
Citation: Džermeikaitė, K.;
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Simple Summary: As the importance of farming continues to grow, innovative technology and
sensors play an increasingly important role. Automation and robots in agriculture have the potential
to play a significant role in helping society fulfill its future demands for food supply. Wearable sensors
connected to or within cows can monitor eating, rumination, pH, body temperature, laying behavior,
animal activity, animal position or placement, and more. Research concentrates on biosensing
technologies that have the potential to improve livestock early disease detection, management, and
operations. The goals of this study were to investigate the currently available knowledge regarding
agricultural innovations and their application tactics, and we intended to give a critical perspective
and advance the understanding of what is known and unknown about innovations and dairy cattle.

Abstract: Precision livestock farming has a crucial function as farming grows in significance. It
will help farmers make better decisions, alter their roles and perspectives as farmers and managers,
and allow for the tracking and monitoring of product quality and animal welfare as mandated by
the government and industry. Farmers can improve productivity, sustainability, and animal care
by gaining a deeper understanding of their farm systems as a result of the increased use of data
generated by smart farming equipment. Automation and robots in agriculture have the potential to
play a significant role in helping society fulfill its future demands for food supply. These technologies
have already enabled significant cost reductions in production, as well as reductions in the amount
of intensive manual labor, improvements in product quality, and enhancements in environmental
management. Wearable sensors can monitor eating, rumination, rumen pH, rumen temperature,
body temperature, laying behavior, animal activity, and animal position or placement. Detachable or
imprinted biosensors that are adaptable and enable remote data transfer might be highly important
in this quickly growing industry. There are already multiple gadgets to evaluate illnesses such as
ketosis or mastitis in cattle. The objective evaluation of sensor methods and systems employed
on the farm is one of the difficulties presented by the implementation of modern technologies on
dairy farms. The availability of sensors and high-precision technology for real-time monitoring of
cattle raises the question of how to objectively evaluate the contribution of these technologies to the
long-term viability of farms (productivity, health monitoring, welfare evaluation, and environmental
effects). This review focuses on biosensing technologies that have the potential to change early illness
diagnosis, management, and operations for livestock.

Keywords: biosensors; precision dairy farming; sensors technology; dairy cattle; early diagnosis

1. Introduction

The future of animal farming will be guided by the principles of precision, sustain-
ability, and intelligence. Accurate cattle production can only be attained with the rapid
spread of intelligent technology for early warning of illnesses, feeding precision, and re-
mote diagnosis [1]. In recent years, the dairy sector has developed and deployed a number
of different technologies in order to automatically monitor a variety of behavioral and
physiological indicators [2,3]. Collecting large amounts of data is made possible by the use
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of sensors and technology, and these data must be analyzed with sophisticated statistical
methods before any conclusions can be drawn about the animals’ behavior, health, or
welfare. Innovations and information technologies (ITs) are essential for achieving sus-
tainable operations because they enable early and rapid disease detection, help measure
environmental emissions, and optimize production [4].

Traditional diagnostic procedures are notoriously labor-intensive, time-consuming,
and technical, necessitating the expertise of skilled specialists using specialized equipment.
To overcome these obstacles and create quick-response, low-cost, and highly reliable
biosensor devices, new technologies are being employed [5]. The use of automated remote
monitoring and detection of animal well-being, suggesting factors for body and body
weight problems, might enhance biological metrics in cattle. This might be performed by
analyzing sounds, photographs, videos, and other data in real time. Data from remote
sensors such as microphones, cameras, accelerometers, and thermometers can be used
to gather reliable information when combined with animal IDs and other observations
and put into algorithms [6]. Different sensors, such as radio frequency identification
(RFID), accelerometers, load cells, and webcams, can be used to detect sudden changes in
the activity, eating and drinking, physical condition, and health of animals [7]. Devices
with the potential to measure physiological, immunological, and behavioral responses
in livestock and various animal species are referred to as biosensors [8]. Biosensors are
compact, portable, highly sensitive, fast, and can be extremely specific with a low chance
of a false positive. They function in a variety of ways, including detecting changes in pH,
ion concentrations, mass through particular hybridization, enzymatic reaction, functional
loss, electrical potential change, color change, temperature, and so on. Novel biosensors
have considerable advantages and uses in the management of livestock, including disease
isolation and detection, reproductive cycle detection, health monitoring, and monitoring
an animal’s physiological wellness through the examination of its surroundings [8].

The application of biosensors and wearable technology in animal health management
is becoming increasingly important. These instruments can facilitate the early detection
of diseases in animals, decreasing economic losses. A variety of sensors for animal health
management are in various stages of commercialization across the world. Some approaches
for properly detecting health status and illness diagnosis are solely relevant to humans,
with only minor alterations or testing in animal models [9]. The current state of medical
technology makes early illness detection difficult and laboratory testing for animals ex-
pensive [8]. There is a need for detection technologies that can anticipate when and in
what group an incident is likely to occur, inform diagnosis and treatment options, and
forecast potential repercussions on a specific community [8]. These tools can speed up
the monitoring process and are not only accurate and sensitive for the parameters being
analyzed, but they also can be dependable and simple to use. General farm monitoring may
be made easier and more reliable by employing portable devices instead of conventional
techniques such as taking notes, keeping a farm diary, or using simple equipment without
data-sharing features. Many solutions have been developed for portable devices to reduce
the labor associated with manually recording data [9].

Every year, new diseases that endanger the health of animals appear in the modern
world. There are currently no viable, cost-effective diagnostic techniques for early disease
identification in farmed livestock animals. Biosensing technologies have the ability to
address these issues by providing novel diagnostic tools for the early detection of major
health hazards in the agri-food animal sector [8]. Breeding is an essential component of
animal husbandry. The ovulation cycle in cattle must be monitored in order to estimate the
temporal frame for artificial insemination. Mastitis (both clinical and subclinical), metabolic
disorders such as ketosis and acidosis, the animal’s reproductive status, and projected
calving may all now be diagnosed using various technologies. As is known, automated
milking systems (AMSs) pose various issues and possibilities for dairy producers. AMSs
allow for the monitoring of milking frequency at the cow level, as well as quarter-level
production and milk quality, which can contribute to the development of disease detection
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systems. Biomarkers such as plasma-hydroxybutyrate (BHB) and body condition score
(BCS) might be beneficial not only in diagnosing illnesses, but also in evaluating cow
pregnancy and re-production success [10]. BCS is a valuable approach for monitoring the
relationships between nutritional management, reproduction, and metabolic diseases, and
it facilitates farm management decisions [11]. BHB is one of the most useful indicators to
diagnose ketosis [12]. It was found that BHB can be useful not only as an indicator for
metabolic disorders, but also that the concentration of BHB in the blood has a negative
phenotypic connection with the pregnancy rate at the first service [13]. Elevated BHB levels
have been associated with uterine problems and delayed luteal activity [14]. Because it is
simple, inexpensive, and has acceptable sensitivity and specificity, measuring inline lactate
dehydrogenase (LDH) activity in milk in robots is a reliable indicator for the detection
of subclinical mastitis [15]. As an inflammatory indication of mastitis, the milk enzyme
LDH performed similarly to acute-phase proteins and somatic cell count, according to
studies [16]. Using accurate diagnostic technology can enhance our understanding of
the elements influencing the reproductive physiology of dairy cows [17]. In addition to
assisting with reproductive control, the method enables the evaluation of luteal activity and
its association with fertility through the analysis of frequent progesterone (mP4) data [10].

The focus of this review is to analyze emerging biosensing technologies that have the
potential to impact livestock early disease diagnostics, management, and relevant procedures.

2. Importance of Early Diagnostic in Dairy Farming

Animal health management with biosensors is a new field that is gaining traction
worldwide. Biosensors are increasingly being utilized in dairy farms to better monitor
animal health and detect illnesses early on [9]. Making a correct diagnosis is a crucial
intermediate step between identifying a disease’s root cause and treating it [18].

Continuous observation of behavioral and physiological indicators may make it possi-
ble to spot subtle alterations before they manifest as overt clinical symptoms. Cattle may
benefit from early sickness detection by preventing disease development and improving
treatment response [2]. Farm managers, veterinarians, and farmers themselves can use
sensors to monitor animal movements, food intake, sleep cycles, and even shelter air
quality. Big data-capable computers store and process raw data [19]. Proficient estrus
identification is a constant issue for efficient reproductive performance in dairy herds,
especially on farms that use artificial insemination (AI) [20,21]. In preparation for calving
and milk production, dairy cattle experience many changes to their metabolism and bodies
as they move from late gestation to early lactation. These profound alterations cause an
increase in the likelihood of developing a wide variety of health problems, such as metritis,
mastitis, ketosis, and displaced abomasum [22]. The absence of sickness is an important
aspect of general animal health and well-being. Disease, lameness, and limb problems are
already posing substantial challenges to the dairy industry. Lameness is uncomfortable,
and animals in pain usually change their activity, stride, food, posture, and appearance
from their regular behavior. The economic expenses associated with treatment, decreased
milk output, decreased fertility, mortality, or removal from the herd may be lowered if a
disease is diagnosed earlier [22]. The earlier adoption of intervention methods can be made
possible by the earlier identification of cows at risk for health issues [19,22].

Devices that can be implanted in an animal’s body (thermography, pedometers)
remain in the stomach (bolus) and provide owners with valuable information on the
animal’s behavior and medical conditions. Using various devices prevents farm managers
and veterinarians from spending unnecessary time on evaluating and inspecting animals.
Veterinarians can catch diseases early on with wearable sensors (pedometers, GPS, milk
analyzers, body condition scoring), which keeps animals from getting subclinically sick,
clinically sick, or even dying. Owners can sort out sick animals in time to keep diseases
from spreading through whole herds [9]. For instance, a decline in activity might be a sign
of illness, and a decrease in time spent lying down could be a sign of discomfort or pain
(pedometer, accelerometer) [23].
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3. Innovative Tools in Farm Animals’ Early Disease Diagnosis

Farm management is being significantly influenced by technological breakthroughs,
which are reducing physical labor, expenditures, and waste while increasing yields and
profits. As a result of agricultural technological breakthroughs, a new farming method
called “precision agriculture” has evolved [24]. Monitoring real-time autonomic responses
(e.g., respiration rate, heart rate variability and heart rate, blood pressure, changes in pe-
ripheral blood flow) and defense-related reflexes with innovative biosensor equipment can
aid in understanding how housing, nutrition, and genotype influence animals’ resilience
to stressors. These sensors can contribute to the knowledge of factors that influence ani-
mal welfare and the creation of remedies (for example, husbandry techniques, genotype
selection) that increase the welfare of livestock and companion animals. Wearable sensors
can track feeding behavior, rumination behavior, rumen pH, rumen temperature, body
temperature, laying behavior, animal activity, and animal location or placement [25]. Wear-
able or imprinted biosensors that allow remote data transfer could be significant in this
rapidly evolving field [9]. There are many gadgets that can measure body temperature,
behavior, and movement of the animal [9,26–28]. Sensors and wearable technology can be
inserted into animals to detect the components of their body fluids such as sweat [9,29,30].
Cows are also fitted with commercially available biosensor collars to monitor the estrous
cycle [9,31]. Figure 1 demonstrates examples of various technologies applied to cows.
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3.1. Milk Analyzers

The use of technologies to evaluate physiological, behavioral, and production markers
on individual animals in order to identify events of interest is included in the process of
precision dairy monitoring [23]. Milk analytes can be used as biomarkers for diseases or
reproductive status detection. For example, DeLaval Herd Navigator (DeLaval Inc., Tumba,
Sweden) detects the amount of progesterone in milk. The program also recommends the
ideal timing for insemination, names animals that need to be confirmed as pregnant, flags
early abortions, and lists cows at risk for cysts and protracted anestrus. Other milking robots
such as Lely Astronaut A4 (Lely Campus, Cornelis van der Lely an 1, 3147, PB, Maassluis,
The Netherlands) can determine milk analytes and milk electrical conductivity. Blood
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biomarkers are useful indicators of animal health, although they have limited economic use.
They might provide a great deal of information, especially because biomarkers can detect
subclinical stages of illnesses even when the cow appears fully healthy and shows no visible
indications of illness. An alternative to blood biomarkers can be milk biomarkers [10].
Sensor devices for determining the fat and protein content of milk are widely utilized on
farms nowadays. According to each farm’s milking system, a unique sensor system is
utilized. These sensors provide information on the health and fertility of cattle. Using milk
analyzers, the estrous cycle and reproductive performance in dairy cows can be tracked [9].
There are various analyzers which may operate on different principles, some using chemical
indicators and others based on spectroscopy [32].

3.1.1. Somatic Cell Count

Mastitis-related milk production losses in dairy animals are economically signifi-
cant [33]. Monitoring somatic cell count (SCC) concentrations in milk is the most widely
used method for detecting mastitis, especially in its subclinical forms. When SCC values
surpass the limit, the milk’s value plummets drastically. As a result, experts feel that SCC
level is a significant parameter for evaluating udder health [34,35]. Despite the absence
of clinical signs, subclinical mastitis is distinguished by an increase in SCC in milk. SCC
is a useful udder health indicator since it counts the quantity of somatic cells (mainly
desquamated epithelial cells, macrophages, and neutrophils) in milk. Aside from being
used as a criterion for selecting dairy cows that are less susceptible to mastitis, the presence
of SCC in bovine milk is a well-established indicator of mammary gland inflammation,
which is strongly linked to the presence of a mammary infection. SCC has proven to be
a useful indicator of decreased milk supply due to subclinical mastitis, which is present
when the cell count is greater than 200,000 per milliliter [33,36–39].

Using cell staining methods and microscopy, the SCC concentration can be evaluated at
the laboratory level. However, these approaches are time-consuming and call for specialized
equipment and personnel [39]. Modern techniques for SCC in milk detection are much less
laborious and time-consuming [39].

Automatic mastitis detection devices are examples of novel diagnostic processes that
are field-adaptable, simple, and can rapidly provide results. There are many types of
equipment such as the milk checker, Fossomatic meter (Hillerød, Denmark), Dramiski
mastitis detector/Wykrywacz mastitis detector (Olsztyn, Poland), DeLaval cell counter
(Tumba, Sweden), Afimilk mastitis detector (Kibbutz Afikim, Izrael), UdderCheck® test
(Moorestown, USA), and PortaSCC® test (Moorestown, USA). They rely on either detecting
physicochemical–biological alterations in milk or the udder or assessing biomarkers in
body fluids (milk, serum) linked with mastitis [40].

It has been demonstrated that the diagnostic capacity of infrared thermography (IRT)
is comparable to that of the California mastitis test, and it also distinguishes instances of
clinical mastitis from those of subclinical mastitis. As a result, IRT has the potential to
develop into a diagnostic tool that is both convenient and portable [40].

3.1.2. Milk Progesterone

Fertility control needs close coordination between farmers and veterinarians, system-
atic examination of farm records, and reliable clinical data. Furthermore, low fertility might
be considered a sign of poor health and well-being [41]. Breeding is an essential element
of cattle husbandry. Detecting the ovulation phase in cattle is crucial for determining
the best window for artificial insemination [8]. The presence of progesterone implies the
existence of a functioning corpus luteum. As a result, it has been utilized for decades as a
biomarker of reproductive efficiency. Milk progesterone is a potential non-invasive indica-
tor for reproductive status in dairy cows since progesterone is transported from blood to
milk [41]. Therefore, progesterone sensors could be useful sensor systems, despite the fact
that little research has been carried out on the performance of such systems [42]. The Herd
Navigation® system (Tumba, Sweden), which integrates five sensing systems, including
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progesterone in milk, was developed for commercial usage in 2008. It detects progesterone
levels in milk and recommends insemination times, animals for final pregnancy confir-
mation, early termination, and cows at risk for cysts and extended anestrus. In Denmark,
estrus detection rates of 95–97% have been recorded, with much higher pregnancy rates
(up to 42–50%) than traditional approaches [8]. Endocrine regulation is crucial for optimal
fertilization throughout the follicular period. Because progesterone production is strongly
related to embryonic development from the early stages of pregnancy, adequate monitoring
of both pre-ovulatory decline and post-insemination elevation in milk progesterone can
be used to detect animals with reduced fertility. Reduced milk progesterone concentra-
tions, for example, around days 4–7 following insemination are related to low fertility
and an increased chance of embryonic loss [41]. According to various studies, pregnant
cows had higher quantities of milk progesterone in their milk samples for the first week
following insemination [10].

Infrared spectroscopy is a fast, inexpensive, and user-friendly technology that can be
used for research as well as online and offline milk analyses [24]. Near-infrared spectroscopy
(NIRS) has long been used to measure the amount of milk components such as fat, protein,
and lactose [43]. Numerous studies demonstrate that a near-infrared spectroscopy approach
is a viable method for assessing individual milk progesterone levels. In fact, monitoring
progesterone levels in milk is an efficient and cost-effective method for determining a
cow’s reproductive status, detecting heat, and diagnosing pregnancy. Cows are milked
twice or three times per day under standard dairy practices, implying that milk samples
provide information on the current health of the herd/individual and may be collected and
tested on a frequent basis without severely compromising the animal’s daily living [24].
In addition, it has been demonstrated that the physiological status of the animal affects
the molecular structure of the water in milk; therefore, milk spectra can provide useful
information regarding animal health and sickness [43].

3.2. Breath, Sweat and Saliva Analysis

Researchers have long been interested in disease detection by the identification of
volatile organic compounds (VOCs), representing a non-invasive technique. Animals and
humans both exhale and excrete VOCs in their secretions with breath, blood, feces, skin,
urine, and vaginal discharges [44,45]. Gases such as hydrogen (H2) and methane (CH4),
as well as volatile organic molecules such as fatty acids, which can serve as biomarkers
for metabolic and pathologic processes, are examples of metabolites found in the breath.
VOCs such as ketone bodies, ethanol, methanol, and exogenous compounds are commonly
associated with blood glucose levels [46]. VOC analysis has been used to study bovine
respiratory sickness, brucellosis, bovine tuberculosis, Johne’s disease, ketoacidosis, and
normal rumen physiology in cattle [8,44].

The majority of sweat metabolite analysis biosensors were created with the inten-
tion of monitoring human health. These have been put to use to measure lactate levels
and salt concentrations, and they have also been made portable (in belt form) to mea-
sure sweat [8]. Additionally, this sensor may be modified for use in measuring animal
perspiration, particularly as an indicator of physical stress in animals [8,47].

Saliva collection for disease and other biochemical markers of physiological health
is an appealing non-invasive alternative to blood sampling [48]. Because saliva contains
both local and systemic components, it is a useful source of information regarding systemic
processes occurring in the body, allowing for the evaluation of the organism’s physiological
or pathological status. However, the use of saliva in the diagnosis of animal illnesses neces-
sitates a detailed examination of its protein composition under various situations [49,50].
The technique is especially helpful for monitoring animals and diagnosing diseases because
drawing blood from animals is thought to be a stressor and can affect the biochemical
parameters being measured. Salivary biomarkers can be useful for several purposes, in-
cluding disease early detection and diagnosis, decision support for managing animals, and
disease progression monitoring [51]. There are other diagnostic applications for saliva,
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such as biomarkers from saliva being investigated for the detection of oral cancer [52].
According Mojsym et al., saliva can be a valuable diagnostic sample comprising possible
indications of physiological and pathological conditions such as pregnancy status of cattle.
Moreover, it can be useful for developing rapid tests from saliva [49]. In buffalo, there are
attempts to determine estrous time using saliva biomarkers for more precise insemination
planning [53]. Saliva analytes were explored for their relationships with lameness in an-
other investigation. It was also anticipated that cows can change certain particles in their
saliva, and some of these may reflect improvements in lameness after therapy [54]. Table 1
shows a summary of milk and other body fluid analysis and its benefits.

Table 1. Body fluid analysis and its benefits.

Technology Benefits of Use Reference

Milk progesterone Milk progesterone is a potential non-invasive indicator of reproductive status
in dairy cows [41]

Somatic cell count SCC has proven to be a useful, non-invasive indicator of subclinical mastitis [36]

Breath, Sweat and Saliva analysis

Biomarkers for metabolic and pathologic processes are examples of
metabolites found in the breath. VOCs such as ketone bodies, ethanol,

methanol, and exogenous compounds are commonly associated with blood
glucose levels. Saliva collection is a non-invasive alternative to blood sampling

[9,44]

3.3. Wearable Devices for Animals

Portable electronic monitoring devices have the potential to transform intensive, large-
scale dairy production by monitoring and managing cows on an individual basis. There has
been a notable increase in the number of published research looking into the application of
wearable electronic monitoring devices for use in commercial farming environments since
the early 2000s [55].

3.3.1. Head/Muzzle and Noseband Sensors

Three distinct kinds of biosensors can be employed to recognize the jaw movements
that characterize cattle grazing behavior. These are electromyography sensors, mechani-
cal/pressure sensors, and acoustic sensors [8]. Cattle grazing behavior necessitates close
observation of each cow based on three crucial factors: the cow’s position, an analysis of its
posture, and the cow’s motions, particularly its gait and jaw movement [8,56]. The amount
of time an animal spends with its head in a downward posture is added to the sensor’s
recorded data to calculate grazing time [57]. For instance, continuous observation of jaw
motions can reveal information about diurnal grazing habits, animal health disorders, and
forage deficiencies [58,59].

Animals adjust their behavior in response to stresses, social changes, and environ-
mental changes, and these can cause illnesses. Because of the labor necessary for the
continuous monitoring of big groups of animals, tracking this behavior on a large scale
becomes impossible. When combined with proper output interpretations, wearable sensor
technologies enable the simultaneous measurement of real-time physiological parameters
in a herd on a large scale. As a result, wearable sensor technologies offer an advantage over
traditional herd-based systems since data from wearable sensors can be evaluated instantly,
allowing for a short reaction time [60]. For example, RumiWatch (RWS; ITIN + HOCH
GmbH, Liestal, Switzerland), a noseband sensor that monitors feeding and rumination
activity in dairy cows, was designed and tested as an effective scientific monitoring de-
vice for automated measurements of rumination behavior and activities. The correlations
between direct observations and sensor readings reveal that the RumiWatch noseband
sensor was effectively designed and validated as a scientific monitoring device for the
automated detection of rumination and eating behaviors in stable-fed dairy cows [59,61].
Other examples of commercial sensors and their detected analytes are presented in Table 2.
According to the findings of the study, the rumination and feeding activity monitoring
system is an effective tool for predicting calving time under farm conditions. It was found
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that in primiparous and multiparous cows, lying bouts increased but rumination chews
declined while predicting calving. Logistic regression and ROC analysis were used to
assess the sensitivity (Se) and specificity (Sp) for predicting the commencement of calv-
ing within 3 h (Se = 88.9%, 85% and Sp = 93.3%, 74% for multiparous and primiparous
cows, respectively) [62].

Table 2. Information about some of the commercial sensors.

Sensor Method Detected Analytes Reference

RumiWatch (Itin + Hoch
GmbH, Liestal, Switzerland)

The RW system comes with software for controlling
the sensor (RW Manager) and studying unprocessed

data (RW Converter). The RW sensors, which
include a noseband pressure sensor, a three-axis
accelerometer to track three-dimensional head

motions, and a data logger, are built into a halter that
fits the head of each particular animal. The noseband
pressure sensor, which is mounted in a belt on the
animal’s nose bridge, is connected to a tube filled

with propylene glycol to detect jaw movements. As
the animal moves its jaw, pressure within the tube

varies, and this information is recorded with a 10 Hz
resolution. Approximately 100 days of raw data

logging were covered by the battery life.

Different pressure
signatures of jaw motions,

which are then detected and
categorized into prehension

bites, mastication chews,
and rumination chews

[57]

Ear tag–based accelerometer
system (Smartbow GmbH,

Weibern, Austria)

The ear tag has an acceleration sensor, a radio chip,
and a temperature sensor for calibration and it can

monitor rumination and detect estrus
and localization.

Rumination, estrus, and
current localization [63]

MoonSyst (Moonsyst
International Ltd.: P.O. Box

1329, Kinsale, Co., Cork,
Republic of Ireland)

System captures rumen data in real time. The bolus
is meant to be readily ingested and will remain in
the rumen (particularly the reticulum) throughout

the animal’s life. System sends data from the animal
to specialized cloud-based servers via a

communication gateway. Farmers may use the
Mooncloud software application to view

information from anywhere, anytime. The bolus can
be used on animals weighing more than 350 kg.

Once implanted, the bolus interacts with a gateway
over a large geographical region.

Heats, monitor health
conditions, activity, rumen

temperature and movement
[64]

SmaXtec (SmaXtec animal
care GmbH, Graz, Austria)

The rumen bolus accurately monitors direct,
informative values inside cows’ reticulum. The
boluses are given once and require no further

maintenance. The data from the boluses are read out
by the readout devices with an integrated Internet
connection and promptly transferred to the cloud.

The pH and temperature variation data are gathered
with an analogue-to-digital converter (A/D

converter) and stored in an external memory chip.
This indwelling system may be simply orally

supplied to an adult cow due to its dimensions
(length: 12 cm, width: 3.5 cm, weight: 210 g), and its

particular construction makes it shock-proof and
resistant to rumen fluid.

pH, ruminal temperature,
cow activity, drinking,

eating, rumen behavior
[65]
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Table 2. Cont.

Sensor Method Detected Analytes Reference

Body Condition Score Camera
(DeLaval, International AB,

Tumba, Sweden)

Body condition score system is based on a 3D
camera that records certain areas of the animal: from
above, the rear part of the back from the short ribs to

the tail end. When a cow moves in front of the
camera, the system recognizes the movement and
records photographs of the cow; it then selects the
best image of the cow from the video clip. The 3D

camera employs light coding technology to project a
pattern of infrared ray dots on the cow’s back.

Following that, the distances between these specific
dots are measured; the company claims that a 3D
picture of the back is created, and an algorithm

translates the image information into a body
condition score.

BCS [10]

CattleEye (Cattle Eye Ltd.,
Belfast, UK)

Camera is above the exit gate of a milking parlor. It
records video of each cow as it exits the milking

parlor. If a sort of gate or RFID system provides ID
information, use it. Artificial intelligence systems in

the cloud analyze video to uniquely identify the
cows and track their wellness, among other things.
System allows tracking the health and performance

of cows in real time. It includes a dashboard that
monitors and visualizes a variety of vital indicators

at the herd and cow levels.

Cow identification [66]

Cainthus (© 2022 Ever.Ag,
Frisco, TX, USA)

Smart camera system that monitors animal behavior
and farm activities 24 h a day, seven days a week,

365 days a year.
It is artificial intelligence that converts visual input
from cameras into real-time insights. These insights
are provided daily on any farm device, phone, tablet,

or computer.
The information provided is accurate and unbiased.

This technique is easily scalable, does not require
any hardware on the cows, and requires extremely

minimal maintenance in comparison to
other solutions.

Animal behavior [67]

BROLIS Herdline (Vilnius,
Lithuania)

The analyzer examines the composition of each
cow’s milk during each milking. This

“mini-spectroscope” is installed in the milking stalls
or milking robot in the milk line and does not use

additional reagents and does not require
special maintenance.

The analysis of protein, fat, lactose, and electrical
conductivity provides a proper evaluation of the
health, productivity, and economic efficiency of

dairy cattle. The data collected during milking are
processed in real time and can be viewed using the

BROLIS HerdLine application.

Milk fat, protein, lactose,
milk electrical conductivity [32]

HeatWatch (HeatWatch® DDx,
Inc., Denver, CO, USA)

A tiny radionic transmitter is linked to a pressure
sensor in a stiff plastic box implanted in a nylon

packaging that is glued to the cow’s tail hair in the
sacral region. The device is activated by the weight
of the mounting animal for a minimum of 2 seconds,

after which the transmitter sends the breeding
approval signal to the system along with the

animal’s identification. In general, this device’s
assessed performance ranges from 37% to 94%.

Heat detection [68]
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3.3.2. Motion, Movement, and Behavior Sensors

Activity can be reduced in cattle afflicted with lameness or diseases such as bovine
respiratory diseases (BRD). Energy conservation for immune system metabolic costs and
indirect effects of fever and inflammatory responses to infection were proposed as biological
underpinnings for reduced activity in ill animals [69]. There are plenty of technologies for
motion, movement, and behavior analysis, such as accelerometer, pedometers, and global
positioning system (GPS).

Accelerometers have been used in dairy farming systems for the detection of diseases
such as mastitis and to detect estrus and locomotion problems [69]. Accelerometer reading
changes can also be used to generate a benchmark level of activity, which can subsequently
be recorded as calculated step counts or other movement indices such as activity ratios.
Accelerometers have acquired popularity in beef cattle research because they allow for the
continuous and long-term study of an animal’s mobility and behavior [69]. Moreover, ear-
mounted sensors accurately identified grazing, standing, and walking in sheep with 94%,
95%, and 99% accuracy, respectively [70]. Commercially available accelerometer devices
include the IceTag and IceQube products manufactured by IceRobotics, Ltd. (Edinburgh,
Scotland, UK), designed and validated for use in cattle. Other commercial accelerometer
products designed for use in cattle include CowScout (GEA Group, Dusseldorf, Germany),
SCR (Allflex, Madison, WI, USA), Pedometer Plus (Madero Dairy Systems, Houston, TX,
USA), GYUHO SaaS (Fujitsu, Fukuoka, Japan), and GP1 SENSR (Reference LLC, Elkader,
IA, USA). Another accelerometer device that has been successfully used to quantify cattle
behavior, the HOBO Pendant G (Onset Computer Corp., Bourne, MA, USA), requires the
user to build a method of leg attachment, and data management is more complicated [69].
When compared to the accuracy reached with these devices (more than 90%), the accuracy
of visual human observation is significantly lower [4].

Understanding how grazing animals migrate throughout pastures and what they do in
each region is essential for developing management plans that will maximize the potential
productivity of grazing systems and limit their negative impacts on the environment
(nutrient losses to water and gaseous emissions). Using real-time global positioning system
(GPS) tracking and biologging technologies, it is possible to perform remote monitoring of
animals to look for any indications of illness or concerns regarding their well-being [71].
Animals on livestock farms can be monitored for their activity levels, which can provide
useful information about the animals’ overall health and degree of care [72]. The global
positioning system, radio tracking, and wireless local area network are now the most
important technologies for monitoring livestock in the field; however, there are a few more
tools (such as Bluetooth and ultrasound) that can be employed for indoor monitoring [71].
GPS collars equipped with activity sensors enable the distinction between foraging sites
and those used for other activities such as sleeping or travelling [57,73,74]. Diverse studies
conducted over the past decade have proved the utility of GPS telemetry devices for
analyzing the behavior of cattle when combined with other devices/sensors. Combining
GPS collars with activity sensors results in an effective method for tracking the whereabouts
of grazing animals and determining animal behavior simultaneously. Real-time location
systems have been created to pinpoint the position of an object within a particular area [6].
Although little research has been conducted on the behavior and movement of lame dairy
cows on pasture, GPS technology may be useful in enhancing pasture-based systems’
automatic lameness diagnosis. According to Riaboff et al., severely lame cows spend
4.5 times less time grazing and nearly twice as much time resting in the laying position
than their sound counterparts [75]. Additionally, GPS is used to forecast the behavior
of ruminants and locate their location in pastures. This geolocation technique appears
promising for identifying animals with a high frequency and a low mistake rate, despite the
GPS’s inadequacy for forecasting behavior in a robust manner. Geolocated behaviors are
especially intriguing for investigating changes in behavior connected to demanding events.
The usage of data from accelerometers and GPS devices together is an approach that could
prove to be both intriguing and beneficial in the process of researching how cows interact
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with their surroundings. These challenging scenarios can include heat stress, physical
stress, resource depletion, restricted access to pasture, and other similar situations [76].
These characteristics could be used to improve the efficacy of existing lameness detection
sensors in pasture-based systems [75]. Table 3 gives a brief summary of wearable sensors.

Table 3. Wearable sensors and their benefits.

Technology Benefits of Use Reference

Head/muzzle and noseband sensors
Noseband sensor was designed and validated as a scientific

monitoring device for the automated detection of rumination and
eating behaviors. It can be executed without contact with the animal.

[59]

Motion, movement, and behavior sensors

Accelerometers, pedometers, and GPS tracking all can be used to
monitor animal behavior. Active time can predict heat; prolonged

laying time can signal diseases such as mastitis, ketosis, and
lameness. GPS helps to locate animals on the farm.

[69,72,76]

There are GPS systems that allow users to track and confine animals. Special atten-
tion has been paid to a solar-powered GPS collar-based virtual fence system (NoFence,
Beatnfjordsra, Norway). The GPS position data collected by the collar are shown on an
app that the farmer uses to create a grazing border map for cattle, sheep, or goats. When
the animal gets close to the virtual boundary, the collar will begin to emit warning audio
stimuli at a volume of forty decibels and a rising frequency of two to four thousand hertz.
This will give the animal the time to change course to avoid such stimuli. When an animal
passes the virtual barrier, it is considered to have “escaped”, and the auditory and the
electric shock are turned off. Additionally, a push notification is delivered to the farmer’s
mobile app when the animal has crossed the boundary [77]. GPS also can be promising
in heat detection. Sheep estrus can be detected with global navigation satellite systems
(GNSS) by monitoring a surge in activity levels followed by a return to “normal” patterns
of behavior [70].

Pedometer

In animals, a pedometer (step counter) is a proven recording method for determining
movement activity. Previously, it was mostly utilized for estrus detection [9]. Pedometers
objectively measure an animal’s total number of steps and total distance traveled using
an algorithm that calculates the steps. While pedometers are relatively simple to deploy
and operate, the number of steps taken by each ruminant varies significantly depending
on the day and ambient conditions. There could be a link between cattle distance traveled
and stressful and unpleasant procedures; one study found that calves took fewer steps for
four days after castration, while another found a link between calves’ stress and the number
of steps they took after castration [6]. Other observations are made while recording active
or lying behavior. The method is useful for the early identification of lameness in dairy
herds. In one investigation, pedometers were used to detect lame calves before clinical
indications appeared. Individual cows were examined and monitored, and it was shown
that 92% of the cows acquired obvious lameness. When cattle were monitored using a
pedometer, their hoof activity was reduced by at least 15% several days before the start of
clinical lameness. The researchers concluded that pedometers are a beneficial tool for the
early detection and treatment of the vast majority of cases of developing lameness [78].

3.4. Other Analyzers: BCS Camera, Infrared Thermography, Sensors of Bolus
3.4.1. Infrared Thermography

Infrared thermography (IRT) is method for diagnosing and assessing pain since it
indicates physiological changes [6,79]. Thermography can be used to identify and deter-
mine thermal abnormalities in animals by identifying a rise or decrease in the surface
temperature of the skin [80,81]. IRT is a technique that is frequently utilized in the field
of veterinary medicine to diagnose conditions such as infection, lameness in horses, and
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mastitis in both sheep and cattle, and to determine scrotal temperature in buffalo [70].
IR thermography is a noninvasive method that monitors emitted infrared radiation and
displays the data as a thermogram, which is a visual representation of an object’s surface
temperature. Each pixel in the thermogram represents the recorded surface temperature of
an object. The data can be displayed in grayscale or color. The warmest areas are displayed
in white or red on a color scale, while the coldest areas are shown in black or blue. When an
animal is stressed, the hypothalamic–pituitary–adrenocortical axis is engaged, and heat is
created as a result of increased catecholamine and cortisol concentrations, as well as blood
blow reactions, resulting in changes in heat generation and heat loss from the animal. As a
result, this technique may be beneficial as a general stress indicator [80]. Changes in surface
temperature patterns, particularly those generated by changes in blood flow, can be utilized
to detect inflammation or damage associated with illnesses such as foot lesions. Thermal
(color) variations represent thermal gradients, which represent changes in skin temperature
induced by underlying illnesses. Thermography has the advantage of measuring heat
emissions without having direct physical contact with the surface. Because of its high
sensitivity, it is useful when paired with other exact data (such as pedometer, accelerometer
activity). In general, thermography works best in concert with other modalities rather
than as a replacement for them. Thermography frequently detects physiological changes
before they emerge as clinical symptoms, allowing for early diagnosis and treatment [79,80].
According research, there was no statistically significant difference in foot temperature
amongst different illnesses, but there was a difference between sick and healthy cows [81].

To reduce economic losses caused by lameness, preventive interventions and early
diagnosis of lesions are required [78]. The use of infrared thermography to detect lame-
ness in cattle has increased in recent years, owing to its non-invasive qualities, ease of
automation, and continued cost savings [79,80]. Lameness in dairy cows has negative
effects not only on dairy cow welfare and milk production, but also on reproductive ability
and death rates [78]. Early diagnosis of a foot lesion can help reduce the negative impact
of lameness and boost treatment success, and is likely to be useful in preventing future
pathological development [80].

Thermography can also be employed in research of various diseases such as muscu-
loskeletal affections and ocular temperature assessment in calves for early illness diagnosis.
This instrument has also been used to identify mammary gland inflammation [79]. In-
frared thermography has been shown to be useful in assessing udder health and detecting
quarters with subclinical mastitis [34]. Mastitis raises the warmth of the udder before clini-
cal symptoms appear. Furthermore, after inoculating lactating cows with Escherichia coli
in various locations of the udder, Pezeshki et al. noticed a 2–3 ◦C rise in udder surface
temperature [60]. Berry et al. demonstrated that thermography of the udder can be a
useful diagnostic tool for detecting mastitis in dairy cattle. Because the temperature rises
considerably three days before ovulation, using thermography to identify cow estrus can
increase pregnancy chances in regular or quiet estrus [82]. An Australian study involving
Holstein cattle found that a fall in vulva and muzzle temperature 48 h before ovulation
correlates to corpus luteum regression, and an increase in temperature 24 h before ovulation
corresponds to the period of estrus [82]. Thermography could also be used to detect estrus
in sheep and goats [77]. Zaninelli et al. investigated the potential of IRT in the diagnosis
of mastitis in their 2018 study and discovered that it corresponds well with the somatic
cell count [83]. Thermography has been demonstrated to distinguish between clinical
and subclinical mastitis in both large and small ruminants, with diagnostic sensitivity
and specificity comparable to the California mastitis test (CMT). As a result, with further
adjustments and advancements, farmer-friendly and non-invasive infrared thermography
has the potential to become a useful and practical instrument for use on farms in the future.
Individual determinations for each mammary compartment can be made, with an increase
in local temperature suggesting the presence of inflammation, if it exists [34].

In cases of stress, fertility, welfare, metabolism, health, and illness detection, the
animal’s surface temperature can be used as an indicator trait to accurately measure an
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animal’s physiological state [6,83]. Thermal infrared sensors have shown that there is
a strong link between changes in the temperature around the eyes and changes in the
temperature of the body’s core. Temperature readings from different parts of an animal’s
body give information about its health and allow for quick decisions about its welfare
(e.g., isolating animals with higher body temperature or managing the internal temperatures
of animal housing units) [6]. Salles et al.’s study shows that among the body regions tested,
IRT frontal temperature had the strongest correlation with rectal temperature, while the
temperature–humidity index is substantially related with forehead and right and left flank
temperature [84]. Another investigation found out that setting the illness threshold for
filthy feet at 27 ◦C correctly detected 80% of feet with lesions and 73% of feet without
lesions [85]. Although this method is sensitive in identifying changes in the temperature
patterns of animals, it may not be adequate to pinpoint their causes [83].

As the livestock industry’s reliance on automated systems grows, technologies that
can be implemented into these systems to monitor animal health and welfare must be
developed. Infrared thermography (IRT) is one such technology that has been utilized
for monitoring animal health and welfare and has the potential to be incorporated into
automated agricultural systems through automation [86].

3.4.2. Bolus Sensors

Bolus sensors are primarily intended to detect variations in ruminal temperature,
which can indicate a change in animal physiological states [87]. Ruminal temperature
decreases in response to drinking and eating events, and it rises in response to increased
body temperature. Monitoring changes in ruminal temperature and activity can help spot
anomalous behavior, the estrous cycle, and infections early [87–89].

Metabolic illnesses (rumen acidosis, hypocalcemia) and other diseases that cause fever
and pain have an effect on the amplitude and frequency of ruminal contractions in cattle [6].
Wireless intraruminal bolus sensors have been devised to monitor the temperature and
pH levels of the rumen and reticulum via the esophagus. The availability of boluses for
measuring reticuloruminal pH for purchase has simplified the evaluation process greatly.
These boluses wirelessly transfer pH information to a central processing location on a
regular basis, simplifying the evaluation procedure. An example of bolus sensors can be
seen in Table 2.

The pH level of the ruminal fluid is one of the most straightforward indicators that
ruminal acidosis is present. The ruminal pH can be measured in real time by wireless
pH probes that are put in boluses within the rumen. In addition to the pH of the rumen,
various markers for either ruminal acidosis or subacute ruminal acidosis can be determined
in blood, urine, feces, or milk. These can be used to diagnose either condition [41].

Other studies, while using bolus sensors, have shown that cows with higher rumen pH
(6.22–6.42) can emit 46.18% more methane than cows with lower ruminal pH [90]. Cantor
et al.’s study revealed that reticulorumen temperature is an accurate predictor of well-being
factors in cows such as daily herd water intake and inflammation [91].

3.4.3. Body Condition Score

Body condition score (BCS) is an evaluation of the cow’s fat stores and indicates the
cow’s overall energy balance. The amount of fat mobilization in cows with a higher BCS is
higher [22]. There is a substantial correlation between body condition score (BCS) and many
reproductive and lactational performances in small ruminants, making BCS an important
indication of their well-being [77]. BCS at calving and its fluctuations during lactation have
been found to have an impact on the health and fertility of high-yielding dairy cows. When
a cow’s condition deviates from acceptable BCS standards, the occurrence of metabolic
disorders, infertility, and lameness increases [10].

Having a high or low BCS can have unfavorable effects on milk production, illness,
and reproduction [92]. However, because of its subjectivity and slowness, manual BCS
evaluation is rarely used outside of experimental settings or large farms with many rumi-
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nants [77]. The BCS scale typically consists of a five-point scale with increments of either
0.25 or 0.5 points [93]. Reduced early lactation dry matter intake and milk production, as
well as an increased risk of metabolic problems, are all connected with a calving BCS of
3.5 or below on a five-point scale. On a scale from 0 to 5, a BCS of 3.0 to 3.25 is considered
ideal for calving. When it comes to production and reproduction, lower calving BCS is
connected with lower rates, while greater calving BCS is associated with an increased risk
of metabolic diseases [94]. Consequently, measuring and regulating the body condition
and obtaining optimal BCS at various phases of lactation are crucial for maintaining or
enhancing the performance and welfare of cattle, especially dairy cows [95].

Anatomical points from the rear end of the dairy cow (such as the hooks and tail-head
area), which are located in an area of the cow where changes in subcutaneous body reserves
are visually more evident, are visually evaluated in order to assign a score according
to a standardized scale in the process of visual body condition scoring [95]. In the past
decade, numerous proposals for agricultural three-dimensional (3D) vision systems that
are based on optical two-dimensional (2-D) and 3D sensors were developed [96]. Recent
years have seen an increase in the use of 3D sensors in the applications of BCS. These
sensors bring more information about the body’s surface than 2D-based or thermal image-
based systems [93]. Three-dimensional cameras have recently advanced in technology and
could provide novel feed management solutions for dairy farms. Portable ASUS Xtion Pro
sensors (ASUSTeK Computer Inc.) can be used to capture 3D photos of cows’ rear ends [97].
There is also a commercially available automatic BCS camera for use on dairy cows’ heads
(DeLaval Body Condition Scoring, BCS DeLaval International AB, Tumba, Sweden) [92,98].
This camera system uses a radio frequency identification reader to individually identify
cows that have been fitted with transponders. It also enables multiple BCS measurements
to be taken within a single day. The camera software records individual daily BCS values
for each scoring session and reports a daily trimmed, 7-day rolling average of BCS [95].
The BCS camera system produces accurate BCS ratings between 3.00 and 3.75; however,
the magnitude of low and high BCS scores is typically miscalculated.

Time of flight (ToF) cameras are quickly becoming one of the most common types of
sensors used to acquire 3D data. ToF systems use either visible or near-infrared (NIR) light,
and the reflected light is received by smart pixel sensors, which then measure the amount
of time it takes for the light to return. It was demonstrated that the characteristics extracted
from the dorsal and posterior sections achieved 100% accuracy of the projected BCS within
a 0.5 point deviation of the actual BCS) [93].

Studies have shown that BCS can not only be a metabolic disease marker, but can also
be associated with production, health, and reproduction. Antanaitis et al. found that BCS
is associated with pregnancy success because the BCS (+0.29 score) and mP4 (10.93 ng/mL)
of the pregnant cows were higher compared to the group of non-pregnant cows [99].

3.4.4. Animal Surveillance through Video and Imaging

Livestock illness prediction and abnormal behavior management both benefit greatly
from automated tracking systems. Animals can be monitored in a number of ways, some
of which are manual, some of which include wearable devices, and some of which involve
computerized tracking systems. However, relying on human observers to keep tabs on
animals is labor-intensive and not always reliable. The level of intelligent livestock manage-
ment can be greatly improved with the help of computer vision technology, which provides
a non-contact and low-cost technique to track cattle. Researchers have put much time and
effort into determining how to achieve the level of autonomous monitoring of animals
shown in the video.

Face recognition is another emerging technology that is sweeping the globe. One study
compares three loss functions used in human face recognition paired with RetinaFace-
mobilenet, and the results suggest that the proposed CattleFaceNet beats others with an
identification accuracy of 91.3% and a processing time of 24 frames per second (FPS) [100].
Li et al. suggested a method for recognizing individual dairy cows based on an image
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of the animal’s tail and head. This approach retrieved form characteristics from the tail
head image’s region of interest using Zernike moments and categorized them using four
classifiers [101]. Gaber et al. proposed a muzzle-based livestock recognition strategy that
employed the Weber local descriptor and the Adaboost classifier for each head photo to
identify the head of cattle [102]. In other studies to evaluate cow lameness, color edge
detection and bilateral projection were utilized to detect the region of the cow’s knees. For
cow identification and recognition, these approaches rely on color and contour characteris-
tics. However, the strong reliance on hand-crafted characteristics precludes these systems
from being applied to complicated settings. Deep learning approaches and Convolutional
Neural Network models (e.g., Fast R-CNN, Faster R-CNN, YOLO, SSD, Mask R-CNN,
AlexNet, VGGNet, and ResNet) have recently achieved substantial advancements in image
identification and recognition through end-to-end feature learning [103–112]. With the
release of a new large-scale cow dataset with about 50,000 annotated cow face detection
data points and approximately 18,000 cow recognition data points, cow face detection
and recognition have been improved. There is also a framework for cow face recognition
that combines the detection and recognition models to improve recognition performance.
The experimental results show that the proposed technique is superior. The detection
accuracy is 98.3%, while the accuracy of cow facial recognition is up to 94.1% [113]. A sheep
study showed results suggesting that the method proposed in that study outperforms the
others, with a recognition precision of 89.12%, and it was discovered that incorporating
the biometrics of the sheep face can significantly boost the network’s recognition capac-
ity [114]. In Kumar et al.’s study, experimental findings on a muzzle point picture database
were described. Their solution achieved 93.87% identification accuracy, demonstrating its
superiority over other existing machine-learning-based recognition systems [115].

Su et al. conducted a study with the Dairy Goat Dataset (DG-dataset) containing
200 dairy goat motion videos with a total of 161,000 frames of images randomly collected
from the farm. The study shows that their algorithm was successful in locating and tracking
a single dairy goat [116]. Video tracking of animals helps to recognize ill animals or strange
behavior in animals without human contact.

3.4.5. Electronic Nose for Estrus Detection

The MENT-EGAS prototype used electronic nose (EN) technology (ten unspecified
chemical metal-oxide sensors) to detect estrus by direct sampling of odor from the per-
ineal headspace. In cycling cows, principal component analysis (PCA) revealed effective
discrimination between proestrus and estrus, as well as estrus and metestrus. Based on
these findings, it was demonstrated for the first time that direct sampling of the perineal
headspace using an EN device during milking may correctly detect estrus in dairy cat-
tle [20]. In this study, the MENT-EGAS prototype (Patent No. WO2010099800A2) provided
by AIRSENSE ANALYTICS GmbH (Schwerin, Germany) was used to detect emanated odor
changes from the perineal headspace of the cows. Another study described an effective
electronic nose system created using polyaniline-based sensors doped with various acids
for determining estrus in female cattle. Disposable swabs for material gathered from the
perigenital area and vagina of the animals were employed in the suggested olfactory tech-
nology, eliminating rectal manipulation, as well as disposable sensors, providing simplicity
of handling and health safety for the estrus determination procedure. The results demon-
strated that the olfactory system reliably detected estrus, optimal AI moment (12 h after
estrus detection), and diestrus (corpus luteum phase) in cows, and that this information
could be utilized to efficiently suggest the ideal AI time in calves [117]. Thermography and
its measured analytes and other electronic devices are reviewed on Table 4.
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Table 4. Other sensors and their benefits.

Technology Benefits of Use Reference

Infrared Thermography

Determine thermal abnormalities in animals by identifying a rise or fall in
the surface temperature of skin. Infrared thermography is a noninvasive

method that monitors infrared radiation emitted from the body.
Inflammation, stress, calving, and heat can be evaluated. Thermography can

detect physiological changes before they emerge as clinical symptoms.

[79–81]

Bolus Sensors Wireless intraruminal boluses without constant contact, can measure and
analyze ruminal and eating behavior, examine ruminal pH. [6,41,118]

Body Condition Score Cameras

Tracking BCS can help reduce postpartum disease percent; it helps to notice
obese or poor health animals. When it comes to production and

reproduction, lower calving BCS is connected with lower rates, while greater
calving BCS is associated with an increased risk of metabolic diseases

[92–94,96]

Cattle Face Recognition Face analysis can help to identify pain, unwell animals, locate, identify, and
select animals on the farm. [102,113]

Electronic Nose for Estrus Detection Can detect estrus by direct sampling of odor from the perineal headspace. [117]

4. Innovations for Common Procedures

At present, innovations are becoming inseparable from animal husbandry. Mastitis
(both clinical and subclinical), metabolic diseases such as ketosis and acidosis, the repro-
ductive state of the animal, and predicted calving now can be determined by various
technologies. Two features of milk quality—the somatic cell count (SCC) and the appear-
ance of obviously abnormal milk in cases of clinical mastitis—are used to detect mastitis in
milk [119]. Some technologies and their functions in disease and behavior diagnostics are
shown in Table 5. The real-time detection of beta-hydroxybutyrate from blood or milk is
used to determine the animals’ energy balance and can be greatly aided by nano-biosensors.
One of the metabolic illnesses, subclinical ketosis, raises the chance of developing clinical
ketosis, lowers milk production, impairs reproductive ability, and has a negative energy
balance during the transition phase, all of which have an adverse economic impact [120].

Table 5. Technologies for animal status determination.

Disease/Status of Cow Technology for Diagnosis Analytes Reference

Mastitis

Image processing, spectroscopy, electrical
conductivity, biosensors, SCC sensors,

tri-axial accelerometers,
pedometers, spectroscopy

Temperature, lying behavior, eating
behavior, milk analytes (fat, protein,

electrical conductivity), rumination time,
somatic cell count (SCC), milk pH,

milk yield

[25,32,34,121–127]

Metritis/Endometritis Tri-axial accelerometer, electronic
feeding system

Eating, drinking time, rumination, activity,
laying time, [2,25,128–130]

Ketosis 3D cameras, spectroscopy, milking
robots, accelerometers

body condition score, BHB, milk analytes
(fat, protein), milk yield, activity,

rumination behavior
[10,13,131,132]

Acidosis Three-axis accelerometers, angular
velocity sensors, pH meter, milking robots

Milk yield, milk analytes (fat, protein)
activity, rumination behavior, walking

behavior, feeding behavior
[118]

Lameness
Tri-axial accelerometers, pedometers,
video observations, accelerometers,

rumination sensor

Walking behavior, feeding behavior,
rumination, activity, and laying time have

been linked to lameness
[25,80,133–135]

Heat

Tri-axial accelerometers, pedometers,
video observations, accelerometers,

spectroscopy, chemical analysis, electronic
nose, acoustic sensors

Activity, milk analytes (progesterone),
odor from the perineal headspace,

pression, friction, rumen movement
[20,21,25,117,136,137]

Pregnancy
Milking robots, radioimmunoassay,

enzyme immunoassay,
accelerometers, pedometers

Milk progesterone, activity, temperature [136–140]

Calving, dystocia

Intravaginal thermometer, tri-axial
accelerometers, pedometers, video

observations, accelerometers, rumination
sensor, infrared thermometry

(IRT imaging)

Body temperature, activity, rumination
time, laying time [137,141,142]
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5. Conclusions and Future Directions

The primary goal of precision livestock farming is to generate reliable data using
biosensors and run it through intelligent software systems to create value for the farmer,
the environment, and the animals in the form of improved animal health and welfare,
increased productivity and yields, and lower costs while minimizing environmental impact.
Sensor-based technology has made important contributions to lowering animal stress,
improving animal well-being, and thereby eliminating economic losses. By forecasting
future disease outbreaks, the early identification of physiological reactions can assist
farmers in taking targeted interventions to reduce pressure on their animals, increase
animal welfare, and avert performance losses. Future technological advancements will
lead to the identification of biomarkers for specific health and welfare concerns at a far
earlier stage. Precision livestock farming aims to create a management system based
on automatic, continuous, real-time monitoring and control of all aspects of livestock
management, including reproduction, animal health and welfare, and the environmental
impact of livestock production. Monitoring animal behavior without upsetting the animal is
another component of management. Farmers can employ wearable sensors to detect illness
early, reducing animal deaths. Farmers and veterinarians can also destroy sick animals
before they spread disease to the entire herd of cattle, if they plan ahead. Through satellites
and smartphones, the incorporation of revolutionary diagnostic and disease detection
systems utilizing biosensors would keep cattle and the agricultural business one step ahead
of unseen diseases. When biosensors are used to detect diseases early, the epidemiological
curve can be moved to the left because quick action can be taken to stop the spread of the
disease and its negative effects on production, society, and the economy. An early warning
system for more effective livestock health management can be created by shortening the
amount of time it takes to receive findings when diagnosing infectious disease biomarkers
on a farm in a manner that is in real time.
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