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Simple Summary: The long-term effect of exposure to lipopolysaccharide (LPS) endotoxins during
fertilization in mammals has not been clarified. In this study, we examined the influence of LPS on
early embryonic development and fetal development in mice. The uteruses of mice were examined
for the expression of genes related to the inflammatory response. The expression of Il-1β and Il-6
increased following the administration of 200 and 1000 µg/kg LPS. Exposure to LPS during in vitro
fertilization (IVF) significantly decreased the embryonic developmental rate. A concentration of
100 µg/kg LPS significantly increased the placental weight and fetal crown–rump length (CRL),
whereas a concentration of 200 µg/kg LPS significantly decreased the placenta weight and fetal
weight in vivo at 18.5 days post-coitus (dpc). In summary, this study demonstrated that LPS exposure
during fertilization causes abnormal embryonic phenotypes and fetal development in mice. Maternal
endotoxins may affect epigenetic inheritance in embryonic development from the early to late stages
of pregnancy.

Abstract: Intrauterine inflammation can cause infertility by disrupting reproductive function. The
pathogenesis underlying this process may primarily involve endotoxins from lipopolysaccharides
(LPS), which are produced by Gram-negative bacteria. However, the long-term effects of endotoxins
in mammalian pregnancy following LPS exposure during fertilization have not been clarified. In this
study, we performed experiments to analyze the influence of LPS on early embryonic development
and fetal development in mice. Mice uteruses were examined for the expression of genes related to
the inflammatory response. The expression of Il-1β and Il-6 increased following the administration of
200 and 1000 µg/kg LPS. Exposure to LPS using in vitro fertilization (IVF) significantly decreased
the embryonic developmental rate. A concentration of 100 µg/kg LPS significantly increased the
placental weight and fetal crown –rump length (CRL), whereas a concentration of 200 µg/kg LPS
significantly decreased the placenta weight and fetal weight in vivo. These findings indicate that
maternal LPS during fertilization affects fetal development until the late stage of pregnancy. Thus,
maternal endotoxins may affect epigenetic inheritance during embryonic development from the early
to late stages of pregnancy.
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1. Introduction

Pregnancy is a complex process in which the maternal immune system has to tolerate
the allogenic fetus to achieve a successful natal outcome [1]. Recently, several studies
have focused on the relationship between disruption of the immune system balance in
pregnancy by endotoxins and infertility and chronic intrauterine infections [2,3]. Endo-
toxins are a silent consequence of bacterial infections and are associated with various
negative impacts on reproductive function in humans and livestock animals [4–6]. Gen-
erally, bacterial infections of the genital tract are linked to inflammatory disease in the
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uterus and ovaries [7]. Among bacteria that induce pathogenic infections, Gram-negative
bacteria, such as Escherichia coli, secrete lipopolysaccharide (LPS) endotoxins. LPS con-
sists of a lipid and carbohydrate chain and is one of the elements constituting the cell
wall of Gram-negative bacteria. The carbohydrate chain consists of a hydrophilic core
saccharide and an O-antigenic structure [8,9]. LPS is recognized by Toll-like receptor 4
(TLR4) on the cell surface, which forms a co-receptor with CD14 and MD2. The binding of
LPS to TLR4 activates the nuclear signaling pathway for the transcription factor complex
nuclear factor-kappa B (NF-κB), which in turn produces pro-inflammatory cytokines and
chemokines [8]. The production of LPS by bacteria during infection has been reported to
trigger the expression of several genes, such as IL-1β, IL-6, and TNF-α, which are involved
in inflammatory responses induced by TLR signaling pathways [10–12].

Studies have reported that LPS has harmful effects on the female genital tract [13] and
intrauterine germ cells, namely the sperms and oocytes. In dairy cows, LPS decreased the
mRNA expression of StAR and CYP17, gonadotropin receptors associated with steroid hor-
mone cascades, and levels (concentration) of the steroid androgen and progesterone [14–16].
LPS levels were also correlated with the concentrations of PGE2 and E2 or P4 in ovarian
follicles and uteruses with inflammatory uterine diseases [17–20]. In mice, LPS increased
the mRNA expression of inflammatory cytokines Il-6, Ptgs2, and Tnf-α in cumulus cells [21].
Furthermore, late-stage LPS administration at 15 days post-coitus (dpc) increased the rate of
abnormal fetal development [22]. In pigs, LPS decreased male reproductive performance by
affecting sperm motility and sperm viability [23]. These studies suggest that endotoxemia
might cause harmful immune responses during embryonic development in mammals.

However, whether maternal LPS exposure during fertilization directly affects the
oocytes or acts via the uterus during pregnancy has not been clarified in mammals. Thus,
the purpose of this study was to investigate the effect of LPS exposure at fertilization
on early embryo and fetal development. We analyzed the effect of LPS on early embry-
onic development using a culture system of mice embryos and used fertilized mice as a
mammalian model to evaluate the impact of LPS on pregnancy and fetal development.

2. Materials and Methods
2.1. LPS Treatment

LPS (Escherichia coli LPS, serotype O111:B4) was purchased from Sigma-Aldrich (St.
Louis, MO, USA).

2.2. Animal Ethics and Care

The experimental procedures complied with the Guide for the Care and Use of Labora-
tory Animals by the Obihiro University of Agriculture and Veterinary Medicine (approval
number 18-121, 22-173). The animals had free access to food and water throughout the
experiment and were housed in a control room with a 12 h light/12 h dark cycle at a
controlled temperature (23 ± 2 ◦C) and humidity (50 ± 5%).

2.3. Maternal Effect of LPS Administration in the Uterus

Female ICR mice (10–12 weeks old) were used to examine the effects of LPS administra-
tion on the uterus. Mice received an intraperitoneal (i.p.) injection of LPS at concentrations
of 0, 10, 100, 200, or 1000 µg/kg. Then, 6 h after LPS administration the mice were sacrificed
and blood samples were collected from the heart to measure the LPS concentration. There-
after, the uterus was removed and washed in phosphate-buffered saline (PBS). Total RNA
extracted from the uterus was used for gene expression analysis by immunoreaction. To
analyze the immune response, the uterine color after LPS injection was measured using a
CM-700d spectrophotometer (Konica Minolta, Tokyo, Japan). The color indicators included
the following: L*: lightness, a*: redness, and b*: yellowness. Furthermore, to assess the
morphology of the uterus, samples were fixed in 10% formalin (066-06821, Fujifilm Wako,
Osaka, Japan), dehydrated using an ethyl alcohol series, embedded in paraffin, and stained
with hematoxylin and eosin (H&E) staining. Images were obtained using a ZEISS Axio
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Zoom microscope.V16 for Biology (Carl Zeiss AG, Oberkochen, Germany) and the software
ZEN 3.1 pro (Carl Zeiss AG).

2.4. Measuring LPS Concentration in Blood Samples

LPS concentrations in the blood were measured using PYROSTAR Neo (294-36731,
Fujifilm Wako) and Control Standard Endotoxin (293-16541, Fujifilm Wako).

2.5. In Vitro Fertilization (IVF)

IVF was performed as previously described [24]. Young female ICR mice (3–6 weeks
old) and adult male ICR mice (14–20 weeks old) were used for fertilization. Female mice
received an i.p. injection of 7.5 IU eCG (serotropin, Asuka Animal Health Inc., Tokyo,
Japan) to stimulate follicular growth, followed by an injection of 7.5 IU hCG (gonadotropin
3000, Asuka Animal Health Inc.) 49 h later to stimulate superovulation. At 15–16 h after
hCG injection, the mice were euthanized by cervical dislocation and the cumulus–oocyte
complexes (COCs) were collected from the mouse oviductal ampulla. Cumulus cells were
removed using 0.3 mg/mL hyaluronidase in a droplet of 150 µL Toyoda-Yokoyama-Hosi
(TYH) medium (DR01031, LSI Medience Inc., Tokyo, Japan) [25], which was covered with
Paraffin Liquid (26114-75, Nacalai Tesque, Kyoto, Japan). The denuded oocytes were
washed three times with droplets of 80 µL TYH medium. After washing, the denuded
oocytes were inseminated in a droplet of 150 µL TYH medium with LPS concentrations
of 0, 1, or 10 µg/mL as the fertilization medium. A pre-experiment was performed to
finalize the LPS concentrations for IVF and final concentrations of 1 and 10 µg/mL in the
fertilization medium were chosen. Sperms were recovered from the cauda epididymis
and incubated to capacitation in a droplet of 150 µL TYH medium under a humidified
atmosphere of 5% CO2 at 37 ◦C for 1 h. After incubation, the sperms were introduced into
the fertilization medium with the denuded oocytes and incubated to achieve fertilization
under a humidified atmosphere of 5% CO2 at 37 ◦C for 6 h. At 6 h after insemination,
oocytes that exhibited two distinct pronuclei were considered to be fertilized. The fertilized
eggs were washed four times with modified Whitten’s (mW) medium and transferred to
droplets of 80 µL mW culture medium (DR01032-K, LSI Medience Inc.) [26,27] without
LPS. The fertilization rate was calculated based on the number of collected oocytes and
fertilized eggs. The embryonic development rate of the fertilized eggs was measured by
observing the 2-cell, 4-cell, morula, and blastocyst stages. In total, 23 mice were used as
oocytes donors for IVF. The IVF experiment was repeated six times.

2.6. LPS Administration In Vivo Using Mice

Female and male ICR mice (11–19 weeks old) were used to examine the effect of
LPS exposure at fertilization on late embryonic development. Briefly, 25 female mice
were mated with male mice overnight and the vaginal plug was examined the following
morning (control group, n = 7; 10 µg/kg LPS group, n = 6; 100 µg/kg LPS group, n = 6;
and 200 µg/kg LPS group, n = 6). The presence of a vaginal plug was classified as 0.5 dpc
for the pregnant mouse. On the same day, mice received an i.p. of 0, 10, 100, or 200 µg/kg
LPS. The pregnant mice were sacrificed at 18.5 dpc and the litter size, fetal resorption rate,
placenta weight, fetal weight, and crown–rump length (CRL) were recorded. Furthermore,
fetal tissue without internal organs was collected and used for gene expression analysis of
cell cycle and apoptosis markers.

2.7. Gene Expression Analysis

Total RNA from tissue samples collected from the LPS administration experiments was
extracted using TRIzol reagent (15596018, Thermo Fisher Scientific, Waltham, MA, USA).
The total RNA concentration was measured using a Nanodrop (Thermo Fisher Scientific).
Total RNA (1 µg) was treated with DNase and converted to cDNA with random primers
(48190011, Thermo Fisher Scientific) and SuperScript II (18064022, Thermo Fisher Scientific)
using a GeneAtlas thermal cycler 482 (4990902, ASTEC, Fukuoka, Japan).
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Real-time PCR was performed using the SsoAdvancedTM Universal SYBR
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96 system (05815916001,
Roche, Basel, Switzerland) according to the manufacturer’s instructions. Each PCR reaction
was performed at 95 ◦C for 30 s (denaturation), 95 ◦C for 10 s, and 35 cycles at 60 ◦C for 60
s (amplification). The primer sequences used are listed in Table 1. We used β-actin (ACTB)
as the internal control, and the relative expression level of genes was calculated using the
2−∆∆CT method.

Table 1. Primer pairs used in the gene expression analysis.

Gene Primer Size
(bp)

Annealing
Temperature (◦C) Accession No.

Tnf-α F
R

AAAGATGGGGGGCTTCCAGA
GATGAGAGGGAGGCCATTTGG 157 60 NM_013693.3

Il-1β
F
R

GCCACCTTTTGACAGTGATGAG
AAGGTCCACGGGAAAGACAC 219 60 NM_008361.4

Il-6 F
R

GGATACCACTCCCAACAGACC
GGTACTCCAGAAGACCAGAGGAA 251 60 NM_001314054.1

Ki67 F
R

GAGGCTGAGACATGGAGACATA
TATCTGCAGAAAGGCCCTTGG 245 60 NM_001081117.2

p53 F
R

TGGAGGAGTCACAGTCGGATAT
ACACTCGGAGGGCTTCACTT 180 60 NM_011640.3

caspase4 F
R

TAGACTCATTTCCTGCTTCCGG
AGGTTGCCCGATCAATGGTG 128 60 NM_007609.3

ACTB F
R

CGTGCGTGACATCAAAGAGAA
TGGATGCCACAGGATTCCAT 201 60 NM_007393.5

2.8. Formatting of Mathematical Components

The equation for color value is as follows:

∆E*ab = (∆L*2 + ∆a*2 + ∆b*2)/2
∆L* = (each LPS group L*) − (control group L*)
∆a* = (each LPS group a*) − (control group a*)
∆b* = (each LPS group b*) − (control group b*)

2.9. Statistical Analysis

All statistical analyses were performed using the free software R version 4.2.2 (https:
//www.r-project.org/, access on 20 March 2023). Statistical analyses of LPS concentration,
gene expression, and fetal development were conducted using one-way ANOVA with
Dunnett’s test. A comparison of the mean fertilization and embryo developmental rate
were performed using chi-squared tests. All data are expressed as the mean ± standard
error of the mean (SEM). p < 0.05 was considered significant. Principal component analysis
(PCA) was performed using the following factors: LPS concentration, fetal parameters
(placental weight, fetal weight, and CRL), and gene expression (six genes).

3. Results
3.1. Maternal Effect of LPS Administration

To examine the effect of LPS in uteruses, mice were administered 0, 10, 100, 200, or
1000 µg/kg LPS by i.p. injection. The high concentration of 1000 µg/kg LPS was adminis-
tered to identify whether LPS clearly induced an acute inflammation. The administration
of 100, 200, and 1000 µg/kg LPS significantly increased the concentration of LPS in plasma
compared with the control group (Figure 1A, p < 0.01). To assess the inflammatory reac-
tion, uterus color was measured by spectrophotometry. The value of L* (lightness) and a*
(redness) displayed an inflammatory-like appearance in an LPS dose-dependent manner
(Figure 1B,C). The expression of genes related to inflammatory responses was examined
in the uteruses. Compared with the control group, the expression of Tnf-α did not signifi-
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cantly change following LPS administration, whereas that of Il-1β and Il-6 demonstrated an
increasing trend following the administration of 200 µg/kg LPS (p < 0.1) and significantly
increased with 1000 µg/kg LPS (Figure 2, p < 0.001).
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Figure 2. Gene expression of inflammatory cytokines in the uterus after administration of LPS. Mice
were administered 0, 10, 100, 200, and 1000 µg/kg LPS and uteruses were collected after 6 h. The
values are shown as mean ± SEM (n = 3). † p < 0.1, *** p < 0.001.

3.2. Effect of LPS on Early Embryonic Development In Vitro

To investigate the effect of LPS exposure at fertilization on early development, we
administered 0, 1, or 10 µg/mL LPS to denuded oocytes for fertilization. We calculated
the development rate at the 2-cell, 4-cell, morula, and blastocyst stages (Table 2). The
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fertilization rate of the 1 and 10 µg/mL LPS groups were 78.8% and 76.9%, respectively,
and significant differences were not observed compared with the control group. The
development rate of the 1 µg/mL LPS group showed no differences compared with the
control group at all development stages. However, the development rate of the 10 µg/mL
LPS group displayed a decreasing trend in the 2-cell stage (95.0%, p < 0.1) compared with
the control group (99.4%) and a significant decrease after the 4-cell stage (4-cell 83.0%,
morula 71.0%, and blastocyst 62.0%, p < 0.05) compared with the control group (4-cell
93.6%, morula 84.9%, and blastocyst 82.0%).

Table 2. Fertilization and development rate in IVF.

LPS
Concentration

(µg/mL)

No. of
Denuded

Oocyte

Development Stages

Oocytes
Fertilized 2-Cell 4-Cell Morula Blastocyst

Control 213 172
80.8%

171
99.4%

161
93.6%

146
84.9%

141
82.0%

1 132 104
78.8%

104
100%

97
93.3%

83
79.8%

75
72.1%

10 130 100
76.9%

95
95.0% †

83
83.0% *

71
71.0% *

62
62.0% **

LPS was administered at 0, 1, and 10 µg/mL. † p < 0.1, * p < 0.05, ** p < 0.01.

3.3. Effect of LPS on Late Embryonic Development In Vivo

To examine the effect of LPS exposure at fertilization on embryonic development,
we injected 0, 10, 100, or 200 µg/kg LPS into pregnant mice at 0.5 dpc. The pregnant
mice were sacrificed at 18.5 dpc, and the effects of LPS exposure on litter size, fetal
resorption rate, placental weight, fetal weight, and CRL before birth were examined
(Figure 3A). The litter size and resorption rate were not affected at any concentration
of LPS at 0.5 dpc (Figure 3B). However, 100 µg/kg LPS significantly increased the placental
weight (0.118 ± 0.002 g) and CRL (2.487 ± 0.015 cm) compared with the control group
(placental weight: 0.111 ± 0.002 g, fetal weight: 1.488 ± 0.016 g, CRL: 2.410 ± 0.014 cm) at
18.5 dpc (Figure 3C,E, p < 0.05). We also found that 200 µg/kg LPS significantly decreased
the placental weight (0.104 ± 0.001 mg) and fetal weight (1.431 ± 0.011 g) compared with
the control group (Figure 3C,D, p < 0.05). This indicated that the administration of LPS at
0.5 dpc affected late embryonic development. To reveal the molecular mechanisms underly-
ing these effects, gene expression of the fetal tissue was analyzed after LPS administration.
The expression of Ki67, which is related to the cell cycle, showed a decreasing tendency at
200 µg/kg LPS compared with the control group (Figure 4, p < 0.1), whereas the expression
of p53 and caspase4, which are related to apoptosis, were not affected by LPS.

3.4. Principal Component Analysis

To comprehensively assess the effect of LPS administration at 0.5 dpc, we performed
PCA using LPS concentration, fetal parameters, and gene expression in either the maternal
uterus or fetal tissue. The three principal components (PCs) with eigenvalues >1.0 covered
90.79% of the cumulative proportion (PC1: 55.86%, PC2: 21.25%, and PC3: 7.06%). The
PC1 factors mainly included the LPS concentration and Il-1β, Il-6, Ki67, p53, and caspase4
expression (based on the largest loading values); PC2 included placental weight and CRL;
and PC3 included fetal weight and Tnf-α expression (Table 3). Plotting PC1×PC3 showed
a clear separation between 100 and 200 µg/kg LPS concentrations and the control group
for fetal weight (Figure 5A). The plot of PC2 × PC3 showed separation between each
LPS-administered group for placental weight, fetal weight, and CRL but not for LPS
concentration (Figure 5B).
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Figure 3. Effect of LPS for fetal development. Mice were administered 0, 10, 100, or 200 µg/kg LPS
at 0.5 dpc (control n = 7, each LPS group n = 6). The fetal parameters were measured at 18.5 dpc.
(A) Appearance of the litters in each group. (B) Litter size and fetal resorption rate. (C) Placental
weight. (D) Fetal weight. (E) Crown–rump length. The values are shown as mean ± SEM (control n
= 97, 10 µg/kg LPS n = 74, 100 µg/kg LPS n = 67, 200 µg/kg LPS n = 95) and * p < 0.05.
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Figure 4. Gene expression of cell cycle and apoptosis markers in fetal tissue. The fetal tissues were
collected at 18.5 dpc (n = 3) from litters of pregnant mice that had been administered 0, 100, and
200 µg/kg LPS. The values are shown as the mean ± SEM. † p < 0.1.

Table 3. Proportion and variables of the three principal components (90.79%).

PC1 PC2 PC3

Eigenvalue 5.586 2.125 1.368
Proportion (%) 55.86 21.25 7.06
Cumulative (%) 55.86 77.11 90.79

Variables

LPS concentration 0.410 0.081 0.175
Placental weight −0.037 −0.452 −0.047

Fetal weight −0.084 −0.490 0.493
CRL 0.043 −0.567 0.303
Tnf-α −0.049 −0.396 −0.669
Il−1β 0.422 −0.040 −0.330
Il−6 0.405 0.102 0.204
Ki67 −0.418 −0.050 −0.117
p53 0.386 −0.176 −0.265

caspase4 0.393 0.161 0.239
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4. Discussion

This study investigated the effects of LPS administration at fertilization on early
embryonic and fetal development in pregnancy. LPS administration in mice increased
gene expression of Il-1β and Il-6 and induced inflammation in the uterus. Inflammatory
uterus diseases, for example metritis and endometritis, are known to cause implantation
failure and abnormal fetal development [28,29]. Therefore, embryonic development might
be affected by inflammation of the reproductive tract during fertilization and implantation
induced by LPS endotoxemia. Furthermore, previous IVF studies have reported that
embryos from the 1-cell stage expressed TLR4, which is associated with pro-inflammatory
cytokines [21,30]. Following LPS administration, these cells showed increased expression
of the cytokine-related genes Il-6 and Tnf-α, and these cytokines decreased embryonic
development among mammals [21,31,32]. However, in this study we used denuded
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oocytes to analyze the direct effect of LPS on IVF. Our results showed that oocytes without
a cumulus exhibited decreased embryonic development rates following LPS administration
in vitro, which suggests that LPS directly affects embryonic development.

Other studies have demonstrated that overexpression of the inflammatory cytokines
Il-1β and Il-6 induced cell proliferation in primary culture cells [33,34]. Furthermore, a
previous study reported that LPS administration decreased the cell number of blastocysts,
although the development rate of embryos did not change [35]. In this study, fetal develop-
ment increased (particularly the placental weight and CRL) with 100 µg/kg LPS, whereas
the placental and fetal weight decreased with 200 µg/kg LPS. Furthermore, 200 µg/kg LPS
induced a decreasing trend in the gene expression of Ki67 in the fetal tissue. In Figure 5A,
the PCA results on the factors affected by LPS concentrations were clearly divided into
three groups. In Figure 5B, the groups were affected by the fetal phenotype, such as the
placental weight, fetal body weight, and CRL, without the LPS factor. As a result, LPS expo-
sure at fertilization altered embryonic development and the immune response in uteruses,
resulting in the phenomenon of abnormal fetal development. The difference in the effects
with each LPS concentration was consistent with previous studies using animal models and
cultured cells [36–39]. Previous reports have indicated that Ki67 is related to the initiation
of the cell cycle [40,41]. The results presented here suggest that high concentrations of LPS
affect the cell cycle and induce abnormal embryo development.

There are many studies on the impact of LPS on pregnancy, however, these were
mainly performed in the late stages of pregnancy in mammals [22,37,39,42]. In contrast,
in this study LPS was administered at fertilization (0.5 dpc), which is the early stage
of embryogenesis. We did not observe changes in litter size and fetal resorption until
18.5 dpc, but placental and fetal weight and CRL were affected. This result suggested
that LPS exposure at fertilization impacts fetal development until late-stage pregnancy.
Therefore, we speculate that LPS might cause more critical damage related to fetal mortality
at the late stages, when placentas have formed, than during the early stages of pregnancy.
Inflammation of the placenta in humans has been reported to increase abnormal fetal
phenotypes, for example diminished fetal growth, fetal death, and preterm birth [13].
However, we did not evaluate the expression of genes related to cytokines and the survival
of placental tissue.

5. Conclusions

In summary, the present study demonstrated that LPS exposure at fertilization leads
to the incidence of abnormal phenotypes during embryonic and fetal development in
mice. The maternal endotoxin effect might impact the epigenetic inheritance of embryonic
development from the early to late stages of pregnancy. This finding in the mouse model
links the maternal environment before pregnancy to fetal development, and the effects are
likely associated with infertility and developmental disorders.
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