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Simple Summary: Milk and other dairy products are commonly consumed in many parts of the
world. Dairy cattle, having millions of milk trait records, make excellent model species for under-
standing the genetics controlling the production of milk. This manuscript gives a summary of the
current understanding of the genetic signals for milk production, in terms of the biological pathways
they are involved with, and highlights a number of methods that can be used to identify the genes and
variants underlying these signals. Knowledge of these variants will improve the ability of farmers
and animal breeding companies to increase the rate of genetic gain for milk traits and enable the use
of technologies such as gene editing.

Abstract: Milk is a complex liquid, and the concentrations of many of its components are under
genetic control. Many genes and pathways are known to regulate milk composition, and the purpose
of this review is to highlight how the discoveries of quantitative trait loci (QTL) for milk phenotypes
can elucidate these pathways. The main body of this review focuses primarily on QTL discovered in
cattle (Bos taurus) as a model species for the biology of lactation, and there are occasional references
to sheep genetics. The following section describes a range of techniques that can be used to help
identify the causative genes underlying QTL when the underlying mechanism involves the regulation
of gene expression. As genotype and phenotype databases continue to grow and diversify, new
QTL will continue to be discovered, and although proving the causality of underlying genes and
variants remains difficult, these new data sets will further enhance our understanding of the biology
of lactation.
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1. Introduction

The composition of milk is complex, featuring an emulsion of fat globules and a
colloidal dispersion of casein micelles in an aqueous solution of lactose (and other carbohy-
drates), whey proteins, and minerals. Although milk from different species contains the
same basic constituents, their proportions can vary greatly. In cattle, the typically average
percentages (g/100 g) of fat, caseins, whey proteins, and lactose are 3.9%, 2.6%, 0.6%, and
4.6% respectively; in humans, the corresponding percentages are 4.5%, 0.4%, 0.5%, and
7.1% [1]. Even more extreme differences can be seen in other species. Some seal species,
for example, producing little to no lactose, resulting in highly concentrated milk with fat
percentages of 50% [2].

Less-extreme differences in milk composition are also visible within species. In many
cases, the differences in composition among individuals are under partial genetic control.
Regions of the genome where the genotypes of genetic variants are associated with pheno-
types such as milk composition are known as quantitative trait loci (QTL). When they can
be identified, the causative genes underlying these QTL can help elucidate the pathways
involved in milk production. The aims of this review were to describe some of the major
pathways required for milk production in terms of the QTL and genes that have helped
to identify them and to note some of the methods that can be used to identify causative
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genes underlying QTL. We focus primarily on cattle (Bos taurus) as a model species, though
there are some references to QTL identified in sheep; additionally, some comparisons with
human milk composition are also presented where there is a major difference between the
two species.

2. QTL for Major Pathways Involved in Milk Production

Many QTL have been observed for both milk yield and milk composition traits in
cattle (see Table 1). These QTL have been identified using a number of different techniques,
including linkage-based approaches, such as the transmission disequilibrium test (TDT);
and association-based approaches, such as genome-wide association studies (GWAS) and
transcriptome-wide association scans (TWAS). The genes attributed to these QTL have a
variety of functions. Some, such as the hormones prolactin and growth hormone, and their
associated signalling pathways, are involved in mammogenesis (the development of the
mammary gland during puberty and pregnancy), lactogenesis (the onset of milk secretion),
and galactopoiesis (the continued production of milk). Other pathways, such as those for
fat and protein synthesis, and ion channels, are involved directly in milk production. The
following sections list some of the pathways involved in mammogenesis and lactation,
as identified by QTL for milk production, where the candidate causal gene encodes a
protein that sits within those pathways (see summary in Figure 1). Methods for identifying
candidate causative genes underlying QTL are discussed in Section 3.

Table 1. Top milk yield and composition QTL counts for cattle by trait. Data from CattleQTLdb
release 49 (28 December 2022) [3].

Trait Number of QTL Variants

Milk fat percentage 11,911
Milk protein percentage 9958
Milk fat yield 9255
Milk yield 7383
Milk C14 index 4847
Milk kappa-casein percentage 4275

Figure 1. Locations on the 29 bovine autosomes of the QTL discussed in this paper. Colors indicate
which of the sections the QTL is discussed under. The “other” category represents the two genes,
MGST1 and ABO. Positions are based on the ARS-UCD1.2 reference genome.

2.1. Milk Proteins

QTL have been mapped to many milk proteins, i.e., those expressed directly in milk.
In cattle, the largest proportion of milk protein content (80% [4]) consists of the four casein
proteins, encoded by a cluster of genes mapping to BTA6: casein alpha-S1 (CSN1S1 ),
encoding αS1-casein, casein alpha-S2 (CSN1S2 ) for αS2-casein, casein beta (CSN2 ) for β-
casein, and casein kappa (CSN3 ) for κ-casein. The casein proteins aggregate into micelles
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in the milk, sequestering calcium phosphate as a nutrient source for the neonate. K-casein
seems to be particularly important for successful lactation, as knockout mice deficient in
κ-casein fail to lactate, due to destabilisation of the casein micelles [5]. Like β-lactoglobulin,
the various casein proteins all have a range of coding variants, although, with the exception
of CSN1S1*G [6], these have not been intrinsically linked to lower rates of gene expression,
such as the β-lactoglobulin B variants discussed below. However, there is evidence that the
SNP responsible for the A2 variant of β-casein is associated with both milk yield and protein
yield [7], and QTL for milk protein phenotypes have also been detected at this locus in
other studies [8,9]. These QTL can overlap with, but are not in linkage disequilibrium with,
other nearby QTL assigned to the GC gene [8,10,11]: this gene encodes the protein group-
specific component (vitamin D binding) and maps around one megabase from the casein
gene cluster. Outside the mammary gland, casein expression in human CD14+ monocytes
has been observed to upregulate expression of the cytokines granulocyte-macrophage
colony-stimulating factor (GM-CSF), interleukin-1β (IL-1β), and IL-6 via the p38–MAPK
pathway [12,13]. This suggests a possible role for caseins in regulating the innate immune
response in the neonate intestine following milk consumption.

The major whey protein in cattle, accounting for around 50% of whey protein [4] and
10% of total protein, is β-lactoglobulin, which is encoded by the progestagen-associated
endometrial protein (PAEP ) on BTA11. A QTL has been detected to map to this gene. It
has pleiotropic effects on milk fat yield, protein yield, and volume [8,14]. Other studies
looking at individual milk proteins have also shown that genetic variants associated with
low β-lactoglobulin concentrations yield high concentrations of α-, β-, and κ-caseins [15].
Variation in milk β-lactoglobulin concentrations are primarily driven by differences between
the A and B protein variants [16,17]. The B variant showed lower expression than the
A variant. Other variants mapping to the B variant background, such as B∗ [18] and B′ [19],
cause further reductions in β-lactoglobulin expression. Milk with low β-lactoglobulin
concentrations has potential uses in infant formula (as human milk lacks this protein), and
the associated higher concentrations of caseins would also be expected to provide better
properties for cheese making.

The dominant whey protein in humans, which is second in cattle (18.5% of total whey
protein [4]), is α-lactalbumin. It is encoded by the gene lactalbumin alpha (LALBA ) on
BTA5. The QTL associated with milk protein concentration have been identified at this locus
in several dairy populations and breeds [20–23]. The α-lactalbumin protein is required for
lactose synthesis, modifying the enzyme β-1,4-galactosyltransferase (encoded by B4GALT1
on BTA8): in most tissues, B4GALT1 adds galactose moieties to N-acetylglucosamine
(GlcNAc) residues. However, the binding of α-lactalbumin to B4GALT1 changes the latter
to instead add galactose to glucose, forming lactose: this binary enzyme is known as lactose
synthase. Given the importance of these two genes for lactose synthesis, it is no surprise
that a QTL for milk lactose concentration has also been identified at the LALBA locus [24],
along with a milk yield at the B4GALT1 locus [25]. The importance of lactose synthesis
for milk production was shown in α-lactalbumin knockout mice, which produce highly
viscous milk with otherwise normal fat and protein composition that cannot be extracted
by the pups from the mammary gland [26]. It has been shown in vitro that multimeric
α-lactalbumin is cytotoxic to stem cells and transformed cell lines, though it does not
harm healthy epithelial cells [27], suggesting that α-lactalbumin may also have a protective
function in either the mammary gland or the neotate digestive system.

Another whey protein is the iron-binding antimicrobial protein lactoferrin, encoded by
the lactotransferrin (LTF ) gene on BTA22. In cattle, this protein exists in bovine milk at low
but variable concentrations (average 115.4 µg/mL in [28] but ranging from 31.8 to 485.6),
but reaches much higher concentrations in human milk—around 2 g/L in mature milk [29].
Interestingly, another antimicrobial protein, lysozyme, which is present at lower levels in
human milk [4], is also present at relatively low concentrations in cattle [30]. Levels of
lysozyme in Bovidae are reported to be as low as 1/1000th of those of other mammalian
species [31]. Although lactoferrin expression can be induced by mastitic infection [32], it is
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also under partial genetic control [33], and genetic variants affecting expression have been
identified at the LTF locus [34]. QTL at this locus have also been associated with casein
number and lactose concentration [35].

A third antibacterial protein present in milk is lactoperoxidase, encoded by the LPO
gene on BTA19. In contrast to lysozyme and lactoferrin, lactoperoxidase activity was found
to be around 20× higher in bovine milk compared to that of humans [36]. A trans-eQTL for
LPO, overlapping a QTL for milk protein concentration, has been identified on BTA20 at
the locus of the C6 and C7 genes [37]: these two genes encode proteins that comprise part
of the complement pathway in the innate immune system, suggesting that lactoperoxidase
may be co-regulated with this system.

2.2. Fat Synthesis Pathways

Fat is one of the major components of milk, forming membrane-bound droplets
known as milk fat globules (MFG), mostly in the form of triglycerides. MFG membranes
also contain a range of proteins, such as butyrophilin, adipophilin, mucin, lactadherin,
lactoferrin, and xanthine oxidase [38]. Two of these, butyrophilin (encoded by butyrophilin
subfamily 1 member A1; BTN1A1 ) and xanthine oxidase (XOR ; encoded by xanthine
dehydrogenase XDH), are required for enveloping the MFGs with the apical cell membrane,
and therefore, for secretion of the MFG into milk [39]. Heterozygous knockout mice for XOR
are unable to maintain lactation [40]. Many of the QTL for fat yield or milk concentration
in cattle map to genes encoding fat synthesis or metabolic enzymes (see Figure 2).

Figure 2. An overview of fatty acid and triglyceride synthesis, highlighting the enzymes discussed in
Section 2.2. Enzymes are shown in blue, and other products in yellow. The AGPAT enzyme group is
shown in grey, as the only AGPAT gene exhibiting a significant QTL (AGPAT6 ) has been renamed
to GPAT4.

One of the most prominent QTL detected in cattle [41] for milk volume, fat, and
protein phenotypes in cattle maps to the DGAT1 locus on BTA14 [42]. This gene encodes
the enzyme diacylglycerol O-acyltransferase 1, which is responsible for the final stage
triglyceride fat synthesis [43]. The causative variant for this QTL is a non-conservative
lysine-to-alanine substitution at position 232 [42]. More recently, this same variant has
been shown to cause an expression QTL for the DGAT1 gene by disrupting an exon splice
enhancer, which in turn alters the splicing efficiency of several introns in the transcript [44].
Another enzyme sitting earlier in the same trigyceride synthesis pathway is glycerol-3-
phosphate acyltransferase 4, encoded by the GPAT4 gene (formerly known as AGPAT6 ) on
BTA27. Like DGAT1, a highly pleiotropic QTL has been detected at this locus for many milk
phenotypes, including volume, fat, protein, and lactose traits [45]. The enzyme lipin 1 sits
in a related pathway, catalysing the conversion of phosphatidate into diacylglycerol and
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functioning as a transcriptional coactivator for genes involved in fatty acid oxidation [46].
QTL for milk protein and casein concentrations [35] and milk yield [47] have been detected
at the LPIN1 locus, which encodes this enzyme, in BTA11, in cattle.

Before they can be assembled into triglycerides, fatty acids first need to be obtained
either from the diet or from de novo synthesis. Several genes involved in this latter pathway
have also shown QTL for milk-related phenotypes. The rate-limiting step in fatty acid
synthesis is the carboxylation of acetyl-CoA to malonyl-CoA, catalysed by the enzyme
acetyl-CoA carboxylase (ACC). The alpha form of this enzyme is encoded by the gene
acetyl-CoA carboxylase alpha (ACACA ) on BTA19, and QTL for fatty acid composition [48]
and somatic cell score (a proxy phenotype for mastitis) [35] have been mapped to this locus.
Another important enzyme in the fatty acid synthesis pathway is fatty acid synthase (FAS),
encoded by the gene FASN on BTA19, dimers of which are responsible for synthesising
the saturated C16 fatty acid palmitic acid from acetyl-CoA and malonyl-CoA [49]. QTL
attributed to this gene have been identified for milk fat yield [8], fat concentration [9,50],
and fatty acid composition [51] in cattle.

The fatty acid synthase gene will produce only saturated fatty acids. To generate mo-
nounsaturated or polyunsaturated fatty acids, desaturase enzymes are required. One cluster
of fatty acid desaturase genes on BTA29 includes the two genes fatty acid desaturases 1
and 2 (FADS1 and FADS2 ); these enzymes are responsible for the final, rate-limiting steps
in omega-3 and -6 fatty acid syntheses [52,53]. Variants mapping in cattle to these two
genes have been associated with concentrations of a range of polyunsaturated fatty acids
in milk [54], and similar associations are also observed in human milk [55,56]. A third
desaturase enzyme involved in fatty acid synthesis is stearoyl-CoA desaturase, which
is encoded by the gene SCD on BTA26 and responsible for oxidising the C16 and C18
saturated fatty acid compounds palmitoyl- and stearoyl-CoA into the monounsaturated
compounds palmitoleoyl- and oleoyl-CoA, respectively [57]. This enzyme is also important
in regulating metabolism: knockout mice exhibited lower levels of tissue triglycerides and
low-density lipoproteins [58], and showed increased insulin signalling and glucose uptake
in muscle tissue [59]. In cattle, a QTL assigned to SCD has been identified for milk fat
yield [8,50].

2.3. Hormones and Signalling

Hormones, and the receptors and signalling pathways they activate, are important
in most if not all biological functions, and milk production is no exception. For example,
knocking out the SCD gene discussed in the previous section leads to an increase in tyrosine
phosphorylation of the insulin receptor, which has downstream effects on the PI3K-Akt
signalling pathway, leading to increased levels of the glucose transporter GLUT4 in the
plasma membrane and increased glucose uptake in muscle [59]. These knockout mice
also showed lower levels of the hormone leptin, which is involved in regulating energy
intake and partitioning. In cattle, leptin (encoded by the gene LEP on BTA4) has been
associated with both milk yield and feed intake [60]. No milk phenotype QTL have been
reported for the leptin receptor (LEPR on BTA3), though an association has been reported
with body size [61]. In both humans [62] and mice [63], leptin resistance is associated
with obesity. Another gene associated with obesity [64] is FTO, encoding the enzyme
FTO alpha-ketoglutarate-dependent dioxygenase. This enzyme is involved in DNA repair;
specifically, it demethylates 3-methylthymidine [65]. It can also demethylate bases in RNA,
including 3-methyluracil and 6-methyladenosine [66]. Via this latter mechanism, FTO can
inhibit adipogenesis by demethylating cyclin A2 and cyclin-dependent kinase 2 mRNA,
reducing the expression of these genes and thereby prolonging the cell cycle [67]. In cattle,
variants at the FTO locus on BTA18 have been associated with milk fat yield [68].

One hormone of particular importance for lactation is prolactin, a peptide hormone
secreted by the anterior pituitary gland. In cattle, this peptide is encoded by the PRL gene
on BTA23. The importance of this hormone in cattle was underlined by the discovery of a
dominant missense mutation that caused, among other phenotypes, a failure to lactate [69].
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Prolactin promotes development of the mammary gland during pregnancy, in conjunction
with progesterone—generating ductal branching and alveolar buds [70]. Prolactin is de-
tected by cells using prolactin receptor (PRLR ; BTA20) and acts via the PRLR/JAK2/STAT5
signalling pathway (see Figure 3) to promote mammary gland development and milk
protein expression [71], and it induces the expression of the enzyme UDP-glucose py-
rophosphorylase 2 (UGP2 ) and the transporter UDP-galactose transporter 2 (SLC35A2 ),
thereby promoting the synthesis of lactose [72]. In parallel, prolactin receptor also acts via
the PI3K/Akt pathway to downregulate repressors of PRLR/JAK2/STAT5 signalling [73].
Akt1 also upregulates fat synthesis and glucose uptake into the cell for lactose produc-
tion [74,75]. More recently, it has been shown that Akt signalling induces developing
mammary epithelial cells to express prolactin, which in turn acts in an autocrine manner
via STAT5 to cause terminal differentiation of the mammary epithelium [71,76]. Given
the importance of these pathways, it is not surprising that QTL for milk yield have been
widely identified at the PRLR locus [35,77,78] and for somatic cell score [78]. Likewise,
many studies have reported milk-related QTL at the signal transducer and activator of
transcription 5 (STAT5 ) locus on BTA19 (genes STAT5A and STAT5B ) [8,23,24,51,79].

Figure 3. JAK/STAT signalling pathways with effects on mammary gland growth or involution.
Signalling proteins, receptors, and transducers with known milk QTL are shown in blue, and selected
other components are shown in grey. Blue arrows represent activation, and orange arrows indicate
suppression. The green band represents the plasma membrane.

Beyond the leptin and prolactin pathways, other hormones have also been linked to
lactation. One example is growth hormone (GH), also known as somatotropin, which com-
prises part of the same family of protein hormones as prolactin [80]. Growth hormone acts
in the lactating animal to partition nutrients and energy towards the mammary gland [81],
which is thought to be mediated by increased serum insulin-like growth factor (IGF-1)
levels [82]. In the cow, growth hormone is encoded by the gene growth hormone 1 (GH1 )
on BTA19, and its receptor, encoded by growth hormone receptor (GHR ), maps to BTA20.
Both the GH1 locus [35], and especially the GHR locus [9,60,83–85], have been associated
with milk, fat, and protein yield phenotypes in a range of cattle populations.

Another important family of signalling molecules is the interleukin family of cytokines,
a group of primarily immunomodulatory proteins that operate in a paracrine or autocrine
manner to affect cell growth and differentiation during immune responses [86]. The gene
colony stimulating factor 2 receptor subunit beta (CSF2RB ) on BTA5 encodes the β-chain
of GM-CSF (also known as CSF2) receptor, and also forms a common subunit with the
receptors for interleukin-3 (IL-3) and IL-5. QTL for milk, fat, and protein volume; and
fat and protein concentrations, have been identified at this locus [8,21,87,88]. CSF2RB is
suggested as the most likely candidate causative gene, although the neighbouring genes
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neutrophil cytosolic factor 4 (NCF4 ) [87,88] and thiosulfate sulfurtransferase (TST ) [9] have
also been put forward as candidates. The GM-CSF receptor operates via the JAK/STAT
signalling pathway—specifically, JAK2 and STAT5 [86], the same pathway as used by
prolactin signalling.

In contrast to STAT5, which is linked to increased milk protein and lactose expres-
sion, STAT3 has been identified as a mediator of involution and apoptosis in the mam-
mary gland [89], which is primarily activated by the cytokine leukaemia inhibitory factor
(LIF) [90,91]. STAT3 phosphorylation is upregulated within one hour of physical distension
of the mammary gland in cattle, ultimately leading to the cessation of milk production
when the gland is not emptied [92]. Mice where either STAT3 or LIF is knocked out show
delayed involution and reduced levels of apoptosis [90], raising the possibility of improv-
ing efficiency in dairy herds, especially those milking once a day, by breeding for animals
lacking one or more of these genes. STAT3 is also involved in leptin signalling, interacting
with the long form of the leptin receptor [93]. It is difficult to assign QTL unambiguously to
the STAT3 or STAT5 loci, as STAT3 maps on BTA19 directly between the two STAT5 genes
STAT5A and STAT5B. Yet another STAT protein, STAT1, is believed to be involved in the
development of the mammary gland [94]. A QTL mapping to the STAT1 locus on BTA2
has been associated with milk, fat, and protein yield [94].

One group of proteins that is upregulated by the JAK/STAT pathway is the suppres-
sors of the cytokine signalling (SOCS) gene family [95]. Proteins in this family downregulate
JAK/STAT-mediated signalling. For example, SOCS1 (SOCS1 on BTA25) expression is
induced by prolactin signalling, and in turn binds to JAK2, inhibiting its association with
STAT5 and dampening signal transmission [70,96]. SOCS2 (SOCS2 on BTA5) negatively
regulates GH signalling. SOCS2 knockout mice showed higher body weights and skeletal
dimensions than control mice [97]. As SOCS proteins ultimately downregulate milk protein
expression via prolactin and growth hormone signalling pathways, there is the potential
that knocking out the genes encoding them could improve lactation phenotypes in dairy
animals. For example, mice with homozygous Socs1 knockout genotypes showed en-
hanced alveolar development [96], and a point mutation in the ovine Socs2 gene has been
associated with higher milk production in dairy sheep, albeit with increased susceptibility
to mastitis [98]. In cattle, several different SOCS genes have been associated with milk
volume, fat, and protein phenotypes [95].

2.4. Transporters and Ion Channels

Another important mechanism affecting milk production involves trans-membrane
transport and ion channels. All major milk components need to either be produced within
the mammary epithelial cells or transported across them from the blood, and in both cases
need to cross the apical membrane into the lumen. While some small molecules, such
as urea, can simply diffuse across the membrane, in most cases either passive or active
transport channels are required.

The volume of water excreted into the milk is driven by osmotic pressure, which
is in turn created by exporting lactose and ions across the cell membrane against their
concentration gradients. This means that QTL for milk phenotypes frequently map to genes
encoding transporters. One important group is the sugar transporters. The gene solute
carrier family 37 member 1 (SLC37A1 ) (on BTA1) encodes a phosphate-linked, glucose-
6-phosphate antiporter [99], which is responsible for importing glucose into the cell, and
QTL for milk volume have been detected at this locus in several populations [21,87,100].
Another glucose transporter, SWEET1, is encoded by the gene SLC50A1 on BTA3. SWEET1
has been observed in the Golgi in mammary cells and is possibly responsible for importing
glucose into the Golgi for lactose synthesis [101]. QTL for lactose concentration [24] and
protein concentration [87] have been identified near this gene, though the latter QTL has
been assigned to GBA1, which encodes the lysosomal protein glucosylceramidase beta 1.
Other glucose transporters have also been implicated in milk production, such as GLUT1
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(SLC2A1 on BTA3) [102], the Na+/glucose co-transporter SGLT1 (SLC5A1 on BTA17) [103],
and GLUT12 (SLC2A12 on BTA9) [103].

While the mammary epithelial cells use osmotic pressure to secrete milk, it is important
that they maintain their own cell volumes correctly. One mechanism by which they can do
this is using voltage-regulated anion channels (VRACs), which help regulate cell volume
by exporting Cl− ions, and small organic anions such as taurine [104,105]. VRACs are
comprised of heteromers of leucine-rich repeat containing 8 (LRRC8) proteins A to E,
encoded by the genes LRRC8A–LRRC8E. In cattle, the locus on BTA3 containing LRRC8B–
LRRC8D has been associated with milk lactose concentration [24,79]. LRRC8C is suggested
as the likely causative gene on the basis of gene-expression data. Interestingly, LRRC8C
has been associated with adipocyte differentiation (under the name fad158 ) [106] and is
also present in the membranes of MFGs [107], suggesting it may also have a role in the
storage or export of fat.

As stated above, it is important that water be able to move across the cell membrane
to balance osmotic pressure as milk is synthesised. However, the lipid bilayer of the cell
membrane is impermeable to water, requiring channels to facilitate the crossing. These
channels are provided by aquaporin proteins (AQPs). At least seven aquaporins are
expressed in the mammary gland [108,109], where they are believed to play a role in
gland development and in transporting water to the lactating gland for milk synthesis and
secretion. For example, AQP1 is expressed in the capillary endothelial cells, and may be
involved in oestrogen-mediated angiogenesis in the developing mammary gland [110], and
AQP5 is expressed in mammary epithelial cells, and the protein pores are moved from the
cytoplasm to the apical cell membrane under the regulation of prolactin [111], suggesting a
role in milk production. Genetic effects mapping to aquaporin genes have been reported,
such as a study in sheep [112] that mapped QTL for milk fat and protein concentrations
to a window on OAR3 that contains the genes AQP2, AQP5, and AQP6, albeit alongside
LALBA, which is also a strong candidate causal gene for milk-related traits, as described in
the milk protein section above.

Another important class of transporter is the potassium channel, a type of widely
expressed ion channel found in the majority of cell types. The majority of these transporters
are encoded by genes named KCN for the potassium channel, followed by a letter rep-
resenting the subfamily. A number of different families of potassium channel have been
identified. The largest family, the voltage-gated potassium channels (Kv, reviewed in [113]),
responds to voltage changes in the cell’s membrane potential. This family includes the
subfamilies KCNA, KCNB, KCNC, KCND, KCNF, KCNG, KCNH, KCNQ, KCNS, and
KCNV [113]. One channel, Kv3.3, which is encoded by the gene KCNC3 on BTA18, has
been associated with milk yield in cattle [23]. Another QTL for both milk volume and
fat yield maps to the gene KCNS2, encoding Kv9.2, on BTA14 [85]. A third gene in the
same family, KCNH4, encodes the channel Kv12.3, and is a potential candidate for a lactose
concentration QTL on BTA19 [24], although the QTL also encompass the genes STAT3,
STAT5A, and STAT5B, which are also candidates.

A second large family is the potassium inwardly rectifying channel family (Kir, re-
viewed in [114]), comprising lipid-gated channels that are activated by phosphatidylinositol
4,5-bisphosphate (PIP2). These transporters correspond to the gene family KCNJ [114].
In cattle, a locus on BTA19 has been associated with QTL for fat and protein concentra-
tions [23], lactose concentration [24,79], and milk yield [8]. This locus contains two genes
encoding Kir channels: KCNJ2 (Kir2.1) and KCNJ16 (Kir5.1), and both genes have been
proposed as candidate causatives underlying the QTL.

A third, smaller family of potassium channels is the two-pore-domain potassium
channels (K2P), known as leak channels [115], corresponding to the KCNK family. A QTL
for milk fat, protein, and volume has been identified on BTA26 at the locus of the KCNK18
gene, encoding the potassium channel K2P18.1 [85]. The fourth family is the calcium-
and sodium-activated potassium channels [116], of which the most well-known member
is KCa1.1, also known as BK. The activity of KCa1.1 is modulated by auxiliary β and γ
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subunits [117,118], including γ1, encoded by the gene LRRC26 on BTA11, where a QTL for
fat concentration has been detected [23].

The channels discussed so far are limited to moving solutes along an existing con-
centration gradient. Another class of transporter requires energy in the form of ATP to
concentrate solutes to establish a gradient or membrane potential. Many of these belong to
the ATP-binding cassette family (ABC). One important example from this family is ATP
binding cassette subfamily G member 2 (ABCG2 ). Initially identified as a xenobiotic drug
transporter [119], ABCG2 also functions as a transporter of riboflavin into the milk [120]
and a urate transporter in the kidneys [121]. QTL for several milk phenotypes have been
mapped to the ABCG2 locus on BTA6, including milk yield [8,21,85,122], fat and protein
concentration [9,79,122], lactose concentration [24,79], and αS1-CN concentration [100]. The
causative variant at this QTL is generally believed to be a tyrosine-to-serine substitution
(Y581S), identified by Cohen-Zinder et al. [122]; however, the adjacent gene SPP1, encoding
the protein osteopontin (involved in bone remodelling), has also been proposed as a candi-
date [123,124]. A second member of the ABC family is SUR2 (encoded by ABCC9 on BTA5),
which forms a component of the ATP-sensitive potassium channel KATP, alongside SUR1
(ABCC8 ) and the inward rectifying channels Kir6.1 (KCNJ8 ) and Kir6.2 (KCNJ11 ) [125].
The exact composition varies by tissue [126]. The channel is inhibited by ATP and activated
by MgADP. The KATP transporter is important for glucose-level sensing to control insulin
release in pancreatic beta cells [127]: at low glucose levels, ATP levels are low and ADP
levels are elevated, so the channel is open; and at high glucose levels, ATP closes the
channel. This polarises the plasma membrane, a change that is detected by voltage-gated
calcium channels, which then open, causing calcium to enter the cell and trigger the release
of insulin. In cattle, a QTL for milk fat yield has been identified at the ABCC9 locus [23,84].
A third ATP-binding transporter is the calcium transporter SERCA2, encoded by the gene
ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2 (ATP2A2 ) on BTA17.
This transporter pumps Ca2+ from the cytosol into the endoplasmic reticulum, whence it
can be exported into milk [128]. A QTL at this locus has been detected for milk and protein
yield, and for milk calcium [37].

Another ion transporter, showing widely reported associations with milk phenotypes,
is inorganic pyrophosphate transport regulator, encoded by the gene ANKH on BTA20.
The ANKH transporter controls extracellular mineralisation by regulating the levels of
inorganic pyrophosphate in the extracellular matrix. In humans and mice, mutations in
this transporter have been associated with arthritis and bone growth disorders linked
to tissue calcification [129,130]. This transporter has previously been assumed to be a
pyrophosphate transporter; however, recent work has shown that the channel in fact trans-
ports ATP, and that the production of extracellular pyrophosphate from ATP requires the
enzyme ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) [131]. In cattle,
QTL mapping to the ANKH locus have been identified for milk yield [8,21], milk lactose
concentration [24,79], and α-lactalbumin concentration [100]. Another recent study [132]
discovered that the ANKH protein cycles between the plasma membrane and trans-Golgi
network using clathrin-coated vesicles mediated by clathrin adaptors AP1 and AP2. The
phosphatidylinositol binding clathrin assembly protein also interacts with AP2 [133], bind-
ing to the signalling molecule phosphatidylinositol and recruiting the AP2 complex to
form clathrin-coated pits. This protein is encoded by the gene PICALM on BTA29 and is
associated with QTL for αS1-CN [100] and lactose concentration [24,79].

3. Identifying Candidate Causative Genes

The previous section may have given the impression that identifying the causative
genes, or even variants underlying QTL, is easy. However, in many cases, there will be no
obvious candidate genes in the QTL, possibly because the causative variant sits in a long-
range regulatory element for a distant gene. In other cases, there may be many potential
candidate genes, and different selection methods may highlight different candidates. For
example, the window from 42.2 to 42.5 Mbp on BTA19 envelopes several candidate genes
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for milk phenotypes. A 2015 study by Raven et al. [87] highlighted the genes GH3-domain
containing (GHDC ), STAT5A, and STAT5B on the basis of differential expression and
enrichment of significant variants, and proposed STAT5A as causative on the basis of
knockout studies in mice. In contrast, later work by our group [24,79] used eQTL data and
missense variants in strong LD with the top QTL variant to highlight the genes DExH-box
helicase 58 (DHX58 ), GHDC, lysine acetyltransferase 2A (KAT2A ), KCNH4, STAT5A,
and STAT5B. The two STAT5 genes were again proposed as the most likely candidates.
As discussed above, potassium channels, such as that encoded by KCNH4, have been
associated with milk at a number of loci, and the histone deacetylase and transcription
activator KAT2A2 is also a possible candidate, based on the high levels of gene expression
required in the lactating mammary gland. It is possible that multiple QTL are segregated at
this locus, and therefore, that more than one gene is causative.

Another region with two strong candidate causal genes maps to between 15.3 and
15.6 Mbp on BTA3. At this locus, Raven et al. [87] identified a QTL for milk protein
concentration and proposed the epithelial mucin gene MUC1 as the best candidate. The
mucin 1 protein coded by this gene is considered a “metabolic master regulator” [134],
regulating tyrosine-kinase signalling and the expression of metabolic genes. Work by our
group [24,79] has identified a QTL for milk lactose concentration at the same locus, and
proposed the gene SLC50A1, encoding a sugar transporter. Again, it is possible that these
are two separate QTL, and that both genes are causative for the corresponding phenotypes;
however, another possibility is that the QTL is pleiotropic, and only one QTL is present
controlling both phenotypes. Distinguishing between these two possibilities is difficult or
impossible using purely statistical or bioinformatic means, and additional experiments are
likely to be required.

3.1. Molecular Phenotypes

Widely used phenotypes, such as fat and protein, effectively aggregate signals from
a large number of milk components: individual fatty acids and other lipids for fat, and a
number of casein and whey proteins for protein, for example. It is likely that these different
components are not all under the same genetic regulation, and some correlations may even
be negative. For example, Stoop et al. [135] observed genetic correlations of as low as
−0.84 between milk fatty acid measures (C14:0 and C16:0), and correlations over 0.9. This
suggests that using finer composition measures, such as individual fatty acids or proteins,
should give cleaner, and possibly a larger number of genetic signals compared to complex
phenotypes such as fat or protein. This approach has been successfully applied to use milk
minerals and individual protein measurements to identify novel QTL and to highlight
SLC37A1 as involved in lactation [37]. These phenotypes can be considered “molecular”,
as measurements for a single molecule, for example, using gas or liquid chromatography
with mass spectroscopy, provide the phenotype.

Molecular phenotypes in milk are often measured using Fourier-transform mid-
infrared spectroscopy, as this method is commonly used for commercial herd testing and is
cheaper to perform on a large scale than spectroscopy. This method uses the absorbance
of around 900 different frequencies of infrared light (known as wavenumbers), then uses
these values in a model to predict the phenotypes of interest. In commercial herd testing,
the predicted phenotypes are typically fat, protein, and lactose concentrations; however,
models have been developed for a range of other phenotypes, such as individual fatty
acids [136] and proteins [137], and phenotypes more remote from milk, such as methane
production [138] and fertility [139]. However, because FT-MIR phenotypes are predicted
rather than measured, their utility for QTL discovery can be variable. For example, our re-
cent work [140] showed that both HPLC measured and FT-MIR predicted phenotypes could
detect significant cis-QTL for α-casein, κ-casein, and β-lactoglobulin. However, FT-MIR was
unable to identify the highly significant cis-QTL for lactoferrin, which was identified using
HPLC, and identified a QTL at the locus of the fat synthesis gene DGAT1 for α-casein. The
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latter may be due to signal crossover from fat, which is highly correlated with protein in
milk. This form of crossover, if present, would complicate the task of identifying pleiotropy.

In addition to predicting concentrations of milk components, it is also possible to use
the individual wavenumber data themselves as phenotypes [79]: different wavenumbers
represent different chemical bonds that absorb MIR light at the corresponding frequencies,
so wavenumber phenotypes effectively measure the concentrations in milk of compounds
that contain specific chemical bonds. Wavenumber phenotypes have been shown to detect
stronger and more numerous genetic signals compared to the predicted phenotypes such
as fat and protein [79].

Examining the expression level of each gene in a relevant tissue sample provides
an alternative to measuring or estimating protein concentrations. In milk, for example,
expression levels of the genes encoding milk proteins in the lactating mammary epithelial
tissue can give proxy measurements for milk proteins. Traditionally, this could be done
using techniques such as qPCR or expression microarrays. More recently, RNA sequencing
(RNA-seq) being used to sequence and count (relatively) mRNA molecules has become
common. As RNA-seq captures data for every expressed gene, it is possible to search
for expression QTL (eQTL) and allele-specific expression (ASE) for every gene, including
those not expressed in the milk, such as fat synthesis enzymes and hormone receptors. The
presence of a QTL for a given gene can provide evidence on the causality (or otherwise)
of the gene at an overlapping QTL: when the QTL is caused by an underlying eQTL, we
expect that the causal variant or variants will be strongly associated with both the QTL and
eQTL, and that associations for other variants will decay away in proportion to linkage
disequilibrium with the causal variants. This pattern can be identified by examining
the correlations between variants regarding the QTL and eQTL variants’ effects [141], or
p values (on a logarithmic scale) [24,45], or correlations between local genomic estimated
breeding values (GEBVs) and gene expression [142]. Other methods used to associate eQTL
with GWAS results include transcriptome-wide association scans (TWAS) [143], Mendelian
randomisation [144,145], and Bayesian colocalisation methods [142,146].

Molecular phenotypes and their QTL have assisted in highlighting candidate causative
genes in cases where no obvious candidates existed. For example, the gene MGST1 on BTA5
encodes microsomal glutathione S-transferase 1, which belongs to a family of detoxification
enzymes [147]. It has no obvious role in milk production. Nevertheless, QTL for milk traits
mapping to this locus have been reported in many different studies [21,87,100,148,149].
The neighbouring gene EPS8 (epidermal growth factor receptor kinase substrate 8) is
sometimes proposed as a candidate. However, gene-expression data from lactating bovine
mammary tissue have shown that the milk QTL at this locus co-segregate with an eQTL
for MGST1, whereas EPS8 is barely expressed in this tissue. Similarly, a QTL for milk-fat
percentage on the distal end of BTA11, has been linked to the gene encoding the ABO blood
group, which is also named ABO (alpha 1-3-N-acetylgalactosaminyltransferase and alpha
1-3-galactosyltransferase), using RNA-seq data to show that a splice donor site mutation
causes aberrant splicing of the ABO transcript, in turn causing an eQTL that co-segregates
with the fat percentage QTL [79].

3.2. Chromatin Structure Phenotypes

Chromatin is the name given to the compound comprising DNA wound around
nucleosomes, which are themselves composed of histone proteins. The three-dimensional
folded structure of chromatin can have an important impact on gene expression. On a
proximal scale, the structure of the chromatin region surrounding a gene can be in open
or closed configurations. The former provides access for transcription factors and RNA
polymerase components to reach the promoter region and trigger gene expression, and the
latter, closed, configuration blocks expression. Variants sitting within an open chromatin
region in the appropriate cell type are more likely to have a regulatory impact on gene
expression [141], and therefore, are more likely to present good candidate causal variants
for a given trait, compared to other non-coding variants.
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One method commonly used to study chromatin state is chromatin immunoprecipi-
tation (ChIP) [150], which can be used to identify transcription-factor binding sites or
histone modifications. Histone proteins feature long tails, and a wide variety of post-
translational modifications can be made to these tails to alter the chromatin state. For
example, the modifications H3K4me2 (histone 3, lysine 4 dimethylation), H3K4Me3, and
K3K27ac (lysine 27 acetylation) are associated with open chromatin in active promoters and
enhancers; and closed, repressed regions can be marked by H3K9me2 or H3K27me3 [151].
More recent versions of ChIP, using DNA sequencing techniques to target the whole
genome in a single experiment, include ChIP-seq [152,153] and CUT&RUN-seq [154].
Recent work [141] has identified cis-QTL for ChIP-seq phenotypes; and demonstrated that
these QTL frequently exhibit strong correlation with nearby eQTL, and that eQTL tag
variants are significantly enriched within ChIP-seq-identified open chromatin windows;
this illustrates the utility of this type of data for understanding regulatory variation in
the genome.

Open chromatin is accessible to transcription factors and other proteins required
for gene expression. However, it is also more accessible than other regions to nuclease
enzymes, and this fact is used in another approach to identifying open chromatin regions.
One commonly used nuclease is DNase 1, which can be used in conjunction with high-
throughput sequencing via DNase-seq [155]. The hypersensitivity sites identified using this
technique highlight the positions of regulatory elements such as promoters, silencers, and
enhancers. A similar technique, using the enzyme micrococcal nuclease, is called MNase-
seq [156,157], and identifies the positions of nucleosomes. As nucleosomes are scarcer in
open chromatin, these data give an inverse signal to hypersensitivity sites identified by
DNase-seq. A more recent technique called the assay for transposase accessible chromatin
(ATAC-seq) [158] uses a modified hyperactive transposase enzyme Tn5 to fragment and
load sequencing adaptors to open chromatin regions. ATAC-seq typically requires fewer
cells and less time to perform compared to DNase-seq, although single-cell protocols have
now been developed for both methods [159,160].

On a larger scale, the 3D folded structure allows distal enhancer and silencer elements
to enter close contact with the gene to perform their respective functions on gene expres-
sion [161]. Identifying this structure allows linkages between genes and distal regulatory
elements to be identified. These sorts of long-range interactions can be studied using
chromosome conformation capture (3C) [162], and related methods, such as 3C-on-chip
(4C) [163] and 3C carbon copy (5C) [164]. These older techniques can study only small
parts of the genome. A more recent technique, Hi-C [165], could originally study the
structure of the whole genome only at low resolution (≈ 1 Mbp), but later refinements of
the method [166,167] have allowed for improved resolution and signal-to-noise ratios.

3.3. From Candidate Genes to Causative Variants

The results of GWAS and similar experiments are typically genomic intervals containing
several associated variants that are in strong LD with one another. Although candidate causal
genes may be selected using known pathways, gene-expression data, or chromatin structure,
as discussed above, for some applications it is useful or necessary to know the causal variant
underlying the QTL. These applications include improving the accuracy of genomic selection,
performing genetic testing, or creating gene-edited animals [168]. However, identifying the
causal variant using purely statistical or bioinformatics approaches is typically not possible, as
variants in strong LD cannot be distinguished from one other statistically.

In some cases, variant annotation (using tools such as SnpEff [169] or Ensembl’s
Variant Effect Predictor [170]) can highlight missense or nonsense mutations that will make
stronger candidates [41], but many QTL are driven by regulatory effects rather than coding
ones. This means that other tools will be needed to resolve QTL with underlying regulatory
effects. One commonly used technique for discovering cis-regulatory elements (CREs) is
transcription factor binding site (TFBS) prediction. Several tools have been developed
for this, generally using information from databases containing binding site motifs for
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large numbers of transcription factors, such as TRANSFAC [171] and JASPAR [172]. A
second approach to investigating regulatory effects is to use a reporter assay, where the
effects of putative promoter variants can be tested against the expression of a reporter
gene such as GFP. This method has recently been scaled up to test thousands of variants
simultaneously using a massively parallel reporter assay (MPRA) [173]. A third method is
to use CRISPR-Cas9 or other gene-editing technologies to test putative regulatory sequences,
either by deleting them using NHEJ, or by editing in alleles of interest using HDR and then
observing the resulting effect on gene expression, often using single-cell RNA-seq. Methods
incorporating CRISPR include Perturb-seq [174], CROP-seq [175], and HCR-Flowfish [176].

4. Conclusions

Over the last twenty years since the seminal work of Grisart et al. [42] showed that
the DGAT1 gene underlies the large milk QTL on BTA14, a large number of milk-related
QTL have been identified in cattle, and candidate causative genes have been proposed for
many of them. In the coming years, we can expect that sequence-resolution data sets will
continue both to grow and diversify to include additional breeds from around the world.
These larger, more diverse data sets will likely empower the discovery of many novel QTL.
Although proving the causality of genes and variants underlying these QTL will likely
remain difficult, the use of molecular phenotypes, massively parallel reporter assays, and
CRISPR will extend the list of proven causatives. This new information should provide
greater insights into the genes and pathways underlying the initiation and maintenance of
lactation in mammals. Knowledge of causative genes and variants may also improve the
accuracy of genomic selection in animal breeding, which would accelerate genetic gain and
improve on-farm productivity. Causal variants will also provide for gene editing to rapidly
spread beneficial variants through the population, should future regulatory environments
allow it.
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BTA Bos taurus (cow) chromosome
CRISPR Clustered regularly interspaced short palindromic repeats
eQTL Expression quantitative trait locus
FT-MIR Fourier-transform mid-infrared
GM-CSF Granulocyte-macrophage colony-stimulating factor
GWAS Genome-wide association study
HDR Homology-directed repair
HPLC High-performance liquid chromatography
IL Interleukin
LD Linkage disequilibrium
Mbp Million base pairs
MFG Milk fat globules
MPRA Massively parallel reporter assay
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NHEJ Non-homologous end joining
OAR Ovis aries (sheep) chromosome
qPCR Quantitative polymerase chain reaction
QTL Quantitative trait locus
TDT Transmission disequilibrium test
TFBS Transcription factor binding site
TWAS Transcriptome-wide association scan
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