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Simple Summary: Peptides and amino acids (AAs) arising from feed or microbial protein diges-
tion require transporters in the gastrointestinal tract (GIT) for uptake into the blood. The mTOR
pathway, considered the master regulator of protein synthesis, is partly controlled by specific AAs.
We measured AA concentrations, mRNA abundance of AA transporters, and genes in the mTOR
pathway in epithelia from the rumen, duodenum, jejunum, and ileum of lactating Holstein cows.
The concentrations of most AAs and the abundances of AA transporters and mTOR mRNA were
greater in the small intestine than in the rumen. As in non-ruminants, the absorption of AAs from the
small intestine is partly due to the greater abundance of transporters. Compared with the ruminal
epithelium, the greater abundance of mTOR in the small intestine underscored its role in regulating
cellular protein synthesis.

Abstract: Data from non-ruminants indicate that amino acid (AA) transport into cells can regulate
mTOR pathway activity and protein synthesis. Whether mTOR is expressed in the ruminant gas-
trointestinal tract (GIT) and how it may be related to AA transporters and the AA concentrations
in the tissue is unknown. Ruminal papillae and the epithelia of the duodenum, jejunum, and ileum
collected at slaughter from eight clinically healthy Holstein in mid-lactation were used. Metabolites
and RNA were extracted from tissue for liquid chromatography–mass spectrometry and RT-qPCR
analysis. The glycine and asparagine concentrations in the rumen were greater than those in the
intestine (p < 0.05), but the concentrations of other AAs were greater in the small intestine than those
in the rumen. Among the 20 AAs identified, the concentrations of glutamate, alanine, and glycine
were the greatest. The mRNA abundances of AKT1 and MTOR were greater in the small intestine
than those in the rumen (p < 0.05). Similarly, the SLC1A1, SLC6A6, SLC7A8, SLC38A1, SLC38A7,
and SLC43A2 mRNA abundances were greater (p < 0.05) in the small intestine than those in the
rumen. The mRNA abundances of SLC1A5, SLC3A2, and SLC7A5 were greater in the rumen than
those in the small intestine (p < 0.05). Overall, the present study provides fundamental data on the
relationship between mTOR pathway components and the transport of AAs in different sections of
the gastrointestinal tract.

Keywords: amino acid concentration; rumen; duodenum; jejunum; ileum; lactation

1. Introduction

In ruminants, the majority of microbial proteins and rumen-undegradable proteins
are digested into amino acids (AAs) or peptides by enzymes in the abomasum, followed
by their transport into the various sections of the small intestine. Thus, although most
of the AA absorption from digesta occurs primarily in the ileum, the extent to which
the ruminal and intestinal epithelia are equipped with AA transporters is still unknown.
There are several types of AA transporters. For example, some transporters, such as
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SLC1A1 and SLC1A5, are sodium-dependent [1,2] and the concentration gradient between
cell membranes can drive absorption via these transporters. Some examples of sodium-
independent AA transporters are SLC7A5 (CD98LC, 4F2 light chain, LAT1, MPE16) and
SLC3A2 (4F2 cell-surface antigen heavy chain, 4F2hc, MDU1), both of which function as
high-affinity transporters that mediate the uptake of large, neutral AAs, such as tryptophan
(Trp), phenylalanine (Phe), leucine (Leu), and histidine (His) [3]. Although the mRNA
abundance of selected AA transporters has been measured in adipose [4,5], placenta [6],
mammary gland [7], and fetal intestinal tissue [8], a comprehensive examination across the
different sections of the ruminant gut is not available.

Once AAs reach the ruminal cell or the enterocytes lining the small intestine, a portion
can be used for cellular protein synthesis [9]. During protein synthesis, gene transcription is
regulated by transcription factors, followed by translation, including three steps: initiation,
elongation, and termination. In the initiation phase, the poly-A tails of mRNA bind to the
poly(A)-binding protein (PABP), and the GTP cap binds to eukaryotic translation initiation
factor 4E (eIF4E). Eukaryotic translation initiation factor 4 G (eIF4G) interacts with PABP
and, along with eIF4E, forms an mRNA loop for translation. During the elongation step,
eukaryotic translation elongation factor 2 (eEF2) controls the movement speed of the
ribosome to construct the AAs into a chain. The stop codon terminates translation.

The mechanistic target of rapamycin kinase (mTOR; gene symbol MTOR), a serine/
threonine–protein kinase, phosphorylates eIF4EBP and RPS6KB [10]. To inhibit the forma-
tion of the mRNA loop during the initiation of translation, eIF4EBP competes with eIF4G
to bind eIF4E [11]. The phosphorylation of eIF4EBP prevents it from binding to the eIF4E;
thus, mTOR enables the initiation of translation [12,13]. The phosphorylation of ribosomal
protein S6 kinase (RPS6K) leads to the subsequent phosphorylation of eIF4E and ribosomal
protein S6 (RPS6) [14]. The phosphorylated RPS6 increases the translation of mRNA [15],
underscoring that RPS6K promotes transcriptional initiation and elongation.

In order to have a blueprint of AA transport and utilization in the GIT of dairy cows,
ruminal papillae and epithelia of the duodenum, jejunum, and ileum collected at slaughter
from Holstein cows in mid-lactation were used. Metabolites and RNA were extracted
from the tissue for liquid chromatography–mass spectrometry and RT-qPCR analysis. The
central objective was to assess the relationship between the mTOR pathway components
and transport of AA in different sections of the gastrointestinal tract.

2. Materials and Methods
2.1. Animal Handling and Experimental Design

The Institutional Animal Care and Use Committee (IACUC) at the University of Illinois
approved the procedures (#19161). Eight clinically healthy Holstein mid-lactating cows
housed with other cows in the University of Illinois Dairy Unit herd in free stalls were
selected. All cows were milked twice per day. Their diet contained 17.4% crude protein
and 1.74 Mcal/kg net energy for lactation. The cows were fed at 06:00 and 17:30 h daily.
On the day of sacrifice at 06:00 h, each cow received 300 mg of xylazine via intramuscular
injection for sedation (Rompun® 100 mg/m, Dechra, Kansas City, KS, USA). The cows
were then placed in a livestock trailer (EBY Maverick LS livestock trailer, EBY, Seymour, IN,
USA) and transported 0.8 km from the University of Illinois Dairy Unit to the Veterinary
Diagnostics Laboratory at the University of Illinois College of Veterinary Medicine in
Urbana-Champaign. The cows became recumbent within 10 min of injection and were then
euthanized with a penetrating captive bolt. The cows were removed from the trailer and
then exsanguinated, and within 10 min, the body cavity was opened.

2.2. Sample Collection

Within 20 min of the animal’s death, tissue samples from the rumen, duodenum,
jejunum, and ileum were collected. Ruminal papillae were harvested from the rumen’s
ventral sac using surgical scissors. The small intestine was cut from the rumen and placed
on a necropsy table, where duodenal tissue was collected approximately 25 cm distal from
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the pyloric sphincter; jejunum was collected approximately 1 m proximal to the ileocecal
junction, and the ileum was collected approximately 18 cm proximal to the ileocecal
junction [16]. Twenty-five-centimeter segments from the duodenum, jejunum, and ileum
were cut into pieces measuring approximately 10 cm × 20 cm and washed with phosphate-
buffered saline. Then, a sterile scalpel blade was used to scrape the epithelium. Cryovials
were used to collect samples, which were then quickly frozen in liquid nitrogen. After
transporting them to the lab, the tissues were stored at −80 ◦C until use.

2.3. Metabolomics

With 4 mL/g of cold methanol and 0.85 mL/g of cold water, approximately 100 mg
of the frozen sample was homogenized. The homogenate was vortexed with 4 mL/g
chloroform and 2 mL/g for 60 s, left on ice for 10 min to partition, and centrifuged for
10 min at 4 ◦C at 12,000× g. The supernatant was collected and separated into 2 aliquots.
The first part was used to determine the protein concentration via the Bradford assay
(no. 500–0205, Bio-Rad Laboratories Inc., Hercules, CA, USA). The second aliquot was
delivered to the Metabolomics Unit at the Roy J. Carver Biotechnology Center (University
of Illinois, Urbana) for analysis. Targeted metabolomics (liquid chromatography (LC–MS))
was performed to quantify specific AAs via a targeted amino acid assay [17]. A commercial
amino acid standard solution (AAS18, Sigma, St. Louis, MO, USA) was used to generate
calibration curves. Twenty microliters of internal standard (DL-Chlorophenyl alanine,
0.01 mg/mL) were spiked into the samples at the beginning of extraction. Chromatography
was performed on a Vanquish LC system (Thermo Scientific, Waltham, MA, USA) and
a TSQ Altis LC-MS mass spectrometer system (Thermo Scientific). Data were acquired
in both positive and negative (Taurine) SRM modes. Peak integration and quantitation
using calibration curves adjusted for internal standards were performed using the Thermo
TraceFinder (4.1) software. Cysteine was not detectable with this assay. However, Cys
was identified via targeted LC-MS metabolite profiling with the Agilent 1200 HPLC sys-
tem (Agilent Technologies, Santa Clara, CA, USA) on a Phenomenex Luna C18 column
(4.6 × 150 mm, 5 µm; Phenomenex, Torrance, CA, USA) and a 5500 QTRAP system mass
spectrometer (Sciex, Framingham, MA, USA). Data were acquired under positive and nega-
tive electrospray ionization. Analyst 1.7.1 software (Agilent) was used for data acquisition
and analysis. More details are reported in the Supplementary Materials File.

2.4. RNA Extraction

Approximately 50 mg of tissue was homogenized with 1 mL of Qiazol (Qiagen,
Hilden, Germany). After centrifuging the samples for 10 min at 12,000× g and 4 ◦C, the
supernatant was collected and kept at room temperature for 5 min before the addition of
200 µL chloroform. The samples were then shaken manually and kept at room temperature
for 3 min before centrifugation for 15 min at 12,000× g at 4 ◦C. The collected supernatant
was mixed with 750 µL of ethanol. These reagents and materials were from the RNAase
kit (Qiagen, Hilden, Germany). Details of the RNAase kit’s operation are in the Sup-
plementary Materials File. Total RNA quantification was conducted using a Nanodrop
ND-1000 (NanoDrop Technologies, Rockland, DE). The RNA was diluted to 100 ng/µL
with DNase/RNase-free water. The purity and integrity of the extracted RNA were evalu-
ated using an Agilent Bioanalyzer in the Roy J. Carver Biotechnology Center, University of
Illinois, Urbana-Champaign. Ruminal, duodenal, jejunal, and ileal samples had average
RNA quality numbers (RQNs) of 8.1 ± 0.7, 7.4 ± 0.9, 7.0 ± 0.7, and 7.1 ± 0.5, respectively.
The average 28 s/18 s values were 1.5 ± 0.3, 1.1 ± 0.3, 1.1 ± 0.2, and 1.0 ± 0.2, respectively.

2.5. cDNA Synthesis and qRT-PCR

Eight microliters of 100 ng RNA/µL plus 80 µL of 0.00035 mg/µL Random Primers
(11034731001, Roche, Basel, Switzerland) were incubated at 65 ◦C for 5 min. Seventy-two
microliters of master mix composed of 4 µL of 5X First-Strand Buffer (EP0442, Thermo
Scientific), 1 µL of Oligo dT18 (Integrated DNA Technologies), 2 µL of 10 mM dNTP mix
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(18427088, Invitrogen, Waltham, MA, USA), 0.25 µL (50 U) of Revert aid (EP0442, Thermo
Scientific), 0.125 µL of RiboLock RNase Inhibitor (EO0381, Thermo Scientific), and 1.625 µL
of DNase/RNase-free water were added to each sample and the reaction was performed
with the following temperature program: 25 ◦C for 5 min, 42 ◦C for 60 min, and 70 ◦C
for 5 min. The cDNA was then diluted 1:3 with DNase/RNase-free water. Quantitative
PCR (qPCR) was performed as reported in our previous papers with GAPDH, UXT, and
RPS9 (commonly used in bovine gene work) as the internal control genes [18–20] using
the QuantStudio Software (version v1.7.2, Applied Biosystems, Foster City, CA, USA). For
reference, UXT and RPS9 were deemed suitable internal control genes in the ruminal epithelium
of cows and in various tissues from buffalo [21]. GAPDH was determined to be a stable internal
control gene and has been used in several studies of the GIT in cattle [22–25]. The quantity data
for the target genes obtained from QuantStudio Software were normalized by dividing
the geometric mean of the three internal control genes. Specific details are reported in
the Supplementary Materials File. The primers for the target genes were from one of our
previous papers [6].

2.6. Statistical Analysis

All data were checked for normality via the Shapiro–Wilk test and analyzed with the
MIXED procedure in SAS 9.4 (SAS Institute Inc., Cary, NC, USA). The model included the
fixed effect of GIT tissue section and the random effect of cow. The preplanned CONTRAST
P values for comparing the rumen versus small intestine (duodenum, jejunum, ileum),
the duodenum versus jejunum and ileum, and the jejunum versus ileum were used to
determine statistical significance. Tukey’s multiple comparison test was used to determine
differences across the different sections of the GIT. MATLAB was used to read the SAS
results to extract the least squares means, standard error of the mean, and p-value. The
least-square means (LSMs) of the AA concentrations and the relative mRNA abundances
were imported into Genesis v. 1.8.1 [26] for hierarchical clustering using the average linkage
weighted pair group method with arithmetic mean (WPGMA).

3. Results
3.1. Amino Acid Profiles

Overall, most AA concentrations were greater in the small intestine than in the rumen,
and the three sections of the small intestine had similar AA concentrations (Table 1). Except
for cystine and glutamate (Glu), the concentrations of all other AAs differed among the
rumen, duodenum, jejunum, and ileum (p < 0.05). Except for Trp, the concentrations of
other AAs differed between the rumen and small intestine (p < 0.05). The asparagine
(Asn) and cysteine (Cys) concentrations in the rumen were greater than those in the
small intestine (p < 0.05), while the concentrations of other AAs in the rumen were lower
than those in the small intestine (p < 0.05). The aspartate (Asp), glycine (Gly), Met, Phe,
taurine, and Trp concentrations in the duodenum were greater (p < 0.05) than those in the
combination of the jejunum and ileum, while the taurine concentrations in the combination
of the jejunum and ileum were ~3 to 4-fold greater (p < 0.05) than that in the duodenum.
The hierarchical clustering of the AA concentrations revealed similar patterns of AA
concentrations (Figure 1). The concentrations of cystine, Asn, His, and Trp were in a large
cluster with similar patterns, and their concentrations were lower than 1100 ng/mg of
total protein. The concentrations of Glu, Ala, Gly, and taurine (second main cluster) were
relatively high among all AAs, and their concentrations in the rumen were lower than
those in the small intestine.
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Table 1. Least-squares means, pooled SEM, and p-values for amino acid concentrations in tissue harvested from the rumen, duodenum, jejunum, and ileum from
lactating Holstein cows (n = 8/group).

Item, ng/mg of Total Protein Rumen Duodenum Jejunum Ileum SEM p-Value
Contrast p Value

Rumen vs. Small Int Duodenum vs. Jejunum and Ileum Jejunum vs. Ileum

Alanine 8652 b 13,297 a 13,724 a 12,508 a 1123 <0.01 <0.01 0.87 0.35
Arginine 136 b 2975 a 2824 a 2298 a 248 <0.01 <0.01 0.13 0.10

Asparagine 600 a 332 b 314 b 207 b 34 <0.01 <0.01 0.09 0.03
Aspartate 2111 c 11,228 a 7158 b 7362 b 1093 <0.01 <0.01 <0.01 0.88
Cysteine 5173 a 1757 b 2695 ab 2426 b 658 <0.01 <0.01 0.31 0.77
Cystine 701 37 457 317 199 0.13 0.06 0.15 0.60

Glutamine 3450 b 6182 a 7154 a 5695 a 692 <0.01 <0.01 0.69 0.05
Glutamate 21,486 23,149 26,447 20,688 2325 0.09 0.31 0.84 0.02

Glycine 10,804 ab 13,801 a 10,053 bc 7155 c 899 <0.01 0.64 <0.01 0.03
Histidine 447 b 1099 a 1016 a 731 b 85 <0.01 <0.01 0.02 0.01
Isoleucine 1981 b 3841 a 3722 a 2856 ab 298 <0.01 <0.01 0.11 0.03
Leucine 2938 b 7424 a 7124 a 5559 a 573 <0.01 <0.01 0.09 0.04
Lysine 5573 b 7738 a 8090 a 6165 ab 740 0.01 0.01 0.34 0.01

Methionine 734 c 4349 a 3392 ab 2615 b 386 <0.01 <0.01 <0.01 0.09
Phenylalanine 1447 c 5866 a 5251 ab 4140 b 474 <0.01 <0.01 0.03 0.07

Proline 3271 b 5165 a 5985 a 4591 ab 513 <0.01 <0.01 0.79 0.02
Serine 546 b 3400 a 3442 a 2937 a 280 <0.01 <0.01 0.45 0.13

Taurine 4540 c 15,224 b 20,913 a 20,826 a 1610 <0.01 <0.01 <0.01 0.96
Threonine 1520 b 3443 a 3854 a 3226 a 329 <0.01 <0.01 0.76 0.10

Tryptophan 652 b 993 a 764 ab 507 b 96 <0.01 0.28 <0.01 0.04
Tyrosine 1744 b 6414 a 6170 a 5006 a 551 <0.01 <0.01 0.15 0.08

Valine 4953 b 7724 a 8305 a 6618 ab 599 <0.01 <0.01 0.66 0.02
a,b,c Means on the same row differ (p < 0.05).
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Figure 1. Hierarchical clustering of amino acid concentrations in tissue harvested from the rumen,
duodenum, jejunum, and ileum of lactating Holstein cows (n = 8/group). Dendrograms allow the
visualization of clusters of similarity in concentration patterns (links denoted by the lines at the left
side of the picture). Concentration levels are denoted by shades of yellow and red according to
the log2-transformed least-squares mean. Red intensity denotes a high concentration and yellow
intensity a low concentration. White dots denote the highest concentration of an amino acid in
a given tissue.

3.2. mRNA Abundance of Protein Synthesis Regulation Genes

The MTOR mRNA abundance in the rumen was lower than that in the small intestine
(p < 0.05), and its abundance in the jejunum and ileum was greater than that in the duode-
num (p < 0.05). The AKT1 mRNA abundance was greater in the small intestine than that in
the rumen (p < 0.05). The EEF1A1 mRNA abundance in the rumen was greater than that in
the small intestine (p < 0.05). The differences in mRNA abundance of RPS6KB1 and IRS1
were not significant among these four sections of the GIT.

3.3. mRNA Abundance of Amino Acid Transporters

We measured the mRNA abundances of 11 AA transporters. The mRNA abundances
of solute carrier family 1 member 1 (SLC1A1), SLC3A2, solute carrier family 6 member
6 (SLC6A6), SLC7A5, solute carrier family 7 member 8 (SLC7A8), solute carrier family
38 member 1 (SLC38A1), solute carrier family 38 member 7 (SLC38A7), and solute carrier
family 43 member 2 (SLC43A2) were significantly different between the rumen, duodenum,
jejunum, and ileum (p < 0.05) (Table 2). The mRNA abundances of SLC1A1, SLC6A6,
SLC7A8, SLC38A1, SLC38A7, and SLC43A2 were greater (p < 0.05) in the small intestine
than those in the rumen, while the SLC1A5, SLC3A2, and SLC7A5 mRNA abundances were
greater in the rumen than those in the small intestine (p < 0.05). The SLC1A1, SLC3A2,
SLC6A6, SLC7A5, SLC7A8, and SLC43A2 abundances were significantly different between
the duodenum and the combination of the jejunum and ileum (p < 0.05). There were
two main clusters of AA transporters (Figure 2). The first cluster included SLC7A5, SLC3A2,
SLC1A5, SLC38A2, SLC38A1, SLC38A7, and SLC38A11, and the second cluster included
SLC6A6, SLC7A8, SLC1A1, and SLC43A2. Overall, the AA transporter mRNA abundance
was low in the rumen and high in the jejunum and ileum, and in the second cluster, the
variation in mRNA abundance was larger among different sections of the GIT.
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Table 2. Least-squares means, pooled SEM, and p-values for the mRNA abundances of target genes associated with protein synthesis and amino acid transport in
tissue harvested from the rumen, duodenum, jejunum, and ileum from lactating Holstein cows (n = 8/group).

Item 1 Rumen Duodenum Jejunum Ileum SEM p-Value
Contrast p Value

Rumen vs. Small Int Duodenum vs. Jejunum and Ileum Jejunum vs. Ileum

Protein synthesis
IRS1 1.23 1.09 0.87 1.66 0.22 0.11 0.93 0.54 0.02
AKT1 0.74 b 1.14 b 1.66 a 1.82 a 0.11 <0.01 <0.01 <0.01 0.31
MTOR 0.61 c 1.05 b 1.6 a 1.77 a 0.10 <0.01 <0.01 <0.01 0.09

EIF4EBP1 0.85 0.96 0.62 0.89 0.11 0.16 0.86 0.14 0.09
EIF4EBP2 1.11 1.03 0.93 1.18 0.07 0.12 0.48 0.38 0.02
RPS6KB1 1.07 0.96 1.24 0.91 0.13 0.30 0.82 0.48 0.08
EEF1A1 1.51 a 0.93 b 0.80 b 0.99 b 0.06 <0.01 <0.01 0.65 0.04

Amino acids transporters
SLC1A1 0.05 b 0.44 ab 4.1 a 3.71 ab 1.00 0.01 0.02 0.01 0.77
SLC1A5 1.26 1.00 0.69 1.05 0.14 0.06 0.04 0.47 0.08
SLC3A2 1.51 a 0.83 b 0.97 b 1.11 b 0.08 <0.01 <0.01 0.03 0.2
SLC6A6 0.01 c 0.24 bc 3.4 a 3.14 ab 0.84 0.01 0.02 <0.01 0.81
SLC7A5 1.28 a 1.25 b 0.52 b 0.71 ab 0.16 <0.01 0.02 <0.01 0.41
SLC7A8 0.01 c 0.28 bc 3.88 a 3.33 ab 0.82 <0.01 0.02 <0.01 0.63

SLC38A1 0.34 b 1.28 a 0.86 a 1.28 a 0.13 <0.01 <0.01 0.19 0.03
SLC38A2 1.12 1.07 0.86 1.28 0.09 0.66 0.60 0.70 0.28
SLC38A7 0.76 b 1.41 a 1.56 a 1.69 a 0.10 <0.01 <0.01 0.08 0.35
SLC38A11 NA 2.52 1.56 1.69 0.19 0.98 NA 0.89 0.89
SLC43A2 0.08 b 0.73 ab 3.83 a 4.02 a 0.91 0.01 0.01 0.01 0.88

a,b,c Means in the same row differ (p < 0.05). 1 Full description of gene symbols. IRS1, insulin receptor substrate 1; AKT1Akt1, AKT serine/threonine kinase 1; mTOR, mechanistic target
of rapamycin kinase; RPS6KB1, ribosomal protein S6 kinase B1; EIF4BP1, eukaryotic translation initiation factor 4E-binding protein 1; EIF4EBP2, eukaryotic translation initiation factor
4E binding protein 2; EEF1A1, eukaryotic translation elongation factor 1 alpha 1; SLC1A1, solute carrier family 1 member 1; SLC1A5, solute carrier family 1 member 5; SLC3A2, solute
carrier family 3 member 2; SLC6A6, solute carrier family 6 member 6; SLC7A5, solute carrier family 7 member 5; SLC7A8, solute carrier family 7 member 8; SLC38A1, solute carrier family
38 member 1; SLC38A2, solute carrier family 38 member 2; SLC38A7, solute carrier family 38 member 7; SLC38A11, solute carrier family 38 member 11; SLC43A2, solute carrier family 43
member 2.
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4. Discussion
4.1. Amino Acid Profiles

After AAs are transported from the gut or the blood [27] into gut tissue, they can
be metabolized as an energy source or used for other processes, such as protein synthe-
sis [28,29]. Studies of AA metabolism in the rumen have mainly focused on the role of
the microbiome [30], with few data available on AA metabolism within ruminal tissue.
Most data on AA metabolism in GIT tissue are from non-ruminant studies. For instance,
asparaginases have been detected in the small intestines of dogs and guinea pigs, but
not rats, indicating potential differences in AA metabolism across species [31]. Thus, the
greater Asn concentrations in the rumen than those in the small intestine in the present
study suggest that Asn metabolism might be different across the GIT. Tyrosine (Tyr) can be
synthesized from Phe in the intestines of pigs, rats, and cattle [31], underscoring the simi-
larity in the metabolism of this AA across species. Recent data using [13C]Phe injected into
the external jugular vein underscored that the ruminal epithelium relies on AAs for protein
synthesis [32]. The catabolism of Met by the GIT, at least in nonrumiants, is highlighted
by data demonstrating that parenterally fed (intravenous administration) pigs exhibited
a 30% reduction in Met requirements than enterally fed pigs, regardless of dietary Cys
supply [33,34]. A subsequent study with multicatheterized pigs confirmed that approx-
imately 30% of dietary Met is metabolized by the intestine [27,35]. Our previous study
indicated that a fraction of Met is potentially used to synthesize Cys in the GIT through
reactions in one-carbon metabolism [19]. The ruminal epithelium is composed of highly
keratinized, stratified squamous cells [36] that are rich in Cys (at least in humans) [37]; thus,
the presence of keratin in the ruminal epithelium might be the reason for the markedly
high Cys concentrations in this tissue.

In non-ruminant animals, the intestinal mucosa metabolizes over 95% of the enteral
Glu [38]. In fact, both Glu and glutamine (Gln) are metabolized by intestinal enterocytes
for protein synthesis or as a source of ATP [39]. In the jejunum of rats, 66, 98, and >99%
of luminal Gln, Glu, and aspartate, respectively, were catabolized [9]. Besides ATP, the
metabolism of Glu by the intestine leads to the production of Pro, Arg, Ala, citrulline, and
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glutathione [38]. In isolated ruminal epithelial and duodenal mucosal cells from beef cattle,
Glu contributed to a large amount of alpha-ketoglutarate in the tricarboxylic acid (TCA)
cycle for ATP production [40]. Thus, relative to other AAs that were detected, the high
concentration of Glu in the rumen and intestine seems to agree with these previous findings.
Similarly, the fact that Gln only contributed a small fraction of the alpha-ketoglutarate [40]
could explain the low concentration of Gln in our study.

Approximately 44% of the branched-chain amino acids (BCAAs) were extracted by
first-pass splanchnic metabolism in neonatal piglets [39]. In dogs, approximately 30% of
Leu was extracted by the splanchnic tissue, of which ~45–55% was used for the synthesis
of proteins and transamination to feed the TCA cycle [41]. In piglets, 40% of Leu was
extracted by portal-drained viscera, and <20% of the extracted BCAAs was used for protein
synthesis [42]. Clearly, the metabolism of BCAAs in ruminants versus non-ruminants
differs [9] because leucine (Leu) catabolism is low relative to its use for protein synthesis
in sheep [43]. It is possible that the lower concentrations of Leu, Ile, and valine (Val) in
the rumen than those in the small intestine in the present study were associated with
differences in the capacity of these tissues to metabolize BCAAs.

Forty percent and 38% of the luminal Arg in rats and humans was catabolized in the
intestine, respectively, and the discovery of type II arginase and proline oxidase under-
scored the ability of intestinal mucosal in non-ruminants to metabolize Arg and Pro [9].
Furthermore, the expression of carbamoyl–phosphate synthetase I and ornithine carbamoyl
transferase in rats indicated that the urea cycle is an active pathway in the intestinal mu-
cosa [44]. Feeding Arg to feed-restricted ewes increased the Arg, ornithine, and citrulline
concentrations in the fetal duodenum, jejunum, and ileum [8], confirming the urea cycle’s
activity in the small intestine. Thus, we speculate that the higher concentrations of Arg and
Asp in the small intestine than those in the rumen may be related to differences in urea
cycle activity.

Although taurine is not usually a quantitatively important nutrient in the diet of
ruminants [45], its concentration was very high in the intestine of dairy cows. One of our
previous studies revealed the existence of taurine synthesis intermediates (cysteinesulfinic
acid and hypotaurine) in the GIT of dairy cows [46,47] and the presence of cysteinesulfinic
acid decarboxylase (CSAD), an enzyme in the taurine synthesis pathway [19]. These data
suggested that taurine may be synthesized endogenously in the GIT. Taurine and glycine
are conjugated to bile acids synthesized in the liver prior to their storage in the gall bladder
and eventual secretion into the duodenum, where the gut microbiota deconjugates the
bile salts into bile acids and AAs [48]. We detected higher taurocholic acid, glycocholic
acid, and glycochenodeoxycholic acid concentrations in the duodenum than those in the
rumen, jejunum, and ileum (Supplementary Figure S1). Although we are unaware of data
on microbiota’s content of taurine, its concentration was the lowest in the rumen, while the
jejunum and ileum had higher concentrations than those in the duodenum (Table 1). Thus,
similar to humans, we hypothesize that the taurocholic acid secreted into the duodenum is
deconjugated by the gut microbiota and the resulting taurine is likely absorbed mainly at
the jejunum and ileum in dairy cows.

Although the creatine concentrations in the rumen and intestine were very high in
a previous study from our laboratory [19], it is not a metabolite typically produced by
plants [49], but is instead synthesized from Gly and Arg [50]. Thus, the high Arg and Gly
concentrations in the duodenum and jejunum suggested that the intestine could synthesize
creatine. This is further supported by the guanidinoacetate methyltransferase (GAMT)
mRNA abundance in our previous study. As approximately 40 and 50% of dietary Ser and
Gly are extracted in the first pass by portal-drained viscera in non-ruminants [9,42,51], it
is possible that Gly and Arg in the present study were utilized by GAMT to synthesize
creatine [50]. Physiologically, the synthesis of creatine in the gut would help to generate
ATP and maintain intestinal homeostasis [52]. This idea is supported by the fact that close
to 23% of the whole-body energy is consumed by the non-ruminant GIT [53]. Clearly, the
ruminant GIT might also rely on creatine synthesis from AAs as a source of cellular ATP.



Animals 2023, 13, 1189 10 of 16

4.2. mRNA Abundance of Targets Associated with Protein Synthesis

The mRNA abundances of α serine–threonine kinase 1 (AKT), ribosomal protein
S6 kinase B1 (RPS6KB1), insulin receptor substrate 1 (IRS1), and eukaryotic translation
initiation factor 4E-binding protein 1 (EIF4EBP1) were up-regulated by the supplemen-
tation of rumen-protected methionine (RPM) [4,5]. Similarly, the protein abundances of
p-mTOR and RPS6 were greater with RPM supplementation, and the protein abundances of
insulin receptor (INSR), AKT, p-AKT, p-mTOR, ribosomal protein S6 (RPS6), p-RPS6, phos-
phorylated eukaryotic translation elongation factor 2 (p-EEF2), and p-EIF4EBP1 changed
significantly during the transition into lactation [4]. At the initiation of translation, the
translation initiation protein complex, including eukaryotic translation initiation factor 4E
(eIF4E), binds to mRNA to allow for the ribosome to translate. The eukaryotic translation
initiation factor 4E-binding protein (EIF4EBP) binds to the EIF4E in the translation initiation
protein complex, preventing translation initiation [54]. Thus, the lack of a difference in
the EIF4EBP1 and EIF4EBP2 mRNA abundances across tissues suggested that the proteins
encoded by these genes may work in a similar fashion to affect protein synthesis.

The kinase mTOR, which phosphorylates EIF4EBP1, prevents EIF4EBP1 binding
to EIF4E and phosphorylates RPS6KB1, thus promoting protein synthesis [55]. AKT1
phosphorylates and activates mTOR. Insulin receptor substrate 1 (IRS1) is upstream of the
AKT pathway [56]. Although the IRS1 mRNA abundance did not differ across the tissues
studied, the AKT1 mRNA abundance was higher in the small intestine, suggesting that the
protein encoded by AKT1 may not be regulated by IRS1. Compared with the duodenum
and rumen, the fact that the AKT1 and MTOR abundances were similar in the jejunum
and ileum suggested that the mTOR pathway may be more active in these tissues through
the regulation of AKT. The higher abundances of AKT1 and MTOR mRNA in the small
intestine than those in the rumen indicated a greater protein synthesis ability in the former.
EEF1A1 delivers aminoacylated tRNAs to the ribosome, promoting elongation during
translation [57,58]. Thus, despite the lower AKT1 and MTOR, the greater EEF1A1 mRNA
abundance in the rumen compared with that in the small intestine in the present study
suggested a robust elongation process during protein synthesis in this tissue [25].

Arg and Leu induce ribosomal protein S6 kinase beta-1 (S6K1) activation and the
phosphorylation of EIF4EBP1 in sheep intestinal epithelial cells [43]. As we only measured
the AA concentrations and mRNA abundance of EIF4EBP1, and not the abundance of
phosphorylated EIF4EBP1, it is challenging to speculate on the relationship among those
molecules. The supply of Gln can enhance mTOR signaling and protein synthesis in porcine
intestinal epithelial cells [59,60]. Thus, the greater Gln, Arg, and Leu concentrations, and
MTOR mRNA abundance in the small intestine than those in the rumen suggested the
possibility that these three AAs are functionally correlated with MTOR protein activity.

4.3. mRNA Abundance of Amino Acid Transporters

The small intestine, a monolayer connected with tight junctions [61], is the primary
location of AA absorption [62] and transports most nutrients from the lumen to the cir-
culation. The AA transporters are located in both the apical membrane (on the lumen
side) and basolateral membrane (mucosa side) to complete the transport of AA from the
lumen to the blood [63]. In our study, although we did not measure the AA transporters in
specific membranes, our data provided information on the mechanisms of AA transport
and metabolism of dairy cows. Most of the mRNA abundances of AA transporters were
greater in the small intestine than in the rumen, including SLC1A1, SLC6A6, SLC7A8,
SLC38A1, SLC38A7, SLC38A11, and SLC43A2, indicating that these transporters are poten-
tially more related to the absorption of AA and located in the apical membrane of intestinal
epithelial cells.

SLC1A1, also referred to as EAAT3 and EAAC1, is the major transporter of Glu and
Asp [64,65]. Along with mTOR, its protein abundance increased in oocytes from the model
organism Xenopus [66]. It is located in the plasma membrane in MDCKII cells and the
apical membrane of human kidney tubules and proximal tubules [65]. SLC1A1 was also
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detected in mammary tissue [67] and placentomes [6] from dairy cows. SLC6A6 is a Na+-
and Cl−-dependent, high-affinity, low-capacity transporter of taurine and β-alanine on
the membrane surface [68]. The greater mRNA abundances of SLC1A1 and SLC6A6 in
the small intestine than those in the rumen may be related to the fact that the Asp and
taurine concentrations were greater, and the Glu concentration tended to be greater in
the intestine compared with that in the rumen (as discussed in a previous section of this
paper). SLC7A8, named LAT2, transports all of the L-isomers of neutral α-amino acids
and it dimerizes with SLC3A2 to achieve a functional expression in Xenopus oocytes. It
exhibited higher affinity to Tyr, Phe, Trp, Thr, Asn, Ile, Cys, Ser, Leu, Val, and Gln, and
relatively lower affinity to His, Ala, Met, and Gly [69]. In our study, its mRNA abundances
in the jejunum and ileum were the highest, but another study in beef cattle revealed no
significant differences among the duodenum, jejunum, and ileum [70]. SLC38A1, also
named NAT2 and ATA1, is an important transporter of Gln [71] and, in humans, it is also
specific for the transport of small short-chain, neutral AAs, such as Ala, Ser, Met, Asp, Gly,
Pro, Thr, Leu, and Phe [72]. The knockdown of SLC38A1 decreased the protein abundances
of p70S6k1(T389), p-mTOR(S2448), and pS6(S235/236) in neurons from mice [73], which
indicated that this AA transporter potentially affects protein synthesis through the mTOR
pathway. In our study, the SLC38A1 mRNA abundance was greater in the small intestine
than in the rumen, which was similar to the profile of the MTOR mRNA abundance.

The protein SLC38A7 on the cell membrane in the central nervous system transports
not only L-Gln, but also L-His and L-Ala [74]. SLC43A2 transports the branched-chain
AAs Phe and Met, and is expressed in kidney tubule and small intestinal epithelial cells.
The knockout of SLC43A2 mice led to growth restriction, postnatal malnutrition, and
early death [75]. We could not detect the mRNA abundance of solute carrier family
38 member 11 (SLC38A11) in the rumen, and its abundances were similar in the different
sections of the GIT. Few data are available for the specific function of SLC38A11, and it is
predicted to be an AA transporter. It belongs to the SLC38 family and, in non-ruminants, is
expressed in the spleen, eye, marrow, and pharynx. The 11 members of the SLC38 family
are Na+-dependent and carry out the net transport of neutral AAs [76]. Each of these AA
transporters can handle several AAs, and in the present study, their mRNA abundance
was greater in the small intestine than that in the rumen. Thus, along with the fact that
most AA concentrations were greater in the small intestine than in the rumen, these data
underscore the unique function of the small intestine in AA transport.

In our study, the mRNA abundance of SLC7A5, also referred to as LAT1, in the rumen
was greater than that in the small intestine, but the SLC7A5 mRNA abundance in the
duodenum was greater than that in the rumen of dairy cows in another study [77]. In beef
cattle, the mRNA abundance of SLC7A5 in the duodenum was greater than that in the
ileum [70]. SLC7A5 transports the essential AAs and some hormones, such as dopamine
and the thyroid hormones T3 and T4 [78]. SLC3A2, also known as CD98 or 4F2 heavy chain
(4F2hc), dimerizes with several light chains of nutrient transporters, such as SLC7A5 in the
plasma membrane [69]. The SLC3A2 mRNA abundances were not significantly different
among the duodenum, jejunum, and ileum in a beef study and our study [70].

The AA transporters in cells can have a direct impact on the protein synthesis path-
ways; for instance, the knockdown or knockout of solute carrier family 3 member 2
(SLC3A2/CD98hc) and solute carrier family 7 member 5 (SLC7A5), controlling essen-
tial AA transport, inhibited the mTOR pathway [79,80]. In humans, the SLC1A5 gene,
known as ASCT2, encodes a sodium-dependent neutral AA antiporter, which mainly ex-
changes Gln with other neutral AAs, such as Ser, Asn, or Thr [2]. The transport of Ala and
Gly was greater in a human placental choriocarcinoma cell line transfected with SLC1A5
cDNA [81]. A previous study revealed that its mRNA abundance was greater in the duode-
num than in the rumen [73], while the SLC1A5 mRNA abundance was greater in the small
intestine. Thus, the fact that the mRNA abundances of SLC7A5, SLC3A2, and SLC1A5 were
greater in the rumen in the present study suggested that these two AA transporters may be
biologically important in this tissue.
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Except for SLC1A1, SLC38A1, SCL3A1, and SLC7A5 mentioned above, lysosomal
AA transporters, such as SLC7A11 [82], SLC38A9 [83–85], SLC15A4 [86], SLC36A4, and
SCL36A1 [87,88], also regulate the mTOR pathway or protein synthesis. The mRNA abun-
dances of SLC1A1 and SLC1A5 in the fetal and adult lamb intestine were altered by feed
restriction, feeding rumen-protected Arg, and also feeding N-carbamylglutamate [8,89]. The
abundances of SLC1A1, SLC1A5, SLC3A2, SLC7A5, and SLC38A1 mRNA were detected
in the adipose tissue [4,5] of dairy cows during the transition into lactation. In fact, feed-
ing RPM enhanced the mRNA abundances of SLC1A1, SLC1A5, SLC3A2, SLC36A1, and
SLC38A1. In the same study, the mRNA abundance of SLC1A1 was altered at different time
points around parturition. The SLC1A3 protein abundance was also higher in the group
fed RPM, while the protein abundances of SLC38A1 and SLC1A5 did not differ between
the controls and the cows fed RPM. The protein abundance of these three targets changed
to different extents around parturition [4]. In an in vitro study, the mRNA abundances
of SLC7A5 and SLC3A2 were decreased by Arg supplementation, and a challenge with
lipopolysaccharide also decreased the abundance of SLC3A2 [7]. In the placenta of dairy
cows, the mRNA abundances of SLC3A2, SLC7A5, SLC38A1, and SLC43A2 were altered
by feeding RPM [6]. Similarly, the SLC1A1, SLC1A5, SLC3A2, SLC7A5, and SLC38A2
mRNA abundances were affected by Arg and Met supplementation in an in vitro study
with bovine mammary epithelial cells [20]. Together, these data strongly suggested that the
mRNA abundance of AA transporters is affected by nutritional factors. Thus, in addition
to the absorptive function carried out by each section of the GIT, it is likely that the dietary
supply of AA interacts with the GIT in order to coordinate AA use.

5. Summary and Conclusions

Except for Asn, Cys, and Gly, the AA concentrations were greater in the small intestine
compared with those in the rumen, which seems to agree with the purported absorp-
tive function of each section of the GIT. It is noteworthy, however, that the present data
underscored how components of the epithelium, e.g., keratinized ruminal cells, along
with pathways to generate urea and creatine, are potential factors that shape the tissue
profiles of AA. The greater MTOR and AKT1 mRNA abundances in the small intestine
suggested that it has a greater protein synthesis ability, while the greater EEF1A1 mRNA
abundance in the rumen suggested the existence of a robust elongation process. Most of
the AA transporters measured, including SLC1A1, SLC6A6, SLC7A8, SLC38A1, SLC38A7,
SLC38A11, and SLC43A2, had greater abundances in the small intestine than those in the
rumen. This underscored their essential role in allowing for AA transport in the small
intestine. Along the same lines, the greater mRNA abundances of SLC7A5, SLC3A2, and
SLC1A5 suggested that they play unique roles in ruminal tissue function. Overall, the
present study uncovered novel relationships between tissue-specific AA profiles and the
abundance of AA transporters, and served as the basis for further research. Potential areas
of study include assessing the role of nutrition in absorptive mechanisms across the GIT,
not only to determine the utilization of AA within the tissue, but also the degree to which
they enter the circulation and provide substrates for peripheral tissues.
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