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Highlights:
What are the main findings?

• Differentially expressed milk fat QTL genes explored with whole genome se‑quencing for vari‑
ant analysis.

• Identified non‑synonymous SNPs for hub and bottleneck QTL genes associated with milk
fat traits.

What is the implication of the main finding?

• Identified differential pattern(s) of SNPs in fat QTLs between high and low milk yield breeds.
• Impact of the identified SNP pattern(s) on milk fat traits can be further explored.

Simple Summary: Milk fat is a crucial trait that varies significantly among cattle breeds and deter‑
mines the milk quality and pricing value. Indigenous breeds have disparity in milk quantity and
quality. Our study is one of a kind which helps to decipher the variations at the genetic level cor‑
related with transcriptional level among high and low milk‑yielding cattle breeds exploring the fat
QTLs. We assessed and unveiled a few key differences between the high and low‑milk‑yield breeds.

Abstract: The effect of breed on milk components—fat, protein, lactose, and water—has been ob‑
served to be significant. As fat is one of the major price‑determining factors for milk, exploring the
variations in fat QTLs across breeds would shed light on the variable fat content in their milk. Here,
on whole‑genome sequencing, 25 differentially expressed hub or bottleneck fat QTLs were explored
for variations across indigenous breeds. Out of these, 20 genes were identified as having nonsynony‑
mous substitutions. A fixed SNP pattern in high‑milk‑yielding breeds in comparison to low‑milk‑
yielding breeds was identified in the genes GHR, TLR4, LPIN1, CACNA1C, ZBTB16, ITGA1, ANK1,
and NTG5E and, vice versa, in the genesMFGE8, FGF2, TLR4, LPIN1, NUP98, PTK2, ZTB16, DDIT3,
and NT5E. The identified SNPs were ratified by pyrosequencing to prove that key differences exist
in fat QTLs between the high‑ and low‑milk‑yielding breeds.

Keywords: milk fat; whole‑genome sequencing; SNPs; genomic variation; variant calling;
indigenous breeds

1. Introduction
India has become the largest milk producer in the world [1]. Several schemes involv‑

ing crossbreeding have been implemented to enhance milk production in the country. As
a result, the number of crossbred cattle increased and contributed to around 28 percent of
total milk production in India (ca. 188 million tons), surpassing the contribution of indige‑
nous cattle [2]. However, indigenous cattle breeds are well known for their heat tolerance

Animals 2023, 13, 884. https://doi.org/10.3390/ani13050884 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani13050884
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0001-5778-6831
https://orcid.org/0000-0003-3565-1543
https://doi.org/10.3390/ani13050884
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani13050884?type=check_update&version=2


Animals 2023, 13, 884 2 of 15

and disease resistance [3], and the crossbreds have been found to be susceptible to tropical
diseases and harsh climatic conditions and require constant good management practices.
To strike a balance between increasing demand formilk and the change in the environment
due to global warming, exploring the genomic merit of indigenous cattle/breeds becomes
even more important.

Milk being a polygenic trait with medium heritability, the majority of animal breed‑
ing research has centered on quantitative trait loci (QTLs) with moderate to large effects
on milk production traits. The DGAT1 on chromosome 14 [4–6], the growth hormone re‑
ceptor (GHR) on chromosome 20 [7], and the ABCG2 [8] or SPP1 (Osteopontin) on chro‑
mosome 6 [9] are well‑known QTL genes that have been fully characterized with a strong
putative or well‑confirmed causal mutation. The two QTLs DGAT1 (K232A) and ABCG2
(Y581S) in Bos taurus have been suggested to be associated with increased fat yield and fat
and protein percent in milk with a decrease in milk yield [6,8,10–13]. The GHR mutation
F279Y has been observed to have a significant effect on milk composition (fat and protein
percentage) and milk yield [14]. The locus c.8514C > T in the intronic region of SPP1 has
also been found to have a significant effect on milk production and milk composition [15].
However, theDGAT1 and ABCG2 genes have been found to be fixed among Indian breeds
Sahiwal, Rathi, Deoni, Tharparkar, Red Kandhari, and Punganur [16]. Currently, the ani‑
mal QTL database (QTLdb) contains 1,93,216 QTLs for different bovine traits, out of which
83,458 QTLs have been reported for milk traits [17].

Milk is the primary source of nutrition for infants, as well as adults. Besides its nu‑
tritional value, it has a major role in imparting growth and immunity through intrinsic
milk components such as growth factors, chemokines, anti‑inflammatory molecules, an‑
tioxidants, prebiotics, and probiotics [8,9]. Milk has four major components, fat (3.6%),
protein (3.2%), lactose (4.7%), and water (87%), along with other various kinds of miner‑
als, enzymes, vitamins, and dissolved gases. Various research studies have shown that
several factors, such as lactation stage, genetics, environmental factors, and diet manage‑
ment, influence milk quality. The variability of milk composition among popular dairy
breeds Brown Swiss, Holstein Friesian, Jersey, Simmental, Grey Alpine, and Rendena un‑
der the same dairy management practices has been explored, and Holstein Friesian had
higher milk yield with lower fat content (27.45 kg/d, 4.04%) [18], whereas Jersey had lower
milk yield with relatively higher fat content (17.27 kg/d, 5.65%) [13]. A low fat percentage
has also been reported for Ayrshire, Brown Swiss, Guernsey, Holstein Friesian, and Jer‑
sey breeds in the United States [19]. Furthermore, the effect of breed has been found to
significantly influence the water (p ≤ 0.0001), protein (p ≤ 0.05), total solids (p ≤ 0.05), fat
(p ≤ 0.05), milk urea nitrogen (p ≤ 0.001), and ash (p ≤ 0.0001) content of milk [20].

India, with a huge diversity of 50 cattle breeds, forms an ideal ground to study ge‑
netic variation at the genomic level vis‑à‑vis milk traits [21]. The cost of the milk world‑
over varies with the percentage of fat present in the milk. Exploring the variations in fat
QTLs across breeds would shed light on the variable fat content in their milk. No such
studies have been reported in the past for indigenous cattle breeds to evaluate the varia‑
tion across indigenous breeds within the fat QTLs. Therefore, the objective of the present
studywas to explore genomic variation(s) within the fat QTLs thatwere identified to be dif‑
ferentially expressed in lactation across indigenous breeds, which were divided into high‑
(Sahiwal and Gir) and low‑milk‑yield (Gaolao, Deoni, Pulikulam, Hallikar, Dangi, and
Amritmahal) groups.

2. Materials and Methods
2.1. Data Retrieval from the Public Repository

QTL genes associated with milk fat traits (milk fat content and percentage) and
metabolismwere extracted from the Animal QTLdb database [22], and the duplicates were
removed. QTL genes (286 and 256 (total of 542)) were identified for milk fat yield andmilk
fat percentage, respectively, with 417 unique genes for both traits (Supplementary File 1).
Functional annotation of the 125 QTL genes commonly associated with milk fat yield and
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milk fat percentage was performed in g:Profiler [23] and ShinyGO [24] to identify the en‑
riched biological processes. Protein interaction network analysis of the 417 genes was per‑
formed using the Search Tool for the Retrieval of Interacting Genes Search Tool for the
Retrieval of Interacting Genes 11.0 (STRING 11.0) database at a confidence score value of
0.5 against model species Bos taurus [25]. The interaction network was imported into the
Cytoscape 3.8.0 software (Institute for System Biology, CA, USA) for visualization. The
hub and bottleneck genes were identified in the interaction network using the Cytohubba
plugin of Cytoscape [26] considering the degree of association between the genes and by
taking the bottleneck approach, which takes into account the top 20% of the degree of dis‑
tribution of the proteins in the network [26]. A total of 74 QTL genes were identified to
be hub/ bottleneck genes. The hub genes were the genes that had the highest degree of
association, and the bottleneck genes were the key connectors having a high betweenness
(measure the centrality of the nodes) among different clusters in protein interactions [27].

2.2. Bioinformatics Analysis of Milk Transcriptome
The publicly available milk transcriptome bioproject ID (PRJNA419906) was used to

analyze the expression of QTL genes associated with milk fat traits. This bioproject was
considered in this study as it has data generated from Jersey (a breed with high fat con‑
tent ranging from 4.10–4.86%) and Kashmiri (a breed with low fat content ranging from
3.20–3.94%) [28]. The datawere generated frommammary epithelial cells (MECs) collected
on Day 15 (D15), D90, and D250 from six lactating cows (three Jersey and three Kashmiri
cattle). These days represent early, mid‑, and late lactation, respectively [28]. The data
were downloaded from the Sequence Read Archive (SRA) of the NCBI database, and the
fastq‑dump program of SRAtoolkit [29] was used to extract the fastq reads. Quality assess‑
ment and control of RNA‑seq data were performed through Fast QC Version 0.11.5 [30],
MultiQC Version 1.8 [31], and trimmomatic Version 0.39 [32]. All the high‑quality reads
weremapped to theBos indicus genome (GCF_003369695.1) using STARVersion 2.5.4bwith
the default parameters [33]. Gene expressionwas estimated using RSEM [34], and differen‑
tial gene expression was performed through the DESeq2‑R package [35]. The differentially
expressed genes among the 74 fat QTL hub and bottleneck genes were identified.

2.3. Breed Selection, Sampling, Genomic DNA Extraction, and Whole‑Genome Sequencing
Indigenous cattle breeds for the proposed study were grouped into high‑ and low‑

milk‑yield‑breed groups. The high‑milk‑yield group (avgmilk yield per day 8 kg) included
Sahiwal (n = 4) andGir (n = 4), and the low‑milk‑yield group (avgmilk yield per day 2.5 kg)
included 6 animals representing the breeds Gaolao, Deoni, Hallikar, Dangi, Pulikulam,
and Amritmahal [36]. Animals of different breeds were considered in the study to have a
true representation of both the high‑ and low‑milk‑yield groups. Genomic DNA (gDNA)
was extracted from the blood samples of the animals from these breeds using the nucle‑
ospin blood L‑kit (Macherey‑Nagel), and the integrity of the genomic DNA was checked
on agarose. After estimating the concentration of gDNA (Nanodrop2000, ThermoFischer
Scientific), DNA libraries were prepared as per the manufacturer’s protocol (Illumina se‑
quencing platform) for paired‑end sequencing (2150 bp).

2.4. Bioinformatic Analysis (Variant Calling, SNP Annotation, and Functional Enrichment)
Sequencing data generated on an Illumina platform were pre‑processed for quality

assessment and improvement (base quality, nucleotide distribution, GC content, adap‑
tor sequence, duplication, length distribution, etc.) by FastP [37]. All high‑quality reads
weremapped to the Bos indicus reference genome (Brahman‑GCF_003369695.1) using BWA
aligner [38]. Variant calling was performed from the aligned data using freebayes [39] and
GATK [40]. For theGATK‑ and freebayes‑generated vcf files, only SNPswere selected, leav‑
ing aside all indels and insertions. After freebayes variant calling, the low‑quality variants
were filtered by vcftools Version 1.10 [41] for Q > 20. In the GATK pipeline, the paired‑
end Illumina Hi‑Seq raw reads for each individual were first converted into an unaligned
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bam; the illumina adapters were marked; the samwas converted back to FASTQ; the reads
were mapped to the reference Brahman genome (GCF 003369695.1); the unaligned and
mapped bams were combined. Finally, the duplicate marked clean bam was used to gen‑
erated GVCF for each animal using GATK haplotypecaller. The GVCFs generated for all
the animals were combined to call the variants using the genotypeGVCF module. The
parameters for GATK VariantRecalibration to generate the VQSLOD score were QD < 2.0,
MQRankSum <−8.5, ReadPosRankSum <−8.0, FS > 60.0, MQ < 40.0, SOR > 3.0, andDP 30x
(depth or coverage). The final set of SNPs after recalibration by GATK included the selec‑
tion of SNPs that passed. We further used the GATK‑filtered set and the freebayes‑filtered
set to identify the common SNPs across these variant callers. From this vcf file, the SNPs in
the differentially expressed hub and bottleneck genes (i.e., genes that are hub/bottleneck
and are differentially expressed as identified in Section 2.2) were extracted using an in‑
house perl script. The non‑synonymous SNPs (nsSNPs) in the coding regions of these
were identified through the SnpEff tool [42].

2.5. SNP Validation through Real‑Time Sequence‑Based Pyrosequencing
Three nsSNPs that were found to be distinctly different between the high‑ and low‑

milk‑yield groups were selected for validation and were genotyped in PyroMark Q48 (Qi‑
agen) as per the manufacturer’s protocol. These nsSNPs were found in the differentially
expressed hub and bottleneck genes GHR, LPIN1, and TLR4. GHR was one of the genes
having the maximum number of interactions in the network. LPIN1 had the maximum
SNP count of 10, whereas TLR4was one of the top 10 highly upregulated genes. PCR and
sequencing primers were designed using PyroMark Assay Design Software 2.0 (Qiagen).
The PCR amplification was performed in a 20 µL reaction, with the thermal cycling condi‑
tions, which included an initial denaturation of 95 ◦C for 3 min followed by 40 cycles of
95 ◦C for 30 s, 65 ◦C for 30 s, 72 ◦C for 1 min, and a final extension of 72 ◦C for 10 min.
Sequence analysis was performed by PyroMark Q48 Autoprep software Version 2.4.2 in
SNP analysis assay mode for 14 animals.

The schematic representation of the study is given in Supplementary File 1: Figure S1.

3. Results
3.1. Meta‑Analysis of Cattle‑Milk‑Fat‑Component‑Associated QTLs and Related Genes

Animal QTLdbwas used to extract fat‑trait‑associatedQTL genes. In theQTLdb, after
the removal of duplicate genes (Supplementary File 1), 286 and 256 genes were found asso‑
ciated with milk fat yield and percentage, respectively, whereas 125 common genes were
found betweenmilk fat yield and percentage (Figure 1A). A total of 417 unique genes were
found to be associated with milk fat and other milk traits. These genes were also found to
be annotated for other milk traits such as milk yield, protein yield, and percentage.

Among all genes, 24 genes were found to be associated with both fat yield and fat per‑
centage traits only (Supplementary File 1). The common genes (125) were found enriched
in biosynthetic‑, catabolic‑, regulatory‑, transportation‑, and cellular‑response‑associated
metabolic processes. Among the metabolic genes associated with milk fat traits, the genes
associated with milk fatty acid metabolism were FASN, GPAT4, DGKG, ELOVL6, and
LIPIN1 (Supplementary File 5: Table S1).

3.2. Milk Transcriptome Data Processing and Gene Expression Analysis of Fat QTL Genes
The publicly available RNA‑seq bioproject (PRJNA419906) has library sizes ranging

from 7764992200–13682843400 bp and 6842583600–12088807400 bp, for Jersey and Kash‑
miri, respectively (Supplementary File 5: Figure S2A). Further, gene expression counts per
million (CPM), principal component analysis (PCA), and multidimensional scaling (MDS)
(Supplementary File 5: Figure S2A,C,D) of the samples were assessed. The PCA andMDS
plots of sequenced RNA‑seq libraries showed a high level of similarity within breeds and
relatively low variation between the lactation stages of breeds.
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Figure 1. Venn diagram showing the hub and bottleneck genes: (A) QTL genes ofmilk fat percentage
(256) and milk fat yield (286), (B) genes of top 50 hub and bottleneck genes, (C) genes of 17 hub and
18 bottleneck differentially expressed genes. MFP = milk fat percentage, MFY = milk fat yield.

A total of 70 genes were found to be upregulated and 52 genes downregulated in the
Jersey breed in comparison with the Kashmiri breed. Differentially expressed transcripts
(DETs) were also explored for fat QTL genes (Supplementary File 2). The volcano plots of
differentially expressed genes (DEGs) and DETs depicting the distribution of upregulated
and downregulated genes are shown in Figure 2.
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Figure 2. Differentially expressed milk‑trait‑associated QTL genes and transcripts in the milk tran‑
scriptome of Jersey and Kashmiri breeds (A) DEGs and (B) DETs. Volcano plot showing the signif‑
icance versus the fold change. Blue dots (p < 0.05 and log2FC > 2): all Bos indicus genes; green dots
(p < 0.05): QTL genes; orange dots (p < 0.05): bottleneck genes; yellow dots (p < 0.05): hub genes; red
dots (p < 0.05): genes possessing hub and bottleneck features.

In both the Jersey and Kashmiri breeds, Beta‑lactoglobulin (LOC113901792), Casein
beta (CSN2), and Casein alpha s1 (CSN1S1) were identified to be among the highly ex‑
pressed top 20 genes (Supplementary File 5: Table S2). The DETs are listed in
Supplementary File 2. In the Jersey breed,CXCL‑8, TLR4, andOLR1were among the highly
upregulated genes. CXCL‑8/IL8, produced by macrophages, epithelial cells, and airway
smooth muscle cells, is a neutrophil chemotactic factor that induces chemotaxis in target
cells and other granulocytes to initiate movement toward infection sites, whereas OLR1, a
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receptor on macrophages, epithelial cells, and airway smooth muscle cells, is involved in
rapid oxidization of low‑density lipoprotein (LDL), which is more readily recognized by
the TLR4 receptor. The list of top 10 upregulated and downregulated DEGs is given in
Supplementary File 5: Table S3.

3.3. Protein Interaction Network Analysis of Milk Fat QTL Genes
Aprotein interaction network analysis was performed among 417milk fat QTL genes,

and the interaction network was generated with 403 nodes and 671 edges. Based on the
degree of association, 50 hub and 50 bottleneck genes were selected from the network
(Supplementary File 2). A total of 74 QTL genes were found to be either hub or bottleneck
genes (Figure 1B). Out of these, 25 genes (which accounted for 18 hubs/17 bottleneck genes)
were differentially expressed in Jersey and Kashmiri (Figure 1C, Supplementary File 2).
Out of these genes, ten genes possessed both hub and bottleneck gene characteristics. The
SRC and DGAT1 genes were among the top differentially expressed hub and bottleneck
genes (Table 1). SRC had the highest degree of association (30) with a log2 fold change of
1.480587, followed by DGAT1 with a degree of 25 and a log2FC of 0.921104.

Table 1. Differentially expressed hub and bottleneck QTL genes of the protein interaction network
of fat QTL genes.

Gene ID log2FC p‑Value Trait Name Description

Hub genes

ENSBTAG00000008938 (SRC) 1.480587 0.002561 MFY; MPP; MPY; TDMY SRC proto‑oncogene, non‑receptor
tyrosine kinase

ENSBTAG00000026356 (DGAT1) 0.921104 0.032625 MFP; MFY; MPP.
MPY; MKCP; MY Diacylglycerol O‑acyltransferase 1

ENSBTAG00000007867 (STAT1) 1.938208 0.0000648 MFP; MPP; MPY; MY Signal transducer and activator of
transcription 1

ENSBTAG00000005691 (FGF2) −1.55871 0.042228 MFY; MY Fibroblast growth factor 2

ENSBTAG00000019716 (CXCL8) 7.097327 0.000000000000077 MFY; MPP; MPY;TDMY C‑X‑C motif chemokine ligand 8

ENSBTAG00000006240 (TLR4) 3.918383 0.0000000123 MFP; MPP; MY Toll like receptor 4

ENSBTAG00000001335 (GHR) −1.97171 0.02566 MFP; MFY; MPP; MPY; MY Growth hormone receptor

ENSBTAG00000012855 (LPL) −1.61377 0.008224 MFP; MFY; MPP Lipoprotein lipase

ENSBTAG00000009578 (PTK2) −0.97617 0.043672 MFP; MFY; MPP; MPY; MY Protein tyrosine kinase 2

ENSBTAG00000000546 (ERBB2) −1.89535 0.048867 MFP; MFY; MPP; MPY; MY Erb‑b2 receptor tyrosine kinase 2

ENSBTAG00000021527 (IGF1R) 1.798566 0.003947 MFP; MFY; MPP; MPY; MY Insulin like growth factor 1 receptor

ENSBTAG00000007476 (BTRC) 2.698919 0.0000384 MFY Beta‑transducin repeat containing E3
ubiquitin protein ligase

ENSBTAG00000014357 (SDC2) −1.96312 0.029226 MFP; MPP Syndecan 2

ENSBTAG00000048655 (NT5E) −2.97069 0.000136 MFP; MFY; MPY 5′‑nucleotidase ecto

ENSBTAG00000007689 (LPIN1) −2.38799 0.001822 MFP; MFY; MPP;
MPY; TDMY Lipin 1

ENSBTAG00000003300 (MFGE8) −1.90426 0.015698 MFP; MPP Milk fat globule EGF and factor V/VIII
domain containing

ENSBTAG00000020536 (HERC6) 1.37883 0.00206 MFP; MFY; MPP; MPY HECT and RLD domain containing E3
ubiquitin protein ligase family member 6

Bottleneck Genes

ENSBTAG00000026356 (DGAT1) 0.921104 0.032625 MFP; MFY; MPP; MPY;
MKCP; MY Diacylglycerol O‑acyltransferase 1

ENSBTAG00000008938 (SRC) 1.480587 0.002561 MFY; MPP; MPY; TDMY SRC proto‑oncogene, non‑receptor tyrosine
kinase

ENSBTAG00000008432 (NUP98) 1.307627 0.033165 MFP Nucleoporin 98 and 96 precursor

ENSBTAG00000027629 (ANK1) −2.3949 0.000752 MFY; MPY Ankyrin 1

ENSBTAG00000011266 (ZBTB16) −1.84946 0.011504 MFY Zinc finger and BTB domain containing 16

ENSBTAG00000016525 (ITGA1) −2.10583 0.004815 MFY; MPP; MPY; MY Integrin subunit alpha 1
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Table 1. Cont.

Gene ID log2FC p‑Value Trait Name Description

ENSBTAG00000019716 (CXCL8) 7.097327 0.000000000000077 MFY; MPP; MPY; TDMY C‑X‑C motif chemokine ligand 8

ENSBTAG00000007867 (STAT1) 1.938208 0.0000648 MFP; MPP; MPY; MY Signal transducer and activator of
transcription 1

ENSBTAG00000000546 (ERBB2) −1.89535 0.048867 MFP; MFY; MPP; MPY; MY Erb‑b2 receptor tyrosine kinase 2

ENSBTAG00000007476 (BTRC) 2.698919 0.0000384 MFY Beta‑transducin repeat containing E3
ubiquitin protein ligase

ENSBTAG00000010106 (CCND3) −1.78227 0.000135 MFP; MPP; MPY; MY Cyclin D3

ENSBTAG00000001335 (GHR) −1.97171 0.02566 MFP; MFY; MPP; MPY; MY Growth hormone receptor

ENSBTAG00000006240 (TLR4) 3.918383 0.0000000123 MFP; MPP; MY Toll like receptor 4

ENSBTAG00000010660 (CACNA1C) −2.82445 0.0000723 MFY Calcium voltage‑gated channel subunit
alpha1 C

ENSBTAG00000012855 (LPL) −1.61377 0.008224 MFP; MFY; MPP Lipoprotein lipase

ENSBTAG00000031544 (DDIT3) 2.367342 0.0000047 MFP; MFY; MPP; MPY; MY DNA damage inducible transcript 3

ENSBTAG00000005091 (DGKG) 4.032464 0.000000442 MFP; MPP; MY Diacylglycerol kinase gamma

ENSBTAG00000048655 (NT5E) −2.97069 0.000136 MFP; MFY; MPY 5′‑nucleotidase ecto

MFP, milk fat percentage; MFY, milk fat yield; MPP, milk protein percentage; MPY, milk protein yield; MKCP,
milk kappa casein protein; MY, milk yield.

3.4. Variant Analysis of Hub and Bottleneck Genes among Indigenous Breeds
Illumina short read (Paired end) data of 14 samples from both groups of high‑ and‑

low‑milk‑yield breeds had 12.77 billion reads. After preprocessing, clean data included
11.02 billion reads, which is ca. 1516 Gb data. Each dataset had a minimum sequencing
depth of≥30xwith an average GC content of 45.26%. The processed datasets contained on
average 97.91%Q20 bases and 93.97%Q30 bases. The high‑quality trimmeddata aligned to
the Brahman reference genome with an overall alignment rate of >95%. Initial variant call‑
ing on the aligned data provided 63,357,363 variants, which were filtered for high quality.
After quality filtering onQ20, a total of 33,976,892 SNPswere identified across the genomes
(Supplementary File 3). Upon GATK analysis, 39,625,917 variants were found to pass the
variant calibration. A total of 25,956,231 SNPs were found to be common among the vari‑
ant callers. From these, SNPs in the 25 differentially expressed hub and bottleneck milk
fat QTL genes were extracted, out of which 20 genes were found to have non‑synonymous
substitutions in the coding regions (Table 2).

The variants identified in these 20 genes were further explored for two kinds of ge‑
nomic variant patterns, i.e., fixed SNP pattern in the cattle of the high‑milk‑yield group vs.
variable SNP pattern in cattle of the low‑milk‑yield group, or vice versa. The fixed SNP
pattern in high‑milk‑yield breeds in comparison to low‑milk‑yield breeds was observed
in the genes GHR, TLR4, LPIN1, CACNA1C, ZBTB16, ITGA1, ANK1, and NTG5E (Table 3),
and the opposite was observed in the genes MFGE8, FGF2, TLR4, LPIN1, NUP98, PTK2,
ZTB16, DDIT3, and NT5E (Table 4). SNPs C/G, C/A, and G/A were confirmed in GHR,
TLR4, and LPIN1 in the Amritmahal, Pulikulam, and Dangi breeds (low‑milk‑yield) as
against SNPs C/C, C/C, and G/G in the Gir and Sahiwal breed (high‑milk‑yield), respec‑
tively (Figure 3) (Supplementary File 4). In the TLR4 gene, variant g.107083326A>C was
found in the low‑milk‑yield group, but the same variant was fixed in the high‑milk‑yield
group. Similarly, in the LPIN1 gene variant, g.85211528C>G was found in the low‑milk‑
yield group, but this variant was fixed in the high‑milk‑yield group. In the NUP98 gene
and LPIN1 variants, g.32707374G>A and g.85205642T>G, respectively, were found in the
high‑milk‑yield group, but were found to be fixed (g.32707374G>G; g.85205642T>T) in the
low‑milk‑yield group. Another LPIN1 variant, g.85205642T>G, was observed in the high‑
milk‑yield group, but was fixed in the low‑milk‑yield group. LPIN1 and ITGA1 had the
maximum SNP count of 10, and the genes PTK2, IGF1R, DDIT3, CXCL8, and LPL had the
least SNP count (Table 2).
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Table 2. Summary of variant analysis of differentially expressed hub and bottleneck genes.

Gene ID Chr Start End SNP Count BiSNP

ENSBTAG00000007689 (LPIN1) NC_040086.1 85168990 85299051 10 9

ENSBTAG00000009578 (PTK2) NC_040089.1 2793205 2986179 1 1

ENSBTAG00000026356 (DGAT1) NC_040089.1 547336 558673 2 2

ENSBTAG00000014357 (SDC2) NC_040089.1 67885139 68006993 2 2

ENSBTAG00000008432 (NUP98) NC_040090.1 32662235 32749000 2 2

ENSBTAG00000011266 (ZBTB16) NC_040090.1 59519169 59723887 3 3

ENSBTAG00000005691 (FGF2) NC_040092.1 37900967 37980582 2 2

ENSBTAG00000005091 (DGKG) NC_040076.1 80595457 80821976 3 3

ENSBTAG00000016525 (ITGA1) NC_040095.1 25934013 26116012 10 9

ENSBTAG00000001335 (GHR) NC_040095.1 31683009 31993386 6 6

ENSBTAG00000003300 (MFGE8) NC_040096.1 20516116 20540642 4 4

ENSBTAG00000021527 (IGF1R) NC_040096.1 7856996 8161856 1 1

ENSBTAG00000027629 (ANK1) NC_040102.1 36035255 36276595 5 4

ENSBTAG00000010660 (CACNA1C) NC_040080.1 11268673 11659827 3 3

ENSBTAG00000031544 (DDIT3) NC_040080.1 64346323 64350540 1 1

ENSBTAG00000020536 (HERC6) NC_040081.1 36492384 36549974 9 9

ENSBTAG00000019716 (CXCL8) NC_040081.1 88364933 88368713 1 1

ENSBTAG00000006240 (TLR4) NC_040083.1 107075099 107086126 6 5

ENSBTAG00000012855 (LPL) NC_040083.1 66717576 66744131 1 1

ENSBTAG00000048655 (NT5E) NC_040084.1 64029657 64102659 6 6
BiSNP, biallelic SNP.

Table 3. Genes with a fixed SNP pattern in high‑milk‑yield breeds (Sahiwal and Gir) and the re‑
spective variable SNP pattern in low‑milk‑yield breeds (Gaolao, Deoni, Pulikulam, Hallikar, Dangi,
and Amritmahal).

Gene GHR GHR TLR4 TLR4 LPIN1 LPIN1 LPIN1 CACNA1C ZBTB16 ITGA1 ANK1 ANK1 NT5E NT5E

Genomic location 31685773 31685984 107083326 107083914 85187074 85209309 85211528 11271411 59717709 25983121 36054194 36076037 64035090 64065719

Genomic
Variant

Ref C A A C G C C C C C G G C G

Alt G G C A A T G T T T A A T A

Protein Variant
Pos(Ref/Alt)

392
(G/A)

462
(N/D)

151
(A/T)

347
(N/G)

772
(R/K)

631
(A/E)

542
(R/P)

204
(E/K)

393
(V/M)

588
(V/M)

111
(P/S)

127
(R/H)

475
(C/F)

151
(A/V)

Sahiwal 1 C/C A/A A/A C/C G/G C/C C/C C/C C/C C/C G/G G/G C/C G/G

Sahiwal 2 C/C A/A A/A C/C G/G C/C C/C C/C C/C C/C G/G G/G C/C G/G

Sahiwal 3 C/C A/A A/A C/C G/G C/C C/C C/C C/C C/C G/G G/G C/C G/G

Sahiwal 4 C/C A/A A/A C/C G/G C/C C/C C/C C/C C/C G/G G/G C/C G/G

Gir 1 C/C A/A A/A C/C G/G C/C C/C C/C C/C C/C G/G G/G C/C G/G

Gir 2 C/C A/A A/A C/C G/G C/C C/C C/C C/C C/C G/G G/G C/C G/G

Gir 3 C/C A/A A/A C/C G/G C/C C/C C/C C/C C/C G/G G/G C/C G/G

Gir 4 C/C A/A A/A C/C G/G C/C C/C C/C C/C C/C G/G G/G C/C G/G

Amritmahal C/C A/A A/A C/C G/A C/C C/C C/C C/C C/C G/G G/G C/C G/G

Dangi C/G A/G A/C C/A G/G C/C C/G C/C C/T C/C G/G G/G C/C G/G

Gaolao C/G A/A A/C C/C G/G C/T C/C C/C C/C C/C G/G G/G T/T G/G

Deoni C/C A/A A/C C/C G/G C/C C/G C/T C/T C/C G/G G/G C/C G/A

Pulikulam C/G A/A A/A C/C G/A C/C C/T C/C C/C C/T G/A G/G C/C G/G

Hallikar C/C A/A A/A C/C G/A C/C C/G C/C C/C C/C G/G G/A C/C G/G
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Table 4. Genes with fixed SNP pattern in low‑milk‑yield breeds (Sahiwal and Gir) and respec‑
tive variable SNP pattern in high‑milk‑yield breeds (Gaolao, Deoni, Publicum, Hallikar, Dangi
and Amritmahal).

Gene MFGE8 FGF2 TLR4 LPIN1 NUP98 PTK2 ZBTB16 ZBTB16 DDIT3 NT5E

Genomic location 20518217 37920746 107080326 85205642 32707374 2973942 59717979 59718206 64346576 64102580

Genomic
Variant

Ref A G G T G A T G C G

Alt T A A G A C C A T T

Protein Variant
Pos(Ref/Alt)

328
(S/R)

19
(G/R)

67
(R/K)

766
(S/P)

548
(H/Y)

904
(D/A)

598
(G/R)

627
(A/V)

87
(S/L)

8
(T/N)

Sahiwal 1 A/A G/G G/A T/T G/G A/A T/T G/G C/T G/G

Sahiwal 2 A/A G/G G/G T/G G/G A/A T/T G/G C/C G/T

Sahiwal 3 A/A G/A G/G T/T G/A A/A T/T G/A C/C G/G

Sahiwal 4 A/A ‑ G/G T/T G/A A/A T/T G/G C/C G/G

Gir 1 A/T ‑ G/G T/T G/G A/A T/T G/G C/C G/G

Gir 2 A/A ‑ G/G T/T G/G A/A T/T G/G C/C G/G

Gir 3 A/A G/G G/G T/T G/G A/C T/C G/G C/C G/G

Gir 4 A/A G/G G/G T/T G/G A/A T/T G/G C/C G/G

Amritmahal A/A G/G G/G T/T G/G A/A T/T G/G C/C G/G

Dangi A/A G/G G/G T/T G/G A/A T/T G/G C/C G/G

Gaolao A/A G/G G/G T/T G/G A/A T/T G/G C/C G/G

Deoni A/A G/G G/G T/T G/G A/A T/T G/G C/C G/G

Pulikulam A/A G/G G/G T/T G/G A/A T/T G/G C/C G/G

Hallikar A/A G/G G/G T/T G/G A/A T/T A/A C/C G/GAnimals 2022, 12, x FOR PEER REVIEW 12 of 18 
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Figure 3. Confirmation of mutations shown in pyrograms with PyroMark SNP analysis assays:
(A) GHR Gy392Ala (C>G) in Pulikulam (low‑milk‑yield breed) and (C/C) in Gir (high‑milk‑yield
breed); (B) LPIN1 a Arg772Lys (G>A) in Amritmahal (low‑milk‑yield breed) and (G/G) in Sahiwal
(high‑milk‑yield breed); (C) TLR4 a Asn347Gly (A>C) in Dangi (low‑milk‑yield breed) and (C/C) in
Gir (high‑milk‑yield breed); the pyroseq sequencing primer is in reverse.
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4. Discussion
The Bos indicus genome is an interesting model to study the genomic potential of dif‑

ferent indigenous cattle breeds such as Sahiwal, Gir, Amritmahal, Dangi, Gaolao, Deoni,
Pulikulam, and Hallikar, which are highly adapted to different tropical conditions with
varying milking potential. The availability of bovine QTL resources such as the Animal
QTL database and the collection of QTLs for different traits have provided the opportu‑
nity to investigate genomic variation among indigenous breeds for milk‑associated traits.
Milk quality such as fat yield and percentage are highly variable traits among breeds. Jer‑
sey is one among the high‑milk‑producing breeds worldwide, whereas Kashmiri is one of
the poorly performing breeds in the Kashmir region of India. Therefore, we aimed at dif‑
ferences in the expression of fat QTL genes between the two contrasting breeds, Jersey and
Kashmiri. In this study, significantly expressed hub and bottleneck fat QTL genes were
further analyzed to identify the genomic variants from the whole‑genome sequence data
between high‑ (Sahiwal and Gir) and low‑ (Amritmahal, Dangi, Gaolao, Deoni, Pulikulam,
and Hallikar) milk‑yield indigenous breeds. This understanding of low‑ and high‑milk‑
yield breeds for milk fat quality may help in enhancing the quality of milk in the long run.

To explore the fat QTL genes, MEC RNA‑seq data were processed and analyzed. The
high level of similarity within breeds and relatively low variation between lactation con‑
firmed the selection of RNA‑seq data to explore differences between breeds rather than to
explore difference in lactation stages of breeds. Among the highly expressed genes iden‑
tified, it was observed that the Jersey breed has allocated more resources for the immune
system, whereas the Kashmiri breed for regulation of ribosomal proteins. Among the top
10 upregulated genes, CXC motif chemokine ligand 8 was the most‑upregulated gene. It
is reported to be involved in various biological pathways such as increased insulin resis‑
tance, uncoupling of the GH/IGF1 axis, and an increase in mammary cell proliferation
to improve metabolic health and milk yield [43]. Diacylglycerol kinase gamma (DGKG),
another upregulated gene, is a member of the type I diacylglycerol kinases and is highly
upregulated (log2FC = 4.03) in Jersey. It plays a role in lipidmetabolism bymodulating the
balance between diacylglycerol and phosphatidic acid. Phosphatidic acid is a lipid second
messenger to activate protein kinase C isoforms, ras guanyl nucleotide‑releasing proteins,
and some transient receptor potential channels [44]. Most of the top‑upregulated genes
in Jersey have been found to have a role in adipogenesis (ETS2) [45], adipocyte differen‑
tiation (OLR1, PARM1) [46,47], glucose transport (SLC6A9) (log2FC = 4.49) [48], glucose
uptake (SLC45A4) [49], thyroid hormone synthesis (TG) [50], and aldosterone secretion
(KCNK9) [51]. The upregulation of these genes in Jersey indicates their involvement in
lipid biosynthesis in the mammary gland during lactation. Furthermore, UDP‑glucose
6‑dehydrogenase (UGDH), which is involved in the biosynthesis of glycosaminoglycans,
hyaluronan, chondroitin sulfate, and heparan sulfate, has been found (log2FC = 0.75) to be
upregulated in the Jersey breed. UGDH’s expression pattern in liver cells has been asso‑
ciated with an indispensable role in the metabolism of carbohydrates, fats, and proteins
in dairy cattle [52]. Moreover, UGDH has been found close to two reported QTLs for fat
yield, fat percentage, and protein yield [53].

During lactation, various morphological changes happen in the mammary tissue to
support cellular differentiation, tissue elasticity, and reduced fat storage capacity in the an‑
imal. UpregulatedGRH13 is a transcription factor that mediates the proliferation of epithe‑
lial cells [54]. Similarly, MTMR3/3‑PAP, a catalytically inactive member of the myotubu‑
larin gene family that coprecipitates the activity of lipid phosphatidylinositol 3‑phosphate‑
3‑phosphatase, is upregulated [55] in Jersey. Matrilin 2 (MATN2) and prolyl 4 hydroxy‑
lase (P4HA3), which are important to maintaining the newly synthesized collagen’s sta‑
bility, are also upregulated [56,57]. P4HA3 catalyzes the formation of 4‑hydroxyproline
(Hyp), which ensures the proper folding of procollagens during post‑translational mod‑
ification. The upregulation of MATN2 and P4HA3 probably may help in increasing the
elasticity of the udder gland in Jersey during lactation. Further, the downregulation of
MFGE8 and ELOVL16 may be responsible for the high fat content in milk and the shift to
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C18 from C16 fatty acids, respectively, in Jersey. MFGE8 regulates the absorption of free
fatty acids and increases intracellular triglycerides’ hydrolase activity, thereby restricting
the storage of fat [58], whereas ELOVL fatty acid elongase (ELOVL16) elongates C16 satu‑
rated and monounsaturated fatty acids to C18 fatty acids [59]. Further, IDH1, which cat‑
alyzes the conversion of isocitrate to α‑ketoglutarate and generates the primary source of
NADPH for de novo fatty acid synthesis [60], has been to be founddownregulated in Jersey
(log2FC =−1.632). The dysregulation of the genesMFGE8, EVOLVL16, and IDH1might be
responsible for the variation in the fat yield and composition in Jersey and Kashmiri cows.
In addition, the decreased expression of these genes may be linked to the increased expres‑
sion of genes involved in metabolism, glucose transport, and other transport activities,
leading to higher milk production performance in Jersey.

Among the tenQTLdbmilk andmilk trait genes thatwere differentially expressed and
had hub and bottleneck gene characteristics, four genes were found enriched in metabolic
pathways (Supplementary File 5: Table S1). SRC was identified as the top hub gene inter‑
acting with several genes in the protein–protein interaction network. SRC, a non‑receptor
tyrosine kinase, performs a wide variety of cellular functions in terms of metabolism and
is primarily involved in impaired glucose uptake [61]. GenesDiacylglycerol O‑acyltransferase 1
(DGAT1) and ecto‑5′‑nucleotidase (NT5E) possess hub and bottleneck gene features.
DGAT1 encodes a protein that catalyzes the conversion of diacylglycerol and fatty acyl
CoA to triacylglycerol. DGAT1 is one of the highly studied genes for milk yield and fat
quality [62,63]. TheNT5E gene encodes a plasmamembrane protein that catalyzes the con‑
version of extracellular nucleotides tomembrane‑permeable nucleosides. SRC andDGAT1
were found to be highly upregulated in Jersey with log2FC = 1.48 and log2FC = 0.92, respec‑
tively. In the network, DGAT1was found to interact with Glycerol‑3‑phosphate acyltrans‑
ferase 4 (GPAT4) (also known as AGPAT6). This gene has been found to be involved in
triglyceride biosynthesis and is comprised of acyltransferasemotifs, which are essential for
binding to substrates and catalyzing acyltransferase reactions. TheAGPAT6 gene, which is
highly expressed in mammary gland epithelium during lactation [64], was also observed
to be upregulated. NT5E was found to interact with BDNF, NTRK2, and ZNRF4. NT5E
is involved in various biological process such as adenosine biosynthetic process, AMP
catabolic process, leukocyte cell–cell adhesion, and negative regulation of inflammatory
response [65]. DGKG,whichwas upregulated, was found to be a bottleneck gene in the net‑
work and had interactions with PRKCG and RNT. Phosphatidate phosphatase (LPIN1), an
enzyme involved in lipidmetabolism [66], was upregulated and found as a hub gene in the
network having interactions with PPARA and PPARGC1A. LPIN1 is involved in various bi‑
ological processes related to lipidmetabolism such as the triglyceride biosynthetic process,
the fatty acid catabolic process, and the regulation of transcription by RNA polymerase
II [66]. The gene PTK2 is well known for its association with milk production traits [67],
and CACNA1A has a role in hormone regulation of lactation [68]. Similarly, ZBTB16 is
involved in bovine adipogenesis [69]. NUP98 is associated with protein percentage [70].
TLR4 is a mastitis‑associated marker [71]. FGF2 expression is reported to be associated
with milk production traits [72]. In this study, breed (high‑milk‑yield and low‑milk‑yield
groups) differences in nsSNPs within these hub and bottleneck genes (GHR, TLR4, LPIN1,
CACNA1C,MFGE8, PTK2, ZBTB16, FGF2, andNUP98) were identified. These fat QTL nsS‑
NPsmay have a role in the existing fat andmilk yield differences between the breed groups.
However, further studies to evaluate the impact of these SNPs on fat yield/percentage or
milk yield need to be carried out.

5. Conclusions
In this study, initially, DEGs in Jersey epithelial cells were identified, and these were

further explored in the QTL database as being the major hub and bottleneck genes. The
transcriptome in Jersey indicated higher expression of genes involved in metabolism, glu‑
cose transport, and other transport activities, leading to higher milk production perfor‑
mance. The 20 differentially expressed hub and bottleneck fat QTL genes were explored
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for non‑synonymous genomic variants in the whole‑genome sequence data, which were
generated from fourteen animals. The fixed SNP pattern in high‑milk‑yield breeds in com‑
parison to low‑milk‑yield breedswas observed in the genesGHR, TLR4, LPIN1, CACNA1C,
ZBTB16, ITGA1, ANK1, and NTG5E, and the opposite was observed in the genesMFGE8,
FGF2, TLR4, LPIN1, NUP98, PTK2, ZTB16, DDIT3, andNT5E. The role of these SNPs needs
to be further explored.

Supplementary Materials: The following Supporting Information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani13050884/s1, File 1: Meta‑data of milk QTL genes, biological
process, and pathways; File 2: Detailed description of differentially expressed QTL, hub, and bottle‑
neck genes; File 3: Features of sequenced data before and after filtering; File 4: Detailed description of
the performed variant analysis; File 5: Tables consisting of metabolic gene details, highly expressed
genes, a list of top ten upregulated and downregulated differentially expressed gene between the
Jersey and Kashmiri breeds, along with the QTL id and trait name; schematic representation of the
study and figure of quality evaluation of transcriptome samples.
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