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Simple Summary: Landmarks are commonly used to investigate how objects vary in form. However,
many objects present few identifiable landmarks. To remedy this, several approaches have been
developed to densely match points between surfaces lacking readily identifiable landmarks. These
matched points are termed semilandmarks. The investigator has to make choices about which
approach to use and the eventual locations and density of semilandmarks. In studies of growth
or evolution of biological material, landmarks represent points that, from prior knowledge, are
equivalent in each individual at each stage of developmental or evolutionary transformation. Their
differences in relative location over time describe the transformation. However, semilandmarks are
located on specimens using algorithms that do not pay regard to development or evolution, and so
the consequences of using semilandmarks on resulting analyses of developmental or evolutionary
differences in form are unclear. In this study, we compare results among analyses based on landmarks
and semilandmarks with each other and with analyses based only on landmarks. We find that while
there is some consistency among findings from different semilandmarking approaches, there are also
some differences, and that results from such analyses should be considered as approximations of
reality that require cautious interpretation.

Abstract: Often, few landmarks can be reliably identified in analyses of form variation and covariation.
Thus, ‘semilandmarking’ algorithms have increasingly been applied to surfaces and curves. However,
the locations of semilandmarks depend on the investigator’s choice of algorithm and their density. In
consequence, to the extent that different semilandmarking approaches and densities result in different
locations of semilandmarks, they can be expected to yield different results concerning patterns of
variation and co-variation. The extent of such differences due to methodology is, as yet, unclear and
often ignored. In this study, the performance of three landmark-driven semilandmarking approaches
is assessed, using two different surface mesh datasets (ape crania and human heads) with different
degrees of variation and complexity, by comparing the results of morphometric analyses. These
approaches produce different semilandmark locations, which, in turn, lead to differences in statistical
results, although the non-rigid semilandmarking approaches are consistent. Morphometric analyses
using semilandmarks must be interpreted with due caution, recognising that error is inevitable and
that results are approximations. Further work is needed to investigate the effects of using different
landmark and semilandmark templates and to understand the limitations and advantages of different
semilandmarking approaches.

Keywords: geometric morphometrics; virtual anthropology; homology; size and shape variation;
semilandmarking methods; semilandmark densities

1. Introduction

Geometric morphometric (GM) methods are regularly applied in the analysis of size
and shape variation among landmark configurations taken from biological structures [1–5].
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Landmarks are matched points among objects that define a map of point equivalences
among samples. They cannot be readily identified over smooth surfaces such as the cranial
vault. It has, therefore, become increasingly common to use algorithms to place densely
matched points over such regions in every specimen. In these cases, equivalence of place-
ment is determined by algorithms that often, but not always, use the locations of identifiable
landmarks as a guide. While the aim may be explicitly to capture ‘overall form’, e.g., by
‘increasing the density of the shape information’ [6], the issue of homology is still relevant.
Algorithmic landmarking methods that use ‘known’ point homologies (landmarks) to
estimate ‘dense point correspondences’ (a term commonly used in computer science [7])
among surfaces between landmarks are commonly termed semilandmarking methods
or approaches, and such dense point correspondences are known as semilandmarks [8].
This terminology distinguishes them from landmarks that are considered to be equivalent
among specimens in the sense of developmental or evolutionary homology [9].

In morphometrics, as applied in biology, methods for semilandmarking have been
developed that use equivalent landmarks (based on prior knowledge) as control points
to estimate the locations of semilandmarks by projection followed by sliding. Under
this procedure, a template specimen is manually landmarked and then semilandmarks
are manually or semiautomatically placed on curves and surfaces. Subsequently, the
semilandmarks on the template specimen are transferred to each specimen (e.g., by selecting
the nearest point between the template and target specimen [10]). This is followed by
sliding of semilandmarks, usually to minimise either the bending energy of a triplet of thin-
plate splines (TPS) or Procrustes distances among specimens [11,12]. Sliding is achieved
iteratively, replacing and refitting the template with the mean for the first iteration, and
with the recomputed mean for subsequent ones. Of the two approaches, sliding TPS
through the minimisation of bending energy is most commonly applied [13]. It is argued
that in Procrustes distance minimisation, all landmarks and semilandmarks influence the
sliding, even if very distant from the semilandmarks being slid, while minimisation of
bending energy gives greater weight to landmarks and semilandmarks that are local to
the semilandmarks that are being slid (note, however, that landmarks may be close to
semilandmarks, but on different surfaces). However, in both cases, a set of landmarks is
necessary to guide the sliding approach, and it cannot be applied when none are present.

Different strategies for marking up dense point correspondences (=semilandmarks)
have been pursued in the field of computer vision. These have been applied to biological
material as well as to non-biological objects where they rely on mathematical mappings
based on topographic features, rather than developmental or evolutionary equivalences.
While the use of topographic features to identify point correspondences is different in
principle to how landmarks are said to be identified in biology, in practice, biologists
often rely on anatomical features defined topographically rather than through detailed
developmental or evolutionary analysis. This is for the simple reason that in closely related
species and within species, similar structures in similar locations are usually developmen-
tally and evolutionarily homologous. However, in regions with simple topography, the
locations of semilandmarks depend more on the algorithm used to place them. Algorithms
used in computer science and biology for mapping include optic flow [7], TPS, and robust
point matching (RPM) [14], Generalised Procrustes analysis (GPA) and TPS [15], GPA and
coherent point drift (CPD) [16], non-rigid Iterative closest point (NICP) [17–19], scaled rigid
Iterative closest point (ICP) and visco-elastic models [20], and a 3D registration method
integrating ICP, CPD, and the Laplace–Beltrami operator [21]. Notably, in each of these,
a set of landmarks (determined algorithmically or visually) provides an initial map of
equivalences among specimens that is used to guide subsequent algorithmic marking up
of dense correspondences (=semilandmarks) among the surfaces between landmarks.

To avoid manually placing landmarks, several landmark-free algorithms have also
been proposed for marking up dense correspondences (=semilandmarks) [22]. The fitting
of a template (reference) specimen surface to each target via registration or alignment
algorithms underlies the most common approaches, such as the ICP algorithm [23]. This
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comprises two steps, iterated until the sum of squared distances among point correspon-
dences between the template and target specimens reaches a minimum. First, correspon-
dences are updated by searching for the nearest points to the registered template points in
the target. Second, point clouds of template and target surfaces are rigidly registered by
minimising the sum of squared Euclidean distances among candidate pairwise correspond-
ing points. Registration and identification of correspondences are then iterated until a
minimum is reached. Many variants of the ICP algorithm have been proposed with the aim
of improving the accuracy of registration (minimisation of template-target distances) by,
e.g., using different distance metrics or assigning different weights to vertices and rejecting
outliers [24]. For example, an improved ICP-based approach has been proposed to register
the surfaces of specimens by minimising the symmetric point-to-plane distances (along
the surface normal vector) instead of point-to-point distances [25]. Additionally, the point
correspondences found by the ICP algorithm rely on the initial alignment of two surfaces,
by, for example, principal component analysis (PCA), which finds the principal axes of the
template and target point sets to provide a sensible initial position. Different approaches
lead to different maps of point correspondences (=semilandmarks).

Another landmark-free algorithm, available as an auto3dgm package [26] based on
the ICP framework, has been proposed to yield semilandmarks among specimens. In this,
a set of points on the template specimen is projected onto the target. However, the choice
of the template, the degree of complexity of surfaces, and the density and locations of
sampling points affect the results [27,28]. To mitigate this, a template is chosen that has the
greatest overall geometric similarity to the members of the sample. Then, semilandmarks
of the template specimen are projected to each specimen. Vitek et al. [27] indicated that the
choice of initial alignment influences the resulting estimates of point correspondences when
using auto3dgm, and the lack of true landmarks as control points impacts registration.
Moreover, this approach involves rigid registration and so can result in equivalent points
on the template and target specimens being placed on different anatomical features. This is
most pronounced among specimens with large differences in shape and size, e.g., points
around the zygomatic process of a rigidly registered temporal bone might be projected
from the reference onto the condyle of the target [27].

One landmark-free approach [29,30] uses conformal geometry to establish point equiv-
alences among 3D meshes, because any genus zero surface can be mapped conformably
onto a sphere, and any surface with a single boundary can be mapped onto a unit disk. In
practice, the conformal transformation is applied to the 3D surface and then the correspon-
dences between two surfaces are found in the 2D domain. Examples are provided by the
work of [31,32]; however, these conformal methods are sensitive to the quality of surfaces
and the complexity of topologies.

Landmark-free algorithms, e.g., the ICP-based method or that described by [33], for
marking up point correspondences between surfaces can result in mappings that are quite
different from the map of point equivalences based on postulated homologies. This effect
can be large, with semilandmarks from the template projected to different anatomical
features in the target. In any case, even when ‘appropriately located’, such equivalences
have no implicit biological basis; they might, or might not, be good approximations of
homology. In consequence, statistical (e.g., PCA) and/or visual (e.g., warping between sur-
faces) descriptions of (developmental or evolutionary) transformation might or might not
properly describe them, and analyses of variation based on them may or may not reflect the
developmental or evolutionary basis of variation. By their nature, point correspondences
identified without paying attention to homology have an uncertain relationship with the
underlying processes responsible for differences in form. They may, however, be useful in
discrimination, identification, or classification of specimens to prior groups. These are a
different, yet important and common, application of landmark data in computer vision but
very different tasks to describing developmental and evolutionary transformations.

It is worth noting that all semilandmarking approaches are dependent on mathe-
matical models of matching. As such, homology is only respected to the extent that the
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mathematical model uses the homologies of true landmarks to estimate semilandmarks and
to the extent that the landmarks actually represent biologically homologous points. Semi-
landmarks can be intended as estimates of, rather than true, homologous point matchings
(landmarks). Thus, different semilandmarking approaches will yield different semiland-
marks. The reasons for preferring one approach over another cannot rest entirely on
arguments of developmental or evolutionary equivalence of the resulting semilandmarks
because the definition and identification of homologous points rely on prior developmental
and evolutionary knowledge (which is often lacking). No algorithm without a knowledge-
driven model of homology can properly determine or interpolate homology from surface
or texture features. Instead, assessment of algorithms has focused on their ‘performance’,
defined in various ways.

A few previous studies have attempted to assess the performance of different semi-
landmarking approaches. Evaluated criteria for comparing different semilandmarking
approaches include: the Euclidean distances between semilandmarks (or landmarks) from
each approach or with manually placed ones [34]; comparison between methods of the
resulting distributions of groups [10,26,35]; the geometric deviation between template and
transformed meshes [10,19]; the first two principal components (PCs) [26,35,36]; distance
matrices to quantify shape variations [25,26,31,36]; and estimates of centroid size of re-
sulting configurations [34]. These criteria may indicate how different semilandmarking
strategies perform in matching surfaces, distinguishing groups, or identifying unknown
specimens, but they do not relate to how well the homology map is represented by the
resulting semilandmarks. All suffer from the fact that semilandmarks are not point homolo-
gies; they may be estimates of such homologies, but each estimate is different. As such, the
extent to which they correctly describe biologically homologous anatomical differences and
transformations is limited by the extent to which knowledge of homology is embedded in
their construction.

The consequences of choosing alternative semilandmarking approaches in studies of
biological form variation need to be further investigated. In this study, the degree to which
they generate different results is investigated and the significance of the findings for future
studies is discussed. To these ends, we employed three landmark-driven semilandmarking
methods, sliding TPS, an example of a rigid, and an example of a non-rigid registration
approach to yield semilandmarks of varying density. These semilandmarking approaches
are compared by assessing the resulting differences in locations of semilandmarks, esti-
mates of mean sizes and shapes, patterns of variation, and covariation in shape with size
(allometry). To structure this work, we empirically test six hypotheses using surface scans
based on the same template of landmarks and semilandmarks. These are: (i) that for the
same density of semilandmarking, there are no differences in semilandmark locations gen-
erated by different approaches and (ii) in mean landmark and semilandmark configurations.
Furthermore, between densities of semilandmarking using any one approach and between
semilandmarking approaches, there are no differences in resulting estimates of (iii) centroid
sizes, (iv) distance matrices, (v) PCs of shape variation, and (vi) allometrically scaled shapes.
In this study, we do not consider error due to data acquisition or preparation (e.g., imaging
modality, segmentation, 3D reconstruction algorithm). Rather, we employ the same 3D
surfaces throughout, in order to focus entirely on the differences among semilandmarking
approaches applied to them.

2. Materials and Methods
2.1. Samples

Two high-resolution datasets were used in this study, but only one is reported in
the main body of the paper for reasons of brevity. These comprise surface meshes of ape
crania and human heads with different degrees of surface complexity and variation in
form, and so they allow for an assessment of the extent to which these factors impact on
the differences between results obtained using different semilandmarking approaches. The
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results from the human head are presented in Supplementary Materials, while the focus of
the paper is on the results from the ape crania.

Ape Crania

This sample included 20 surface meshes of adult ape crania of both sexes captured
by CT scanning, including 5 Gorilla, 5 Hylobates lar, 5 Pan troglodytes, and 5 Pongo abelii.
Each ape cranial surface model comprises more than 196,000 vertices and 391,000 triangle
meshes. These present more complex surfaces and a far greater degree of variation in
size and shape than the head surface dataset (see Supplementary Materials). As shown
in Figure 1, 41 anatomical landmarks, presumed to be homologous, had already been
manually placed over the entire cranium in the course of a previous study [37].
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2.2. Methods
2.2.1. Three Semilandmarking Approaches

Based on the fixed landmarks, we used three different methods to mark up semiland-
mark sets of varying density among specimens using a common template. These are sliding
semilandmarks using thin-plate splines, a hybrid method comprising thin-plate splines
and the NICP algorithm, and an approach using least squares (LS) and the ICP algorithm.

Generation of the Template

A landmark and semilandmark template was created to be used as the basis of semi-
landmarking the ape crania using three different approaches. The external surface of every
specimen was extracted to avoid the internal surface interfering with the sliding and projec-
tion of semilandmarks. Next, we used the k-means clustering algorithm to evenly sample
800 surface semilandmarks over an arbitrary specimen (a male gorilla), ignoring symmetry.
The k-means clustering algorithm was applied to the vertex coordinates of the template
surface to obtain k sub-regions. Next, the centroids of each sub-region were projected onto
the template surface by searching the nearest point. Ultimately, these projected points over
the template were treated as surface semilandmarks. Using the template, we employed
the sliding TPS approach to yield semilandmarks among specimens. Then, the mean form
of landmarks and semilandmarks was calculated, and the arbitrary specimen surface was
deformed to approximate the mean surface form. This surface was used as the template.
Finally, we utilized the k-means clustering algorithm to evenly sample five different densi-
ties of surface semilandmarks (50, 100, 200, 400, 800) on the template, avoiding the cranial
base and teeth. Note that the Procrustes distance between the arbitrary specimen and
the template based on the mean landmarks and 800 semilandmarks was 0.0988, which is
very similar to the average difference between individuals and the mean, estimated using
sliding TPS semilandmarking.
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Semilandmarking Approaches

Once the template was created, three methods of semilandmarking were applied
as follows:

(a) Sliding TPS

Semilandmarks were projected from the template surface onto each target surface
and then iteratively slid over the target surface to minimise the bending energy of the TPS
between each specimen and template. This is the classic approach, first described by [8] and
developed by [11,13]. We used the patching (placePatch) and sliding (slider3d) procedures
in the Morpho R package to slide the semilandmarks on the templates [38].

(b) Rigid registration

Rigid registration aims to find the linear transformation of the template to each
specimen surface (translation and rotation) that aligns two surfaces without scaling, in
such a way that the sum of squared Euclidean distance between landmarks (and, if present,
semilandmarks) is minimised. Note that this method does not deform a surface to optimise
fitting, so it is prone to error due to the difference in size between the template and
every specimen.

Semilandmarking of the target was achieved iteratively using a hybrid rigid registra-
tion combining LS and point-to-point ICP algorithms (LS&ICP). First, the LS algorithm was
used to fit the template to each specimen, minimising the distances between landmarks
on the template and each target specimen by translating and rotating the template to best
fit the target. Subsequently, the ICP algorithm iteratively rigidly refitted the template to
the target by minimising the sum of the squared distances between the landmarks and
current estimate of semilandmarks, found by searching for the nearest points on the target
surface from the registered template semilandmarks. The initial rigid alignment based on
landmarks speeds up convergence during the ICP phase.

(c) Non-rigid registration

We used a hybrid non-rigid registration approach [39] to deform the template speci-
men to fit each target specimen and then projected the semilandmarks from the warped
template onto each specimen by searching for the nearest points on its surface, to yield
semilandmarks across all specimens. Unlike rigid registration, in fitting, each vertex of
the template can be moved freely with stretching based on a non-rigid transformation and
landmarks acting as constraints. This comprised two steps: First, the TPS algorithm was
used to warp the template to every specimen based on the fixed landmarks. This removed
size and shape differences between the template and each target set of landmarks and
provided a reasonable initial alignment of surfaces. Second, the NICP algorithm [17] was
applied to warp the deformed template surface to each specimen as rigidly as possible,
optimizing the cost function to assign an affine transformation to each vertex, rather than
an interpolation function as used in TPS. For this procedure, the cost function comprised a
landmark term, a local affine regularization term, and a stiffness term. Registration loops
were performed by decreasing stiffness weights iteratively and deforming the template
incrementally. This resulted in the warped template surface matching the target closely.
Here, this approach is referred to as TPS&NICP.

2.2.2. Comparison of Three Semilandmarking Approaches

We compared the different semilandmarking approaches by testing the null hypothe-
ses described in the Introduction. These relate to differences in locations of semilandmarks,
estimates of mean sizes and shapes, patterns of variation, and covariation in shape with
size (allometry).

The Locations of Semilandmarks

Differences between methods in the placement of semilandmarks were assessed by
visualizing them and computing the Euclidean distances between each semilandmark (that
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share the same initial template position), computed using each semilandmarking approach.
These were used to compute the average semilandmarking ‘error’ between approaches and
to examine their distributions. Note that these are ‘errors’ between algorithmic results and
not in homology mapping per se, which cannot be evaluated because truly homologous
dense point correspondences are unknowable.

Comparisons of Mean Landmark and Semilandmark Configurations

Generalised Procrustes analysis was applied to the landmark and semilandmark
configurations estimated for the sample, and then the mean centroid sizes were compared
among different semilandmarking methods and densities. Subsequently, the Procrustes
distances among estimates of the mean shape were computed to quantify the differences
between them arising from different semilandmarking approaches. A permutation test
with 1000 runs was performed to assess the significance of differences between the mean
shapes generated by different approaches. To contextualise the extent to which Procrustes
distances between means differ, these were compared to the average distances between
individuals and the mean for each density of semilandmarks.

Procrustes Distances among Specimens Obtained Using Different Semilandmarking
Approaches and Densities

We examined the effect of different semilandmarking approaches and different densi-
ties of semilandmarks on Procrustes distance matrices.

(a) The effect of different semilandmarking approaches

Generalised Procrustes analysis was applied to each of the landmark and semiland-
mark sets generated by the different semilandmarking approaches. Then, Procrustes shape
coordinates and their sample means and centroid sizes were obtained. Procrustes dis-
tance matrices among all individuals were calculated and a Mantel Test [40] performed to
compare distance matrices obtained by the different semilandmarking approaches. Ad-
ditionally, vectors of Procrustes distances between each individual and the mean were
compared among semilandmarking methods by plotting bivariate graphs and computing
Pearson correlations among them.

(b) The effect of different densities of semilandmarks

The results obtained from analyses of the landmarks and different densities of semi-
landmarks were compared with those obtained using the landmarks and maximum density
of semilandmarks from each method. This was achieved by computing the Pearson cor-
relations among vectors of Procrustes distances to the mean and by performing a Mantel
Test between the Procrustes distance matrices derived from each density and that from the
maximum density.

Additionally, the matrix of Procrustes distances among specimens based on the land-
marks alone was computed in order to compare these distances with those obtained by
different semilandmarking approaches and densities.

PCA and Allometry

For the landmarks alone, a GPA followed by a PCA of the covariance matrix were
carried out in order to compare PCs with those from the semilandmarking methods. Then,
for the landmarks and each density of semilandmarking, a separate GPA was carried
out of the landmark and semilandmark configurations derived from each of the three
semilandmarking methods. A PCA was then carried out on the resulting shape coordinates
from each GPA at each semilandmarking density. To assess how the major vectors of
variation (PCs) differ between approaches and semilandmarking densities, we compared
the distributions of specimens along the first two PCs by computing the Pearson correlations
and parametric tests of the significance of these correlations among the PC1 and PC2 scores
arising from each semilandmarking approach and from landmarks alone.
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Next, a joint GPA and PCA was carried out combining landmarks and semilandmark
sets of the same density from each semilandmarking approach. Allometry [41] was esti-
mated for the whole sample and each semilandmarking density by multivariate regression
of the full set of PC scores on the natural logarithm of centroid size. These estimates
of allometry were then compared between different semilandmarking approaches based
on the angles between allometric vectors [42]. Small angles indicate that semilandmarks
generated by different approaches are similar, and large angles indicate that they are more
different. A permutation test with 1000 runs was performed to assess the significance of
the angles between allometric vectors derived from different semilandmarking approaches.

Subsequently, the predicted shapes of landmarks and semilandmarks representing the
extreme limits (smallest-largest) of the allometric vectors derived using each semilandmark-
ing method and density were compared. This comprised two steps: First, the predicted
shapes corresponding to the upper and lower limits of centroid sizes estimated by each
approach were estimated from the multivariate regression [1]. Second, Procrustes distances
were computed between the predicted shapes representing the maximum and minimum
centroid sizes from each of the landmark and semilandmark sets generated by the different
semilandmarking approaches.

3. Results
3.1. The Locations of Semilandmarks

Figure 2 shows the average locations of 800 semilandmarks generated by sliding TPS
(black points), LS&ICP (amber points), and TPS&NICP (magenta points) approaches on
the mean surface generated by deforming the template cranium to the mean landmarks
and semilandmarks derived from the sliding TPS approach. Semilandmarks generated
by LS&ICP tend be located in different positions to those from the other approaches.
Additionally, the mean configurations from the TPS&NICP and, particularly, LS&ICP
approaches do not exactly lie on the sliding TPS mean surface. These differences are
particularly evident for semilandmarks around and in the orbits, temporal fossae, over the
brow ridges, zygomatic arch, and maxilla.

Animals 2023, 13, x FOR PEER REVIEW 9 of 21 
 

 
Figure 2. 800 semilandmarks generated by sliding TPS (black points), LS&ICP (amber points), and 
TPS&NICP (magenta points) approaches on the mean surface generated by sliding TPS. 

Table 1. Comparison of semilandmarks from sliding TPS and TPS&NICP approaches. 

diff. mm 
50 100 200 400 800 

dev % dev % dev % dev % dev % 
[0.0–1.0)  0.56 52.00 0.64 46.00 0.70 35.50 0.68 30.25 0.70 33.75 
[1.0–2.5) 1.34 48.00  1.44 54.00 1.47 64.00 1.49 69.50 1.50 66.13 
[2.5–5.0) - - - - 2.99 0.5 2.57 0.25 2.73 0.12 ≥5.00 - - - - - - - - - - 

Total 0.94 100.00 1.08 100.00 1.21 100.00 1.25 100.00 1.23 100.00 

Table 2. Comparison of semilandmarks from sliding TPS and LS&ICP approaches. 

diff. mm 
50 100 200 400 800 

dev % dev % dev % dev % dev % 
[0.0–1.0)  - - - - - - - - - - 
[1.0–2.5) - - - - - - - - - - 
[2.5–5.0) 4.93 2.00 4.54 4.00 4.58 5.50 4.82 1.25 4.80 1.38 ≥5.00 9.04 98.00 9.89 96.00 10.41 94.50 11.05 98.75 11.52 98.62 

Total 8.96 100.00 9.68 100.00 10.09 100.00 10.97 100.00 11.37 100.00 

 
Figure 3. The average differences in location (mm) between 800 semilandmarks generated by differ-
ent approaches. (a) Differences between sliding TPS and TPS&NICP approaches. (b) Differences 
between sliding TPS and LS&ICP approaches. Differences between TPS&NICP and LS&ICP ap-
proaches are not shown because they are very similar to those in (b). 

Figure 2. 800 semilandmarks generated by sliding TPS (black points), LS&ICP (amber points), and
TPS&NICP (magenta points) approaches on the mean surface generated by sliding TPS.

Table 1 shows the differences in locations of semilandmarks generated by sliding TPS
and TPS&NICP approaches. It lists average differences in location (dev in mm) and the
percentage of semilandmarks (%) that differ in location by 0.0–1.0 mm (amber points),
1–2.5 mm (blue points), 2.5–5.0 mm (magenta points), and ≥5.0 mm (black points). Figure 3
illustrates these differences. Between sliding TPS and TPS&NICP approaches, differences
are all less than 5.0 mm, with the majority (>99%) less than 2.5 mm (Figure 3a), and the
proportion of semilandmarks from sliding TPS and TPS&NICP located within 1.0 mm
of each other tends to decrease with increasing semilandmarking density. By contrast,
the semilandmark locations derived from LS&ICP are more different from those derived
by both sliding TPS and TPS&NICP. For brevity, only the differences in semilandmarks
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between sliding TPS and LS&ICP (Table 2 and Figure 3b; 98.62% ≥5.0 mm) are presented,
but the results are similar for the comparison of TPS&NICP with LS&ICP.

Table 1. Comparison of semilandmarks from sliding TPS and TPS&NICP approaches.

diff. mm
50 100 200 400 800

dev % dev % dev % dev % dev %

[0.0–1.0) 0.56 52.00 0.64 46.00 0.70 35.50 0.68 30.25 0.70 33.75
[1.0–2.5) 1.34 48.00 1.44 54.00 1.47 64.00 1.49 69.50 1.50 66.13
[2.5–5.0) - - - - 2.99 0.5 2.57 0.25 2.73 0.12
≥5.00 - - - - - - - - - -
Total 0.94 100.00 1.08 100.00 1.21 100.00 1.25 100.00 1.23 100.00
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Figure 3. The average differences in location (mm) between 800 semilandmarks generated by different
approaches. (a) Differences between sliding TPS and TPS&NICP approaches. (b) Differences between
sliding TPS and LS&ICP approaches. Differences between TPS&NICP and LS&ICP approaches are
not shown because they are very similar to those in (b).

Table 2. Comparison of semilandmarks from sliding TPS and LS&ICP approaches.

diff. mm
50 100 200 400 800

dev % dev % dev % dev % dev %

[0.0–1.0) - - - - - - - - - -
[1.0–2.5) - - - - - - - - - -
[2.5–5.0) 4.93 2.00 4.54 4.00 4.58 5.50 4.82 1.25 4.80 1.38
≥5.00 9.04 98.00 9.89 96.00 10.41 94.50 11.05 98.75 11.52 98.62
Total 8.96 100.00 9.68 100.00 10.09 100.00 10.97 100.00 11.37 100.00

3.2. Differences among Mean Landmark and Semilandmark Locations

To compare the estimates of mean landmark and semilandmark configurations, Pro-
crustes distances were computed among their resulting mean landmark and semilandmark
configurations (Table 3). The Procrustes distances increase with increasing density. The
estimates of the mean landmark and semilandmark configurations generated from sliding
TPS are more similar to TPS&NICP. There is no significant difference in mean landmark and
semilandmark configurations between the means derived from sliding TPS and TPS&NICP
approaches. Procrustes distances range from 0.0051 with 50 semilandmarks to 0.0072 with
800 semilandmarks, which are 4.87% and 7.62% of the average distance (computed using
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semilandmarks derived from sliding TPS plus landmarks) of specimens from the mean at
each density. The LS&ICP approach produces quite different means to those obtained using
the other semilandmarking approaches, especially at higher semilandmarking densities.

Table 3. Procrustes distance (permutation test p < 0.05 *) between mean landmark and semilandmark
configurations derived at varying densities.

50 100 200 400 800

Sliding TPS
LS&ICP 0.0419 0.0532 0.0554 * 0.0582 * 0.0581 *

Sliding TPS
TPS&NICP 0.0051 0.0061 0.0072 0.0067 0.0072

LS&ICP
TPS&NICP 0.0419 0.0534 0.0556 * 0.0589 * 0.0591 *

3.3. Comparison of Centroid Sizes and Procrustes Distance Matrices

The differences in semilandmark locations derived using LS&ICP from those derived
by the other two approaches are emphasised by the analyses in Table 4. This table presents
the Pearson correlations among the vectors of Procrustes distances between every individ-
ual and the mean as well as the correlations, from Mantel Tests, comparing the matrices of
Procrustes distances among all individuals, calculated using landmarks and semilandmarks
generated by different semilandmarking approaches and densities. The largest (all > 0.99)
Pearson and Mantel correlations were found between sliding TPS and TPS&NICP. LS&ICP
clearly produces quite different results to those obtained using the other semilandmarking
approaches, especially at higher semilandmarking densities.

Table 4. Pearson correlations (all p < 0.01, except #, p < 0.05, * = n.s., parametric test) among the
vectors of Procrustes distances between each ape cranium and the mean and Mantel tests among
Procrustes distance matrices.

50 100 200 400 800

Pearson Mantel Pearson Mantel Pearson Mantel Pearson Mantel Pearson Mantel

Sliding TPS
LS&ICP 0.7630 0.8024 0.6789 0.7403 0.5954 0.6711 0.5066 # 0.5993 0.4185 * 0.5241

Sliding TPS
TPS&NICP 0.9988 0.9986 0.9962 0.9970 0.9959 0.9961 0.9951 0.9947 0.9948 0.9944

LS&ICP
TPS&NICP 0.7540 0.7929 0.6643 0.7268 0.5806 0.6561 0.4739 # 0.5761 0.3881 * 0.5050

Pearson correlations were computed among vectors of Procrustes distances between
each individual and the mean, as were Mantel correlations among the matrices of Pro-
crustes distances. These, presented in Table 5, compared the distances from the land-
mark and 800 semilandmark configuration with those from configurations comprising
50–400 semilandmarks. Within each semilandmarking approach, these correlations are
generally large (>0.90) and increase with increasing numbers of semilandmarks. The largest
correlations are found across semilandmarking densities arising from TPS&NICP and the
smallest from LS&ICP. Additionally, Table 6 presents Pearson correlations between the
distance vectors and matrices calculated using the full set of landmarks alone, and those
from the landmarks and semilandmarks generated by each semilandmarking approach and
density. Distances from sliding TPS and TPS&NICP approaches are similarly correlated
with those from landmarks alone. Thus, these correlations are ~0.96 for the lowest density
of semilandmarking and fall gradually to ~0.9 for the highest. In contrast, correlations for
the LS&ICP approach are moderate (~0.5–0.75) but follow the same trend by becoming
smaller with increasing semilandmarking density.
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Table 5. Pearson correlations (all p < 0.001, parametric test) among vectors of Procrustes distances
between each individual and the mean and Mantel tests comparing Procrustes distance matrices
between each density of semilandmarking and the maximum density.

50 100 200 400

Pearson Mantel Pearson Mantel Pearson Mantel Pearson Mantel

Sliding TPS 0.9770 0.9752 0.9907 0.9899 0.9945 0.9945 0.9991 0.9990
LS&ICP 0.8931 0.9123 0.9324 0.9453 0.9688 0.9752 0.9918 0.9931

TPS&NICP 0.9849 0.9833 0.9943 0.9937 0.9973 0.9974 0.9993 0.9994

Table 6. Pearson and Mantel correlations (all p < 0.01, except #, p < 0.05) between vectors and
matrices of Procrustes distances from each semilandmarking approach and density and those from
the landmarks alone.

50 100 200 400 800

Pearson Mantel Pearson Mantel Pearson Mantel Pearson Mantel Pearson Mantel

Sliding TPS 0.9619 0.9579 0.9460 0.9401 0.9303 0.9244 0.9160 0.9079 0.9105 0.8995
LS&ICP 0.7424 0.7951 0.6627 0.7532 0.6081 0.7153 0.5413 # 0.6742 0.4916 # 0.6402

TPS&NICP 0.9602 0.9551 0.9473 0.9391 0.9350 0.9241 0.9260 0.9135 0.9221 0.9076

Centroid sizes and Procrustes distances between each cranium and the mean were very
similar between landmark and semilandmark configurations from sliding TPS (horizontal
axis) and TPS&NICP (vertical axis), as indicated in Figures 4 and 5, where the fitted lines
are almost coincident with the dashed lines, thereby indicating identity. However, LS&ICP
tends to produce landmarks and semilandmark configurations with larger centroid sizes
than those from sliding TPS for small crania, and smaller for large crania (Figure 4). Compar-
isons of Procrustes distances from the mean derived from LS&ICP and sliding TPS (Figure 5)
at varying semilandmark densities show marked differences, unlike comparisons between
the same distances from TPS&NICP and sliding TPS. Figure 6 summarizes the vectors of
Procrustes distances between each individual and the mean calculated using landmarks
and semilandmarks from the sliding TPS, LS&ICP, and TPS&NICP approaches. The sliding
TPS and TPS&NICP methods are consistent across semilandmarking densities, whilst the
LS&ICP approach results in different estimates of centroid size and Procrustes distances.
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3.4. PCA and Allometry

We calculated the correlations (ignoring sign, and so arbitrary reflections of PCs) of
scores on the first two PCs of shape variation resulting from the separate GPA and PCA of
each semilandmark configuration and density (Table 7). The correlations among PC1 and
PC2 scores from sliding TPS and TPS&NICP are all greater than 0.99. The scatterplots of
the first two PCs reflect this and account for ~60% of the total shape variance. In contrast,
the correlations among PC1 and PC2 scores are lower between LS&ICP and the other two
methods and become smaller with increasing density, especially for PC2 scores. Plots of
the first two PCs form separate analyses of the landmarks and semilandmarks arising from
each approach are superimposed in Figure 7. Scatterplots of PC1 and PC2 generated by
sliding TPS (amber) coincide with those obtained by TPS&NICP (blue), while LS&ICP
(magenta) produces quite different PC1 and PC2 scores to those obtained using the other
semilandmarking approaches.

Table 8 presents the correlations between PC scores on the first PCs of shape from each
landmark and semilandmark configuration generated by the different semilandmarking
approaches and densities and those from GPA and PCA of the landmarks alone. These are
very similar for the sliding TPS and TPS&NICP semilandmarking approaches, being large to
moderate and slightly greater for PC1 than PC2 scores, decreasing ~5–7.5% with increasing
semilandmarking density. The correlations of PC1 scores from LS&ICP are stable with
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increasing density, while the correlations of PC2 scores dramatically decline. Additionally,
the correlations of PC1 and PC2 scores between each semilandmarking density and the
maximum (800) density are presented in Table 9. This shows that the correlations are high
and increase with increasing density.

Table 7. Comparison of Pearson correlations (all p < 0.01, except #, p < 0.05, * = n.s.) of PC1 and PC2
between sliding TPS and TPS&NICP.

50 100 200 400 800

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

Sliding TPS
LS&ICP 0.9400 0.9387 0.8981 0.8119 0.8561 0.6647 0.8163 0.4961 # 0.7666 0.3334 *

Sliding TPS
TPS&NICP 0.9993 0.9989 0.9983 0.9992 0.9978 0.9985 0.9974 0.9977 0.9972 0.9967

LS&ICP
TPS&NICP 0.9357 0.9264 0.8919 0.8030 0.8443 0.6610 0.7988 0.4749 # 0.7498 0.3291 *
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Figure 7. Visualization of superimposed scatterplots of PC1 and PC2 from analyses of 20 ape crania
using landmarks and semilandmarks from sliding TPS, LS&ICP, and TPS&NICP approaches with
varying densities. The horizontal axis represents PC1 and the vertical, PC2. Cross: Pongo abeli. Circle:
Gorilla. Rectangle: Pan troglodytes; Triangle. Hylobates lar. Amber: Sliding TPS. Blue: TPS&NICP.
Magenta: LS&ICP.

Table 8. Pearson correlations (all p < 0.01, except #, p < 0.05, * = n.s.) among PC scores from each
semilandmarking density and from the landmarks alone.

50 100 200 400 800

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

Sliding TPS 0.9487 0.8634 0.9238 0.8435 0.9104 0.8188 0.9021 0.8155 0.8963 0.8077
LS&ICP 0.9399 0.7606 0.9329 0.6427 0.9291 0.5515 # 0.9228 0.4363 * 0.9116 0.3325 *

TPS&NICP 0.9430 0.8732 0.9186 0.8434 0.8999 0.8020 0.8880 0.8108 0.8833 0.8012

Table 9. Pearson correlations (all p < 0.01, parametric test) among PC scores from each semilandmark-
ing density and the maximum density.

50 100 200 400

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

Sliding TPS 0.9888 0.9769 0.9971 0.9900 0.9987 0.9963 0.9996 0.9984
LS&ICP 0.9512 0.6821 0.9692 0.8368 0.9837 0.9268 0.9942 0.9838

TPS&NICP 0.9876 0.9765 0.9962 0.9908 0.9989 0.9965 0.9998 0.9993

The angles between allometric vectors derived by multivariate regression of shape (the
full set of non-zero PC scores) on the natural logarithm of centroid size using landmarks
and semilandmarks from sliding TPS and TPS&NICP (Table 10) are generally small (<9◦)
and increase moderately with semilandmarking density. There is no significant difference
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in angles between allometric vectors generated by sliding TPS and TPS&NICP approaches.
By contrast, the angles between allometric vectors generated by LS&ICP and the other two
methods are greater and increase with increasing semilandmark density.

Table 10. The angles (◦) between allometric vectors (permutation test p < 0.05 *) derived at vary-
ing densities.

50 100 200 400 800

Sliding TPS
LS&ICP 65.19 * 75.25 * 82.38 * 86.50 * 90.25 *

Sliding TPS
TPS&NICP 6.52 7.67 8.68 8.97 8.73

LS&ICP
TPS&NICP 65.83 * 75.68 * 82.82 * 86.19 * 90.16 *

Because the LS&ICP approach results in allometric vectors that differ significantly
from those arising from the other two semilandmarking approaches, the comparison of al-
lometrically scaled shapes among ape crania focuses on the differences between the sliding
TPS and TPS&NICP approaches. The Procrustes distances between predicted landmark
and semilandmark configurations at the extreme limits of the allometric vector are shown
in Table 11. The Procrustes distances between allometric predictions of cranial shape at the
maximum centroid size are between a half and two-thirds of those between predictions at
the minimum centroid size. This is explained by the distribution of centroid sizes being
skewed towards the maximum (as with the head surface data; see Supplementary Materi-
als). These distances increase with semilandmarking density. They range between 9% and
14% of the average distance of specimens from the mean for the predictions of cranial shape
at the maximum centroid size and between 16% and 21% for predictions at the minimum
centroid size.

Table 11. Procrustes distances between the predicted landmark and semilandmark configurations
from sliding TPS and TPS&NICP corresponding to the maximum (Max) and minimum (Min) cen-
troid sizes.

50 100 200 400 800

Max 0.0095 0.0113 0.0122 0.0124 0.0134
Min 0.0168 0.0189 0.0211 0.0214 0.0202

4. Discussion

This study compares alternative strategies for marking up dense point correspon-
dences (=semilandmarks) among biological structures for subsequent statistical analyses.
We compared these semilandmarking approaches by empirically testing six null hypothe-
ses that there are no differences between semilandmarking approaches in semilandmark
locations, estimates of mean form, patterns of variation, and co-variation of shape with size
(allometry). These hypotheses are all falsified, as expected, but the results of each analysis
provide quantitative insights into the nature and degree of difference in results obtained by
each semilandmarking approach.

4.1. Significance and Implications of Findings

Thus, in the present and previous studies, differences are found in the locations of
semilandmarks produced using different approaches and these have consequences for
subsequent analyses. Mean landmark coordinates, centroid sizes, and distributions of
specimens in Kendall’s shape space are all impacted by the locations of semilandmarks.
Further, just as different landmarking choices impact the results of subsequent analyses, so
do variations in the number and locations of semilandmarks.
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Previous studies have noted that with increasing semilandmark density, there is in-
creasing consistency of scores on PC1 [26,27], while [35] found that increasing density of
semilandmarks did not necessarily result in greater group separation. These studies did
not assess consistency of results with increasing density, among alternative semilandmark-
ing methods. Here, we find that the results generated by sliding TPS and TPS&NICP
approaches are most consistent. Greater differences are found between landmarks and
semilandmarks from LS&ICP and the other two approaches, especially for the more com-
plex surfaces of the ape crania (compared with the head surface data, see Supplementary
Materials). For the ape cranial data, sliding TPS and TPS&NICP produce distributions that
are consistent within semilandmarking approaches across densities. As such, TPS&NICP
produces the most consistent results with both surface datasets and between semilandmark-
ing densities. Sliding TPS is almost as consistent when applied to surfaces with landmarks
over their entirety.

However, consistency does not relate to how well the homology map is represented by
the resulting semilandmarks. Methods may be consistently wrong in identifying homology,
and so in describing differences. Here, for instance, both sliding TPS and TPS&NICP use a
triplet of thin-plate splines to achieve an initial fit between the template and each specimen.
In consequence, these algorithms begin with initial placements of semilandmarks that
are identical. This could well underlie why these two approaches achieve very similar
results, rather than because they both converge on ‘the correct solution’. Each method
estimates equivalent points in terms of its specific algorithm, but each estimate is different.
In fact, all estimates of mean coordinate configurations, of the distance matrices and
other statistical results, are correct in each analysis, insofar as they are the correct results
obtained from the landmarks and semilandmarks. Differences arise because of differences
in the data in the landmark and semilandmark locations. The issue in studies that aim to
describe and compare developmental or evolutionary transformations is which, if any, of
the semilandmarking approaches correctly mark up homologies. How well the resulting
semilandmarks represent homologies among specimens is limited by the extent to which
knowledge of homology is applied in locating them, by the fact that such point homology
is largely unknowable and, indeed, may not exist in reality because points at one stage
may not actually turn into points at another. These considerations also apply to landmarks
themselves, albeit arguably to a lesser degree.

Semilandmarks have deficient coordinates [11] and so are located on the surface of
interest but with uncertainty regarding the equivalence (e.g., homology) of their position.
The authors of [5,9,43] argued that the locations of the semilandmarks themselves should
not be interpreted but rather the form of the surface mesh or curve that they describe
should be the basis of comparison. This recognises their deficient coordinates in focusing
on the form of the surface itself; however, it also raises an important point and a question.

Thus, semilandmarks describe surfaces, but different semilandmarking approaches
achieve this through different locations of semilandmarks. These differences in loca-
tion have effects on subsequent statistical analyses, here resulting in estimates of mean
configurations, distributions and principal modes of shape variation (PCs), and covari-
ation (e.g., allometry) that differ to some degree (also see analyses of head surfaces in
Supplementary Materials). This is an important point, because we rely on statistical results
to test our hypotheses, and yet, where these concern developmental or evolutionary trans-
formations, the extent to which analyses of shape variation and covariation using any one
method or density of semilandmarking respect and reflect homology is also unknowable.

Some insight into this might be gleaned from a consideration of how well findings
from analyses of landmarks and semilandmarks match findings based on presumed ho-
mologous points alone. Here, several analyses have compared results obtained by different
semilandmarking approaches and densities with those from landmarks alone. For ape
crania, where landmarks are located, albeit sparsely, over the whole surface, Procrustes
distances from both sliding TPS and TPS&NICP correlate strongly (>0.9) with distances
from landmarks (Table 6). For the head surface data (see Supplementary Materials), corre-
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lations are weaker, but for the face alone, where landmarks are present, correlations are
moderate to high. These findings suggest that analyses of landmarks and semilandmarks
are consistent with those of landmarks alone, when landmarks are sufficient in number and
located such that they delimit the surfaces that are to be semilandmarked. There are some
consistent differences, which, as noted above, may be due to better description (additional
information) of surface form or to shared error. However, given that high-dimensional
data, such as arises with semilandmarks, present serious analytical issues [44], the potential
benefits of semilandmarks, particularly in visualisation, should be set against the potential
pitfalls of statistical analysis of such data [45]. The statistical gains are, at best, unclear in the
analyses presented here, and there is an unresolvable doubt that the ‘gains’ may, in fact, not
be gains at all, but rather due to consistent erroneous identification of homologies between
approaches. There may, however, be gains in applications to discrimination, identification,
and classification [46,47], but these topics are not considered here, and further studies need
to be conducted to assess this possibility.

With regard to visualisation, semilandmarks are often applied to enable detailed
high-quality representation of results as surface warpings. Surface mesh form, rather than
the form of a landmark and semilandmark configuration over the surface, is relevant in
many practical circumstances. For example, surfaces are often visualised by warping a
template to statistical estimates of, e.g., mean landmark and semilandmark configuration
form [48]. Beyond this, surfaces representing statistical results, such as the mean, might be
used in the clinic to compare patient cranial form with that of the wider population, using
clinic and condition-specific (re)parameterisations of reference and patient surfaces [49].
Another increasingly common application of surfaces arising from geometric morphometric
analyses is to use them to build finite element models [50,51]. Thus, an important question
arises, which is considered in a follow-on study [52]: how do different semilandmarking
approaches perform in characterising the form, variation, and covariations of the shape of
the surface mesh itself, rather than the locations of semilandmarks on it?

What are the implications of this study for future work using semilandmarks? The
results indicate varying degrees of consistency in results derived by different semiland-
marking approaches and densities. However, as has been noted above, consistency does
not necessarily indicate reliable identification of homologous points. This echoes [45], who
noted that consistency might be thought of as suggesting precision (repeatability of mea-
sures) but does not equate with accuracy (i.e., correctly marking up homologous points).

It is not possible to state that any one method is superior to any other in identifying
homologous semilandmarks, but it is clear from our findings with LS&ICP that some
methods result in semilandmarks that clearly do not represent homologies, while estimates
from sliding TPS and TPS &NICP appear more reasonable in anatomical terms. Thus, in
applying any method, extrinsic anatomical knowledge can guide assessment of accuracy of
semilandmarking sensu [45], but this is subjective. Some approaches will clearly fail this
test while others will not. However, every approach will give rise to different statistical
results. The extent to which differences due to the choice of semilandmarking approach are
important depends on the how large they are in relation to the aspects of variation among
specimens that are of interest.

The degree to which results from semilandmarks are correlated with those from
landmarks alone might be used as a basis for identifying ‘good’ methods (that yield results
consistent with those based on homologous landmarks), but perfect association between
methods would rather undermine the need for analyses of semilandmarks in the first place.
This is similar to the situation with true landmarks, in that landmarks can be located with
error and different sets of landmarks may be chosen, and both affect statistical results.
However, landmarks, unlike semilandmarks, being defined based on prior anatomical
knowledge, do not require an algorithm to locate them. As noted by [9], the number
and locations of landmarks chosen in any particular study can and should be based on
the question at hand. Many questions can be sensibly and fully addressed using a few
well-chosen landmarks. However, as noted in the Introduction, landmarks may be sparse
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on (homologous) structures of interest; they can also have doubtful homology or be difficult
to locate.

A cautious approach to working with landmark and semilandmark data would be,
first, to design a landmark configuration that relates to the hypothesis under test [9] and
then semilandmark the sample. Statistical testing might then be seen as distinct from
visualisation and proceed on the basis of the landmark configurations alone. Visualisations
(warped surface meshes between, e.g., means or representing a vector of transformation)
can then be estimated based on parallel analyses using the landmarks and semilandmarks.
This avoids the philosophical issues that arise concerning semilandmark homology, and
it avoids the statistical issues that arise when many variables are taken on small samples
than arise with semilandmarks (p (number of variables)/n (sample size) ratio) [44,45].
However, this approach limits the analysis to identifiable landmarks and so omits what
might be a useful ‘signal’ from the surface between landmarks. In semilandmarking
surfaces, there is a decision to be made regarding the balance between the likelihood of
erroneous results (‘noise’—inaccurate identification of homologous points and the ratio of
the number variables to the number of specimens—p/n ratio) from semilandmarking and
the potential gains in ‘signal’. To a large degree, this is a judgement call. However, the p/n
ratio issue can be mitigated by minimising the number of semilandmarks used, while the
issue of homology of semilandmarks cannot.

4.2. Limitations and Future Work

As noted in the Introduction, previous studies have compared the performance of dif-
ferent semilandmarking approaches based on different criteria: distance matrices [25,26,31],
principal components (PCs) [10,13,26,35], and differences between template and trans-
formed meshes [10,19]. Such sensitivity studies are useful in understanding sources of
error and in guiding eventual parameterisation in a particular context, but it is not clear
how generalisable their findings are because each is empirical. This caveat also applies to
the present study and so its findings cannot be considered as definitive; rather, they offer
insights into the consistency of statistical findings based on a limited range of alternative
semilandmarking approaches.

This study is limited in its scope, having examined only three possible semilandmark-
ing approaches applied to head and cranial surface data. Future work should consider a
wider range of surface data, alternative ‘landmark free’ approaches (e.g., [33]), the effects
of varying numbers of landmarks on semilandmarking, and the consequences of varying
semilandmark locations on the template at specific semilandmarking densities. Addi-
tionally, because different semilandmarking approaches generate different semilandmark
locations and these affect the distributions of data, it is likely that there will be conse-
quences for statistical tests. Thus, studies need to be conducted using real and simulated
data, created by perturbing a known surface in known ways to allow for assessment of the
precision and accuracy of estimation of means and other statistical parameters. Finally, it
would be of interest to more widely explore the consequences of different semilandmarking
approaches in comparing allometric trajectories between sexes or species. This was not
possible in the present study, which was limited to comparing predicted allometrically
scaled mean shapes and the angles between allometric vectors derived using different
semilandmarking approaches.

5. Conclusions

In summary, this study utilized three different semilandmarking approaches to yield
semilandmarks at different densities. The effects of different semilandmarking approaches
and densities of semilandmarks on semilandmark locations and on subsequent statistical
results were then considered. It is not possible to assess the extent to which the different
approaches yield semilandmarks that accurately reflect homology, but it was possible to as-
sess the consistency (=precision) [45] between approaches and densities of semilandmarks.
The TPS&NICP approach yields the most consistent results across varying semilandmark
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densities applied to both the head surface and ape cranial data, and sliding TPS produces
results that are most consistent with those from TPS&NICP. However, consistency is not the
same as accuracy and so it is not possible to say which, if any, method(s) produce semiland-
marks that accurately represent homologies among specimens. This is a significant issue
in applications to the study of developmental or evolutionary transformations but less so
in other applications, such as identification/discrimination. By focusing on landmarks
with more secure homology for statistical analyses and employing semilandmarks for
visualisation, these issues are minimised.

Further work is needed to assess alternative semilandmarking approaches in different
contexts. While the sliding TPS and TPS&NICP algorithms give rise to very similar
findings in this study, further work, as described in the previous section, is needed to fully
understand the limitations of each approach and no specific recommendation on choice of
method in specific contexts can yet be made. For now, interpretations of statistical results
based on semilandmarks should be made with due caution regarding the potential errors
in semilandmarking, and serious consideration should be given to why semilandmarking
is being undertaken, given that simpler landmark data may well yield the same results,
with less uncertainty about homology and so interpretation of studies of transformation
of form.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ani13071179/s1, Reference [53] is cited in the supplementary ma-
terials. Figure S1: Human head dataset: a human head surface with 16 anatomical landmarks;
Figure S2: Locations of the average coordinates of 1000 semilandmarks generated by sliding TPS,
LS&ICP, and TPS&NICP approaches; Figure S3: The average differences (Euclidean distance in
location in mm) between 1000 semilandmarks generated by different approaches; Figure S4: The
mean semilandmarks generated by sliding TPS over the face and scalp; Figure S5: Comparison of
the centroid sizes of landmark and semilandmark configurations computed by different approaches;
Figure S6: Vectors of Procrustes distances between each individual and the mean computed for each
semilandmarking approach using different densities of semilandmarks; Figure S7: Comparison of the
vector of Procrustes distances between every specimen and the mean among different approaches;
Table S1: Comparison of semilandmarks from sliding TPS and TPS&NICP; Table S2: Comparison
of semilandmarks from sliding TPS and LS&ICP; Table S3: Comparison of semilandmarks from
TPS&NICP and LS&ICP; Table S4: The centroid sizes of the mean landmark and semilandmark
configurations generated by different semilandmarking approaches and different densities of semi-
landmarks; Table S5: Procrustes distances computed between mean landmark and semilandmark
configurations; Table S6: Procrustes distances computed between mean landmark and semilandmark
configurations in the face and scalp; Table S7: Pearson correlations among vectors of Procrustes
distances between each individual and the mean and Mantel tests of association between the Pro-
crustes distance matrices derived using different semilandmarking approaches; Table S8: Pearson
correlations among vectors of Procrustes distances between each individual and the mean and Mantel
tests comparing Procrustes distance matrices between each density of semilandmarking and the
maximum density; Table S9: Pearson and Mantel correlations between vectors and matrices of Pro-
crustes distances from each semilandmarking approach and density and those from landmarks alone;
Table S10: Pearson correlations between PC1 and PC2 scores derived using different semilandmarking
approaches; Table S11: Pearson correlations of PC1 and PC2 scores between each semilandmark
density and the maximum density; Table S12: Pearson correlations of PC1 and PC2 scores from
landmarks alone and those from each semilandmarking approach and density; Table S13: Pearson
correlations between PC1 and PC2 scores based on facial landmarks and semilandmarks derived
using different semilandmarking approaches; Table S14: Correlations of PC1 and PC2 scores between
each facial landmark and semilandmark configuration at lower densities of semilandmarks and the
configuration with the maximum density; Table S15: Correlations of PC1 and PC2 scores derived
from the landmarks alone and each facial landmark and semilandmark configuration generated by
different approaches and densities; Table S16: The angles between allometric vectors from different
semilandmarking approaches and densities; Table S17: Comparison of Procrustes distances between
the predicted shapes corresponding to the maximum and minimum centroid size derived using
semilandmarking approaches and densities.
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