregulated the expression of programmed death. In contrast, in the case
of late-stage colorectal cancer, parasympathetic denervation via vagotomy and atropine
administration in 150 male Wistar rats reduced the incidence of tumors and their weight
and volume after eight weeks, as well as cell proliferation, angiogenesis, and regulated
expression of the nerve growth factor [89].

These neural anticancer therapies in humans and animals indicate that while sympa-
thetic nerves show cancer-promoting effects in prostate and breast cancer, and melanoma
cases, the parasympathetic/vagal nerves are believed to trigger both reactions. For example,
vagal nerves can promote prostate, gastric, and colorectal cancers, but suppress breast and
pancreatic cancers, due to β-adrenergic and muscarinic effects that modify the behavior of
cancer cells, angiogenesis, tumor-associated macrophages, and antitumor immunity [88].
The axonogenesis process in species such as mice, linked to the development of metas-
tasis in breast cancer, showed through immunofluorescence that nerve twigs tend to be
sympathetic-like, with no expression of parasympathetic fibers [91].

In addition to the support of laboratory techniques such as immunofluorescence, non-
invasive diagnostic methods are a priority in oncology. In immunocompetent genetically-
engineered mouse models, Kirkpatrick et al. [92] utilized nanosensors with urine tests to
detect protease activity in diverse types of cancer, including lung cancer, achieving 100%
specificity and 81% sensitivity. In this way, monitoring with nanosensors and clinical assays
in animals has demonstrated that this technique can be an option for conducting accurate,
radiation-free diagnostic tests.

Nanoparticles and their application, together with in vivo imaging, can help to test
novel luminescent particles and assess their tissue penetration to improve cancer ther-
apy [93]. In vivo imaging enables us to understand tumor growth-related processes such as
oxidative mitochondrial metabolism in mouse models with cell lung cancer [94]. Likewise,
in a mouse model of brain tumor –glioblastoma– under general anesthesia, modified in vivo
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optical imaging (Surface enhanced spatially offset Raman scattering) covers the inability of
conventional techniques that rely on subcutaneous inoculation of cancerous cells because
they cannot read deep tissues [95]. These techniques are the basis for imaging-guided
phototherapies that are a current research field to find agents capable of inducing tumor
cell apoptosis, such as photodynamic y and photothermal therapy [96].

4.4. Pharmacology and Therapeutics

Parallel to the advances in our knowledge of the physiopathology of diverse conditions,
developing and testing new therapeutic options is another field destined for animal models.
Algology is a science in constant actualization to provide new and efficient drugs to prevent
the consequences of pain by reducing the number and severity of secondary effects in both
human and veterinary patients [97,98]. Adequate models are needed to evaluate analgesic
efficacy accurately. In the case of treatments for open wounds, Parra et al. [99] applied
carprofen (5 mg/kg) and buprenorphine (0.1 mg/kg) to the left hind paw of Sprague
Dawley rats of both sexes using a punch biopsy to assess analgesia in an open wound
model. Using four behavioral tests associated with aspects of nociception, mechanical
and thermal stimulation, guarding behavior, and the weight-bearing test, they found that
carprofen promoted recovery of the thermal response to basal levels after just 2 h. The same
rat species were utilized to test the renal and gastrointestinal safety of non-steroidal anti-
inflammatory drugs (NSAIDs) such as ibuprofen by administering single and multiple oral
doses to pediatric patients. Furthermore, the necropsies performed on pigs of different ages
(8-week-old and 6-to-7-months-old) in the study by Millecam et al. [100] revealed no severe
lesions in the stomach after multiple doses of ibuprofen at 5 mg/kg. However, significant
histological score differences (p < 0.025) were observed in the duodenum (1.38 vs. 4) and
jejunum (3.63 vs. 1.25) between the experimental and control group. Additionally, an
increased clearance time for the drug after multiple doses was found, an effect similar to
reports in human pediatric patients.

Due to the adverse effects that NSAIDs can generate, especially for treating chronic
afflictions such as arthritis and cancer, opioids are another therapeutic option [101]. How-
ever, since the long-term use of these drugs is also associated with complications, research
has begun to new concepts and explore directions. The opioid-free anesthesia technique
was introduced to prevent tolerance and hyperalgesia and reduce the use of these drugs in
the postoperative period. This method uses agents such as alpha-2-agonists, ketamine, and
local analgesics with distinct action mechanisms in multimodal analgesia [102–104]. Other
new opioid-based pharmacological options are transdermal patches impregnated with
morphine-like compounds. In 6–12-week-old C57BL/6JJmsSlc mice, patches synthesized
with two new opioids (new-opioids 1 and 2, N1 at 3 mg/kg; N2 at 10 mg/kg) showed the
same analgesic efficacy as morphine at 3 mg/kg. The effect remained constant, even under
repeated administration (in contrast to fentanyl), and the cutaneous trans-permeability rate
was greater, at 1.71 ± 0.35 and 3.94 ± 1.36 µg/cm/h [105]. The administration of opioid
nanoparticles has also been suggested to prevent opioid tolerance and reduce the severity
of adverse effects. Leucine-enkephalin hydrochloride-based nanoparticles with a size of
100–200 nm have been tested in male Sprague Dawley rats by applying them intranasally,
reaching the brain directly. After dosing, high concentrations were found in the olfactory
bulb and cerebrum between the first 60 min (approximately 80 ng/g and 160 ng/g, respec-
tively), while plasma concentrations were not detected at any evaluation time (p < 0.0001).
This prevents the side effects of drug transit through peripheral pathways [106].

Techniques based on local anesthesia temporarily relieve pain by inhibiting nerve
impulse transmission. However, when used to complement multimodal analgesia protocols,
they can be associated with neurotoxicity in both human and veterinary patients [107].
Administration via polymer-based encapsulation is a new strategy designed to prevent
toxicity and permit the prolonged release of the active ingredient to give a long-term
analgesic effect for up to seven days [107]. A ketamine-polymer-based drug was applied
transdermally to Wistar rats to determine its analgesic effects [98]. Results of the tail-flick
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test and readings from an analgesiometer led them to determine a significant analgesic
effect (p < 0.01) maintained for 24 h with a peak effect at 8 h and a response time on the test
5.72 s vs. a basal time of 2.44 s. The compound did not produce irritation when tested on
rabbit skin. It prevented the secondary effects of intravenous, nasal, or oral administration,
so it is a potential option for treating neuropathic pain [108].

4.5. Experimental Surgical Tecniques

In addition to developing novel drugs, advances in surgical technology and techniques
have opened fields in microsurgery in human and animal medicine since the 1900s when
Carrel and Guthrie performed the first transplants in dogs [109]. Later, in 1950–1960, Buncke
and Schultz tested the first microsurgery techniques using models of digital amputations
and reimplantation in Rhesus monkeys, performing vascular microsurgery to restore
circulatory connections successfully [110]. Anastomosis of 1-mm blood vessels in the
ears of adult rabbits by reimplantation was the first demonstration of microsurgery in
reconstructive medicine [111].

Today, rodents are considered models for reimplanting extremities and restoring
blood vessels because their vascularization is homologous to the human finger [112].
For example, developing heterotrophic osteomyocutaneus flap transplant protocols in
Lewis rats furthered our understanding of the mechanisms and pathways involved in the
immune response underlying tissue transplant rejection [113]. Likewise, in an experiment
with five syngeneic mice and allografts—using a donor-supplied aorta and inferior vena
cava—end-to-end anastomosis of those structures showed a 74% success rate as a technique
for hind limb transplants [114]. In another study, Tee et al. [115] performed grafts of
engineered cardiac muscle flaps in the epicardium of 8 rats. The flaps were transplanted
by microsurgery to resolve one of the first limitations: failed vascular anastomosis. Those
researchers performed successful end-to-end anastomosis of the carotid artery and jugular
vein by placing the flap on the epicardium, achieving a survival rate of 75% during 4 weeks
post-surgery, with viable cardiomyocytes and vascular connections between the flap and
the epicardium by week 10 [115]. These techniques, tested first in animals, were later used
with human patients with coronary artery disease caused by diseases such as squamous
cell carcinoma, with a 96% survival rate of the flap in individuals subjected to neck and
head surgery [116].

Another advance in biomedicine achieved thanks to experimental work with animal
species such as pigs are based on animal-to-human organ transplants. On 7 January 2022,
Bartley Griffith’s team performed the first heart transplant from a genetically-modified pig
to a 57-year-old human patient with terminal heart disease [117]. Although the patient’s
condition who received that xenotransplant deteriorated two months after surgery, and he
died, the procedure set an important precedent. It showed the need to continue research
on genetically-engineered animal organs and immunosuppressor drugs since the immune
response and organ rejection are still the leading causes of transplant failure, especially
when the organs come from other animal species [118].

Due to the physiological similarity between nonhuman primates and humans, pro-
cedures for organ transplants are often tested in those species. Over seven years, Lee
et al. [119] performed 22 xenotransplants using hearts from transgenic pigs eliminating
alpha-galactosidase transferase knockout or expression of the regulatory proteins CD46,
CD39, or CD73 in Cynomolgus monkeys (Macaca fascicularis). Results showed that survival
of the grafts was significantly higher in hearts with double or triple genetic manipulation
(11.63 ± 11.29 days vs. 30.83 ± 20.34 days, p = 0.03). This is similar to the report by
Cui et al. [120] on triple knockout cells from pigs (that do not express any of the three
carbohydrate xenoantigens). The complement-dependent cytotoxicity response and the
amount of anti-pig IgG/IgM immunoglobulins (Ig) were evaluated in serum from 72 spe-
cific pathogen-free (SPF) baboons and in human serum. Results for humans and old-world
monkeys showed similar antibody binding, but the cytotoxicity measured in IgM and IgG
was lower in the humans (p < 0.05 vs. p < 0.01).
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Observations on the immunosuppressor response to compounds such as anti-thymocyte
globulin (20 mg/kg) and rituximab (20 mg/kg) demonstrate that, in addition to the use
of transgenic animals, a strict immunosuppressor regimen is a critical element in allo-
transplants [119]. In this regard, drugs injected in nanoparticles such as mycophenolate
mofetil allow low-water soluble compounds to be combined with other compounds and
administered as solid lipid nanoparticles to improve their absorption and release by as
much as 68% in acid media [121].

In this field, sustained release options such as nanoparticle-anchoring hydrogel scaf-
folds of the immunosuppressant tacrolimus allowed the localized release of the drug with
tissue regeneration in nude female mice or those of the BALB/c line that were given the
drug in the hind limb. Those combinations allowed the sustained release of 77% of the
drug, without toxicity, within 28 days at <100 ng/mL [122]. Thus, refining these drugs in
the future will make it possible to reduce the cases of organ rejection due to the immune
response. This finding is significant because their benefits are not accompanied by systemic
toxicity, complications, or dose reduction without pharmacological efficacy [123].

4.6. Neurosciences

The field of neuroscience includes surgical and therapeutic procedures involving the
central nervous system and conducts studies focused on specific diseases or pathologies of
that system. With the discovery of neurological sequelae in COVID-19-infected patients,
animal models have allowed researchers to observe the effects that the SARS-CoV-2 virus
generates in sporadic cases, including epileptic seizures and encephalitis with a mortality
rate of approximately 5.3% [124].

Estimates suggest that approximately 42 million people worldwide suffer brain in-
juries annually and that 80% of cases are classified as traumatic brain injury (TBI). Animal
models based on rodent species are being used to improve our understanding of the phys-
iopathology of TBI [125], though authors such as Vink [126] caution that neuroanatomical
differences in the mouse’s lissencephalic brain can generate biomechanical responses dis-
tinct from those in humans. Moreover, the replication of trauma may be greater in rodents
since traumatisms in these animals tend to generate focal instead of diffuse lesions [127].
Grovola et al. [128] used male Yucatán miniature pigs to analyze neurological dysfunction
in animals with mild traumatism 1-year postevent. They found a persistent neuroimmune
response in animals with morphological changes to the microglia, with increased branches
and junctions per cell (p = 0.026 and p = 0.045, respectively). In other research, models
of medullar lesions are widely utilized with species such as rats, which are particularly
important because between 236 and 1009 per million humans annually suffer a spinal cord
injury [129]. Although this species is the one most often employed to replicate medullar
damage, Filipp et al. [129] affirm that between-species differences (quadrupeds, bipeds)
must be considered when evaluating the neuroplasticity of the spinal neurons.

Epilepsy is one of the most common neurological conditions, affecting over 50 million
people worldwide [130] and 0.6–0.75% of the domestic canine population [131]. Recent
studies of the physiopathology of this disorder and the testing of anti-seizure drugs have
used fruit flies (D. melanogaster) because they manifest seizure-like behavior and share 70%
of their genes with humans [15]. The use of the endocannabinoid anandamide (at 2, 20,
and 200 µg/mL) in Drosophilas prevented induced seizures (p < 0.0001). This led to the
discovery that the action mechanism of their metabolites is not linked to the cannabinoid
receptors but, instead, to transient potential receptors (TRP). This makes the fruit fly a
suitable medium for studying this type of drug [132].

Despite its nature and supposed organic simplicity, Drosophila has been used to un-
derstand the neurobiological bases of processes still considered mysteries by biology, such
as sleep, plasticity, and memory [133]. After studying 12,000 exemplars of D. melanogaster,
Toda et al. [134] reported the existence of the “nemuri” gene, a peptide with antimicrobial
properties that favors sleep and helps these flies survive the infection. This suggests that
its function could be linked to the immune competence of the sleep process in animals
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and humans. The association of sleep with long-term memory, known as post-learning
sleep, was studied by Lei et al. [135], who found a neural circuit that excites the mush-
room body neurons and a connection to the fan-shaped ventral neurons that promotes
post-learning sleep during courtship. This finding underlined the association between
the longer learning experience and the reinforcement of long-term memory, mechanisms
sometimes found in mammals.

Neuroscience techniques applied to species such as nonhuman primates and trans-
genic models of those species have recently been proposed as useful for studying human
evolution and the cerebral functioning of people with autism disorders and neurodegener-
ative diseases such as Alzheimer’s [136]. In humans, Alzheimer’s disease is considered the
most common neurodegenerative disease accounting for around 80% of cases of demen-
tia worldwide [137]. It is widely recognized that mitochondrial dysfunction is an event
that precedes the onset of Alzheimer’s, and this has been studied in two lines of mice
(APPswe/PSEN1 ∆E9 and C57BL/6J). There, the alteration of mitochondrial homeostasis
and increased mitochondrial calcium levels caused damage and neuronal death (p < 0.0001)
due to deposits of amyloid plaques. Recognition of this physiopathology helped scientists
establish the goal of preventing this process as a novel therapeutic approach [138].

Another neurogenerative disease, Parkinson’s, has been studied primarily with murine
models [139]. Recently, however, researchers recognized that the zebrafish shares more
neuroanatomical traits with humans and that mutations of the PARK7 gene in adult fish
were associated with the development of Parkinson’s in humans [140,141]. Exposure of
zebrafish larvae to neurotoxins that act directly on the dopaminergic neurons constitutes a
method to mimic the phenotype of Parkinson’s disease. Specifically, the MPP+ neurotoxin
affected the locomotor function (total distance and velocity) of fish, reducing its perfor-
mance by 80% and 85%, respectively (p < 0.001). Furthermore, no systemic effects were
observed, presenting a condition similar to Parkinson’s [142].

Palliative treatments to control movement disorders such as dystonia, Huntington’s,
and Parkinson’s disease have also been tested in zebrafish [143]. Treatment of Parkinsonian
embryos with substances such as rosmarinic acid (RA) prevents the loss of dopaminergic
neurons due to neurotoxicity. This acid has been proposed as a neuroprotector and antioxi-
dant that reduces locomotor deficits measured, for example, by increasing the swimming
distance in zebrafish treated with RA at concentrations of 10 or 100 µm (approximately
130 to 150 cm, p < 0.01) [144]. Similarly, it has been suggested that herbal medicines based on
Tongtian oral liquid have neuroprotective and antioxidant properties. The administration
of Tongtian to zebrafish prevented neurotoxicity and the degeneration of dopaminergic
neurons (p < 0.01 when compared to non-treated fish) while reducing larval behavioral
impairment measured as improvements in the total distance (peak distance around 180 cm)
and velocity (peak values around 3.5 cm/s) (p < 0.001) [145].

Aquatic models are also utilized to study other neurodevelopmental problems, such
as autism spectrum disorder in zebrafish and Medaka fish (Oryzas celebensis) [146]. Chen
et al. [147] found that prenatal exposure to valproic acid (at 5 and 50 µM) in AB lines
of zebrafish produced embryos and larvae with signs similar to those seen in autistic
humans, including hyperactivity, manifested in a greater frequency of tail-bending, greater
distances traveled after touching of the dorsal tail (p < 0.001, p < 0.05), increased swimming
speed under both light and dark conditions, and deficient social interaction, anxiety, and
macrocephaly, all as consequences of neuronal cerebral cell proliferation. In a separate
study, when applied to 28 neonate rat pups, this acid generated oxidative stress in the
cerebellar hemispheres and reduced the count and nuclear size of the Purkinje cells [148].
These findings appeared, as well, in the brains of children with this condition. In the
case of rats, administering grape seed extract served as a neuroprotector thanks to its
antioxidant effect.

Referring to neurodegenerative disorders, a key strategy is to improve symptomatol-
ogy through physiotherapy and rehabilitation protocols, another line of research that has
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increased in importance due to the prevalence of neurological conditions that can affect the
quality of life of both humans and animals.

4.7. Physiotherapy and Rehabilitation

Because the number of neurodegenerative and traumatic diseases in humans and animals
has been increasing in recent years, one of the main options for these cases is developing and
implementing physiotherapy techniques. For example, stimulation of the lateral cerebellar
nucleus with low-intensity ultrasound is a non-invasive therapy for reducing the consequences
of cerebrovascular accidents in mice after induced ischemic stroke. In those test animals,
functional asymmetry of the brain was restored, and pathological electrical cerebral delta
activity was reduced, leading to improved performance on the beam-walking test [149].

In cases of osteoarthritis, for example, transcutaneous electrical nerve stimulation
techniques (TENS) in physiotherapy protocols utilized in male Sprague Dawley rats with
induced pain showed that when applied to the knee joint for 20 min a day for two weeks,
TENS reduced the expression of c-fos (p < 0.05) (a biomarker of pain) on the day following
the intervention (7302.80 ± 152.40% vs. 5074.50 ± 199.50%) in all the test animals that, in ad-
dition to TENS, did exercise on a treadmill (7333.40 ± 156.70% vs. 2790.00 ± 111.88%) [150].
In canine patients, functional neurorehabilitation after Hansen type I intervertebral disc
surgery has been tested using a technique with bases similar to TENS called transcutaneous
electrical spinal cord stimulation (TESCS). Combined with pharmacological treatment
(4-AP) for 90 days, this approach restored ambulation in 88% of 16 animals thanks to the
so-called multimodal neurorehabilitation protocol in a study by Martins et al. [151].

In human medicine, TENS has been used with patients with knee osteoarthritis. It
improved performance on the stair-climbing test by 0.41 s [152] and reduced pain in
individuals with head and neck cancer who had received radiation and developed oral
mucositis with the pain. In those patients, 30 min of high-frequency TENS functioned as
a non-pharmacological intervention that reduced pain levels at rest by approximately 3.0
from visit #1 to visit #3, as measured by the McGill Pain Questionnaire. However, this
approach did not show results for controlling functional pain [153]. Pain reduction allowed
the patients to exercise the limb and prevent the loss of mass, muscular strength, and joint
instability with some cartilage recovery.

Electroacupuncture is a similar technique used to control chronic inflammatory pain.
The action mechanisms of this technique have been studied in murine models after admin-
istering the complete Freund’s adjuvant to the hind paw. In those animals, electroacupunc-
ture produced analgesia by attenuating neuronal signaling in the dorsal ganglia of the
spinal cord, the anterior cingulate cortex, and neurons of the somatosensorial cortex. This
suggests that the analgesia generated affects cortical pain pathways and means that the
somatosensorial and anterior cingulate cortices may be potential therapeutic targets for
developing new options for pain management [154], one of the principal objectives of
rehabilitative medicine in humans and animals.

5. New Models and Strategies Applied in Animal Research

The use of poorly developed or unconventional species is expanding to other areas of
biomedicine. For example, the zebrafish is used to study anomalies in limbs and craniofacial
regions [155]. In those fish, Bergen et al. [156] found 604 genes associated with processes
of the formation, mineralization, and regeneration of scales, which demonstrated that
those structures are reminiscent of bone. Mutations of these genes in humans generate
bone mineralization disease. This suggests that scales could be a model for studying the
pathogenesis of skeletal diseases, calcification, and matrix formation [156]. In another
fish species –Medaka, the Japanese rice fish (Oryzias latipes)– researchers found that the
electrocardiogram pattern was more similar to that of humans than those of rats and mice.
This led authors such as Yonekura et al. [157] to use it as a model for testing cardiovascular
therapies and the response of action potentials to verapamil, which causes bradycardia,
an effect also seen in humans [158].
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In addition to the use of mammals such as domesticated dogs as models for research
on urinary pathologies due to their anatomical and physiological similarity to humans [159],
the diverse species that have been incorporated into biomedical science include protozoans,
platyhelminths, planarians, cnidarians, bivalve mollusks, gastropods, cephalopods, an-
nelids such as the tardigrades, and arthropods such as hexapods, crustaceans, arachnids,
and various insects in studies in broad fields of investigation [160]. In dermo-cosmetology,
extraction of hyaluronic acid from mollusks such as Mytilus galloprovincialis and Crassostrea
gigas to treat wounds in Wistar rats accelerated the processes of wound repair and re-
epithelization, allowing lesions to heal completely within 15 days of treatment, in contrast
to the results attained with commercial healing creams [161]. Another application of a
cephalopod (Octopus vulguris) is in reconstructive medicine due to its capacity to regenerate
nerves and adjacent tissues such as muscle and blood vessels. Despite these technical
advances s in medical research, additional studies are required to determine markers,
antibodies, and imaging techniques designed to take advantage of those species [162].

Non-animal alternatives such as cell cultures, 3D tissue cultures or organs-on-chips,
mathematical models, stem cells, bioprinting, in silico tests, and advanced computer
simulations have been increasing in recent years [163]. In leading research countries and
regions such as the United States, United Kingdom, China, Germany, Japan, Canada, and
Australia, among others [164], there has been a particular interest in replacing animal
models with another methods. This is promoted by ethical pressures, the 3Rs initiative,
and official instances such as the National Institute of Health [165]. An example of this is
the new US law sponsored by the Food and Drug Administration (FDA), which states that
drugs no longer require animal testing before human clinical trials [166]. Another example
could be Canada and the statistics regarding the number of rats and fish used as animal
models from 2019 to 2020. In 2019, rats and fish went from 3.9% and 19.9% to 2.6% and
11.7%, respectively [26,167].

When mentioning tissue engineering, the so-called “organoids”—transplantable tis-
sues created by engineering—have raised expectations for replacing animals, resolving
specific bioethical issues by making the study of pathologies and drug testing more spe-
cialized [168]. Protocols for head and neck squamous carcinoma have been published,
using patient-derived organoids to study therapeutic agents and their drug sensitivity [169].
However, as materials that depend on in vitro handling and do not come from organisms
that provide blood flow or the biochemical conditions of a live individual, their devel-
opment and clinical application require further advances, not only in medicine but also
in applicable biotechnologies [168]. Current trials aim to establish the vascularization of
organoids, such as in human brains [170] or kidney organoids., In vitro culturing under
millifluidic chips and endothelial cells is an alternative to creating vascular networks that
need future studies but can be an option to research nephropathies [171]. Complex vascular
networks made with mesodermal progenitor cells by Wörsdörfer et al. [172] replicated the
ultrastructure of a blood vessel in tumor organoids with endothelial cell junctions, luminal
caveolae, microvesicles, and antiangiogenic responsiveness to stimuli. Moreover, 3D bio-
printing of organoids derived from stem cells (e.g., ectoderm, mesoderm, and endoderm)
is another alternative to replicate developmental diseases in the brain, skin, kidney, heart,
intestine, lung, and liver [173]. Those biotechnological advances include approaches in
which animal models are accompanied by artificial intelligence [174].

The support that robotics and artificial intelligence provide to the advance of science
has improved the technologies involved in techniques of robot-assisted, minimally-invasive
surgery [175]. Recently, machine learning techniques have been used with animal models
to help diagnose or identify specific behavioral or physiological changes in species. In this
regard, models of Parkinson’s disease in zebrafish have used video recording to teach the
machine to differentiate between a movement disorder and a parkinsonian fish, a technique
that may apply to cases of motor diseases in humans [140]. Deep learning algorithms, a type
of machine learning, are another approach to the future of biomedical science, particularly
in diagnosing a wide range of diseases. Based on CT images, it has been tested in hepato-
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cellular carcinomas [176] and COVID-19 diagnosis, showing 85.2% accuracy a specificity
and sensitivity of 88 and 87%, respectively [177]. A similar accuracy percentage (91%) was
also obtained when testing deep learning to identify genetic syndromes according to facial
features [178]. In veterinary medicine, automatizing facial recognition to assess pain is a
current approach applied in cats, with an accuracy above 72% [179]. These applications
suggest that new diagnostic tools might not require animal models. Nonetheless, imple-
menting these technologies depends on their ability to simulate the physiology of a live
organism, especially humans, to improve the replicability of results [180].

The replicability of animal models in preclinical protocols depends on their internal
and external validity for transposing results to humans. However, the complexity of some
human conditions and the physiological differences among species have led authors such as
Pound and Ritskes-Hoitinga [181] to recommend focusing on techniques and technologies
prioritizing human research. However, it is important to remember that experimentation
with human subjects involves many serious ethical and legal controversies such as those
surrounding experimentation with nonhuman primates [182]. One ethical way to deal
with this topic consists in establishing and following norms and guidelines such as the 3R
principles that promote the rational and humane use of laboratory species [33].

In summary, important advances in human and veterinary medicine have been mainly
achieved thanks to animal species that allow us to improve our understanding of the etiology,
pathology, physiology, and toxicology of diverse conditions that affect both humans and
nonhuman animals [5]. However, using these species requires evaluating ethical considera-
tions, existing limitations, the options available, earlier studies, and, above all, focusing on the
welfare of laboratory species to fully recognize their enormous contributions to science.

6. Conclusions

Animal models—including a broad diversity of species of vertebrates and
invertebrates—are a key element for experimental research aimed at replicating human and
animal pathologies. Over the past five years, significant advances regarding worldwide
priority diseases such as COVID-19, breast cancer, diabetes, obesity, and Parkinson, among
others, were made in species such as nonhuman primates, rodents, lagomorphs, dogs, pigs,
and even invertebrates such as zebrafish and nematodes. Moreover, before human clinical
trials, novel therapeutic drugs, diagnostic techniques, and surgical procedures such as flaps
or organ transplants have also been refined in animals.

These examples show the importance of using animals in biomedical research to study
emerging or poorly understood human and animal diseases, and development of novel
therapeutic options, including nanoparticles and in vivo techniques. Although animals
will remain an essential element of science in the near future, due to their remarkable
contributions, the ethical aspect of animal experimentation is significant.

The ethical pressure and the application of initiatives to reduce and replace the number
of animals used in experimental protocols is leading to new strategies such as genetic
engineering, artificial intelligence, organs-on-chips, mathematical models, bioprinting
of organs, and advanced machine learning technologies. This multimodal approach is
considered the best option for addressing the ethical dilemmas raised by using laboratory
animals while emphasizing their valuable contributions to human and animal medicine.
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158. Marzęda, P.; Drozd, M.; Tchórz, M.; Kisiel, K. Importance of early intervention in verapamil overdose—Case Report and antidotes
review. J. Pre-Clin. Clin. Res. 2021, 15, 142–147. [CrossRef]

159. Ruetten, H.; Vezina, C.M. Relevance of dog as an animal model for urologic diseases. In Progress in Molecular Biology and
Translational Science; Tao, Y.-X., Ed.; Academic Press: Oxford, UK, 2022; pp. 35–65.

160. Gajski, G.; Žegura, B.; Ladeira, C.; Pourrut, B.; Del Bo’, C.; Novak, M.; Sramkova, M.; Milić, M.; Gutzkow, K.B.; Costa, S.; et al. The
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