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Simple Summary: Tenderness influences repurchase decisions of sheep meat because it is a signif-
icant factor contributing to eating satisfaction and consumer acceptance. This study analyzed the
transcriptome of five high- and five low-lamb tenderness samples. The result showed potential
candidate hepatic genes and polymorphisms affecting lamb tenderness. These potential candidate
genes and genetic markers could be used in lamb tenderness selection programs.

Abstract: Tenderness is a key meat quality trait that determines the public acceptance of lamb
consumption, so genetic improvement toward lamb with higher tenderness is pivotal for a sustainable
sheep industry. However, unravelling the genomics controlling the tenderness is the first step.
Therefore, this study aimed to identify the transcriptome signatures and polymorphisms related
to divergent lamb tenderness using RNA deep sequencing. Since the molecules and enzymes
that control muscle growth and tenderness are metabolized and synthesized in the liver, hepatic
tissues of ten sheep with divergent phenotypes: five high- and five low-lamb tenderness samples
were applied for deep sequencing. Sequence analysis identified the number of reads ranged from
21.37 to 25.37 million bases with a mean value of 22.90 million bases. In total, 328 genes are detected
as differentially expressed (DEGs) including 110 and 218 genes that were up- and down-regulated,
respectively. Pathway analysis showed steroid hormone biosynthesis as the dominant pathway
behind the lamb tenderness. Gene expression analysis identified the top high (such as TP53INP1,
CYP2E1, HSD17B13, ADH1C, and LPIN1) and low (such as ANGPTL2, IGFBP7, FABP5, OLFML3, and
THOC5) expressed candidate genes. Polymorphism and association analysis revealed that mutation
in OLFML3, ANGPTL2, and THOC5 genes could be potential candidate markers for tenderness in
sheep. The genes and pathways identified in this study cause variation in tenderness, thus could be
potential genetic markers to improve meat quality in sheep. However, further validation is needed
to confirm the effect of these markers in different sheep populations so that these could be used in
a selection program for lamb with high tenderness.

Keywords: sheep; meat quality; next generation genome sequencing; single nucleotide polymorphism;
genetic marker

1. Introduction

Meat quality refers to a variety of meat characteristics such as compositional quality
(lean to fat ratio, drip loss, pH) and palatability factors such as visual appearance, smell,
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firmness, juiciness, tenderness, and flavor [1,2]. Notably, meat tenderness is a critical
characteristic since tenderness influence consumer purchase decisions [1]. Thus, improve-
ment of sheep meat tenderness is critical for the market development and sustainability
of the sheep industry. Tenderness is based on the ease of chewing that is contributed to
by many factors, including muscle factors, growth performance, dietary supplementation
and genetic makeup of animals [3]. Tenderness is measured mechanically by ‘shear force’
using a Warner–Bratzler shear device (WBS), where higher shear force value indicates low
tenderness of meat. Meat having a ‘shear force value’ greater- and less-than 4.6 kg/cm2

are defined as low- and high-tenderness, respectively [4]. Though tenderness is crucial for
consumer acceptance to lamb, it is worth mentioning that the trait is very difficult to predict.
Tenderness is a complex trait and mainly affected by the muscle texture, amount, and solu-
bility of connective tissues like fibrillar collagen, elastin, perimysium, and hydroxyproline,
amount and composition of intramuscular fat (IMF) or marbling, contractile state of muscle
fibers, and proteolysis extent of rigor muscle [3,5,6]. Furthermore, tenderness is essentially
affected by some biochemical processes that occur in slaughtering, fabricating, and storing
of carcasses, as well as by genomic architecture of animals [3,6]. Meat quality traits includ-
ing meat tenderness, color, mineral content, and muscle oxidative capacity are generally
found to be moderately heritable. The heritability varies from 0.15 to 0.30 [7], indicating that
selection will be efficient in enhancing the genetic merit of meat quality traits. It is widely
accepted that genetic improvement through breeding is a feasible approach for improving
meat quality traits. Likewise, tenderness is moderately heritable (h2 = 0.25) and could be
improved through selection [8]. Identification of genetic factors controlling meat quality
traits including tenderness is the foremost step in order to implement a breeding program.
Several potential genes for meat quality attributes have been found, including the CYP2A6
and KIF12 genes for flavor and odor [9], APOA5 for fatty acids (FA) composition [10], CAST
and GDF-8 genes for tenderness [11].

Quantitative trait loci (QTL) for meat quality traits, including tenderness have been
identified on chromosome OAR 18 in crossbred sheep [12]. QTL on OAR 1, 3, 6, and 24 are
reported to be associated with muscle, fat, and bone traits [13]. A genome wide association
study (GWAS) using the Illumina 600k (HD) and 50k Ovine SNP chips were applied to
identify markers including those associated with sheep tenderness [14]. Bolormaa et al. [14]
reported QTL that influence meat tenderness, color, myoglobin, glycogen, and omega-FA,
and decrease long chain saturated FA, which are highly valuable in a selection program.
However, more study, especially high throughput sequencing (HTS) or deep sequencing
transcriptome (RNA-Seq) analysis should be implemented to unravel the genetic architec-
ture of these traits [15]. RNA-Seq is an advanced method of transcriptome profiling that
uses deep-sequencing technologies to provide insight into the transcriptome of the host [16].
RNA-Seq is successfully facilitating the discovery of novel transcripts, identification of
gene polymorphisms (single nucleotide polymorphisms, SNPs), alternatively spliced genes,
and detection of allele-specific expression [16]. Recently several studies have effectively
employed the RNA-Seq technology to explore DEGs controlling meat quality traits in
sheep including flavor/odor [17], FA composition [18], and meat quality traits in different
muscles [19].

Meat tenderness is determined by the intrinsic characteristics of meat, specifically
the amount of glycogen [20]. In sheep, the liver is the most significant glucose-producing
organ, producing 85–90% of the body’s total glucose production [21]. Therefore, muscle
glycogen in lambs fed a diet high in roughage will have come from liver-produced glucose.
Glycogen is stored in the liver to maintain blood glucose concentration and homeostasis [22].
Furthermore, liver glycogen concentration is reported to affect muscle characteristics and
is positively correlated with muscle glycogen [23,24]. However, post-mortem glycolic
changes affect the physical and sensory features of meat quality traits such as pH, color,
tenderness, and cooking loss [25]. The post-mortem breakdown of muscle glycogen yields
lactic acid, the accumulation of which contributes to the change in meat pH [26]. Note,
the antemortem glycogen level in muscle is positively correlated to the glycogenesis in the
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liver [21,22]. A relationship between glycogen depots in liver and muscle and ultimate
muscle pH values has been described postulating that higher glycogen storages contribute
to the lower ultimate pH in the muscle [27,28]. Furthermore, all dietary supplements and
muscle component-associated molecules are being metabolized in the liver; thus it is pivotal
to unravel the hepatic transcriptome affecting meat quality traits including meat tenderness.
However, application of RNA-Seq to identify DEGs and polymorphisms affecting lamb
tenderness is limited. Hence, the objective of this study is to decipher the transcriptome
and polymorphisms within the liver with divergent tenderness in Indonesian sheep using
Illumina Hiseq 2500. Several candidate genes and genetic markers related to the tenderness
of sheep meat were identified which could contribute to a sustainable sheep industry by
improving meat quality.

2. Materials and Methods
2.1. Animals and Phenotype

Tissue samples (longissimus dorsi, semitendinosus, liver tissues) and phenotypes were
collected from the male Garut composite sheep (GCS) with an average liveweight of 30 kg and
age of 12 months. GCS sheep are 50% indigenous Garut sheep, 25% St. Croix sheep from the
Virgin Islands, and 25% Moulton Charolais sheep from France [29] (Supplementary Figure S1).
All the sheep (n = 140) were slaughtered at PT Pramana Pangan Utama, IPB University.
The Animal Ethics Commission of the IPB University approved all procedures involving
animals (approval no. 117-2018 IPB). Phenotypes were measured for meat quality traits
including tenderness (shear force), water holding capacity (WHC), pH, and cooking loss.
Meat tenderness was measured using Warner–Bratzler shear force (WBSF) [30]. The WHC
was measured by measuring the amount of water lost (mgH2O). WHC is the percentage of
weight lost from 5 g meat samples after being pressurized at 2250 g for 5 min [31]. The pH
value was measured with a pH meter after carcass being stored for 24 h postmortem (final
pH). Cooking loss was measured by deducting the initial weight of the sample meat after
being cooked in a water bath at a temperature of 80 ◦C for 1 h [30].

For the RNA sequencing analysis, ten GCS were selected from the pool of 140 sheep
with extreme divergent tenderness phenotypes. The average shear force value for high (HT)
and low (LT) tenderness groups were 3.14 ± 0.09 and 4.69 ± 0.67, respectively (Table 1).
RNA was extracted from the livers of 5 sheep with extremely high (HT) and 5 sheep with
extremely low (LT) tenderness levels using the RNeasy Mini Kit (Qiagen, Hilden, Germany).

Table 1. Descriptive statistics of meat quality composition in sheep.

Meat Quality
Composition

Mean SD Low (n = 5) High (n = 5)

n = 140 n = 140 Mean SD Mean SD

pH 5.98 0.57 6.11 0.11 5.95 0.22
Tenderness * 3.66 0.76 4.69 0.67 3.14 0.09
Cooking loss (%) 46.46 8.09 47.91 6.30 49.40 2.90
Water holding capacity (%) 28.09 3.22 26.22 2.00 26.68 3.17

* The meat quality trait ‘tenderness’ is measured as ‘shear force’ with unit kg/cm2.

2.2. Library Construction and Sequencing

A Nanodrop 2000 Spectrophotometer was used to measure the quantity of RNA and
an Agilent 2100 Bioanalyzer was used to measure the quality of RNA (Agilent Technologies,
Sangta Clara, CA, USA). TruSeq RNA Library Prep Kit v2 was used to prepare libraries from
RNA samples of acceptable quality and quantity with a minimum RNA Integrity Number
(RIN) > 7.0 (Illumina, San Diego, CA, USA). A total of 101 base paired-end sequencing
of the 10 samples were performed using Illumina HiSeq-2500 Platform (Illumina) and
sequencing reads were mapped to the sheep (Ovis aries) reference genome Oar_v4.0. The
sequencing information was delivered to NCBI (Accession: PRJNA847713, ID: 847713).
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2.3. Differential Gene Expression and Pathway Analysis

We performed differential expression analysis to assess the gene expression differences
between two distinct sample conditions. To discover significant DEGs, the absolute value
of the log2 (fold change) > 1.5 was used as the threshold. The R package DESeq was
used to identify DEGs with a false discovery rate (FDR) of 0.05 compared to the sheep
group (criteria: fold change > 1.5 and p ≤ 0.05) [32]. DESeq then includes a Generalized
Linear Model (GLM) function for calculating both within and between group deviations.
DAVID [33] was used to perform functional annotation and pathway enrichment of DEGs.
The DEGs were used for gene ontology (GO) enrichment [34] and pathway analyses in the
Kyoto Encyclopedia of Genes and Genomes (KEGG) [35]. The GO terms and pathways
with p ≤ 0.05 were considered significantly enriched, and only the genes significant in the
tests (p ≤ 0.05) were chosen for further investigation.

2.4. Network Enrichment Analysis

The network enrichment analysis was carried out with the help of the open-source online
tool NetworkAnalyst [36]. The literature-curated PPI database imported from InnateDB
was used to build the PPI network with human orthologs of the differentially expressed
genes [37]. The standard network algorithm generated 1 larger subnetwork called “continent”
and 7 smaller subnetworks called “island”. Due to all the islands having only one seed
gene with 3–9 nodes connected by 2–8 edges, they were given additional consideration.
The continent was further modified for better visualization by using the tool’s ‘minimize
network’ function. The PPI was represented as nodes (circles representing regulatory genes)
linked by edges (lines representing the direct molecular interactions). For detecting the
network’s highly interconnected genes (hub genes), two network centrality measures were
used: degree (number of connections to other nodes) and betweenness (number of shortest
paths passing through the node). Higher degree and betweenness nodes were regarded as
potentially more important network hubs in cellular signal trafficking. Furthermore, liver-
specific co-expression networks were created by incorporating the TCSBN database [38] into
the NetworkAnalyst tool.

2.5. Analysis of Quantitative Real-Time PCR (qRT–PCR) Validation

Reverse transcriptase PCR was performed by transcribing extracted RNA into comple-
mentary DNA (cDNA) using a First Strand cDNA Trancriptor Synthesis (Thermo Scientific,
Vilnius, Lithuania) kit based on the manufacturer’s protocol. Quantification of cDNA
was performed by a qRT–PCR method with AG qTower 4 channel (Analytic Jena engine,
Jena, Germany). The online tool Primer3 software (https://primer3.ut.ee/, accessed on
1 March 2021) [39] was used to design gene specific primers for qRT–PCR (Table 2). The
96-well microtiter plate in each run contained one cDNA sample and no template control.
Each sample was examined twice (technical replication), and the geometric mean of the
Ct values was applied to profile mRNA expression. For normalization of the target genes,
the geometric mean of two housekeeping genes, β-Actin and GAPDH was used. Ct values
were calculated by subtracting the targeted gene from the geometric mean of the reference
genes: ∆Ct = Cttarget − Cthousekeeping genes [40].

Table 2. GenBank Accession numbers and primer sequences for qRT–PCR and genotyping.

Gene
Name

Accession
Number Primer sequence Tm

(◦C) Application Enzymes Size
(bp)

Cutting Size
(bp)

HSD17B13 XM_004009979.5 F: 5′-CCC ATC AAC ACC TAG AAT GC-3′

R: 5′-CAG CAG TGA TTC CAA GTA GG-3′ 61 qRT–PCR - 178 -

ANGPTL2 XM_027966435.2 F: 5′-TTA ATG AAT AAC CAG GGG CC-3′

R: 5′-CTG CTG AGG TAA TAG GCA CA-3′ 53 qRT–PCR - 215 -

IGFBP7 NM_001145181.1 F: 5′-CTG TCC TCA TCT GGA ACA AG-3′

R: 5′-TCT CCA GCA TCT TCC TTA CT-3′ 56 qRT–PCR - 169 -

TP53INP1 XM_042254467.1 F: 5′-GTG CAG TCT GAA GTT CTC CT-3′

R: 5′-TTT CCA AAA CCT GTC TTC GG-3′ 52 qRT–PCR - 181 -

https://primer3.ut.ee/
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Table 2. Cont.

Gene
Name

Accession
Number Primer sequence Tm

(◦C) Application Enzymes Size
(bp)

Cutting Size
(bp)

ADH1C XM_004009680.4 F: 5′-GAA TCT GTC GCT CAG ATG AC-3′

R: 5′-GCT CAT TCA GGT CGT GTT TC-3′ 52 qRT–PCR - 225 -

OLFML3 XM_004002351.5 F: 5′-TCC AGA GTA GTG AGA GAG AC-3′

R: 5′-ACA AAA GGA ACA AGA TCA GC-3′ 53 qRT–PCR - 182 -

THOC5 XM_042234811.1 F: 5′-ATT GGC CCA CAT CAG GTT GA-3′

R: 5′-TCT CCC ATG GTG ACT TCT GC-3′ 53 qRT–PCR - 237 -

CYP2E1 NM_001245972.1 F: 5′-ATT CCC AAG TCC TTC ACC AG-3′

R: 5′-GTT GTT TTT GTG CAC CTG GA-3′ 61 qRT–PCR - 180 -

LPIN1 NM_001280700.1 F: 5′-CTC AGA CCA TGA ACT ACG TC-3′

R: 5′-AGT TTC ATG TGC AAA TCC AC-3′ 57 qRT–PCR - 247 -

FABP5 NM_001145180.1 F: 5′-GTC TGC AAC TTT ACG GAT GG-3′

R: 5′-CAG CAG TAT GGA GAT TTG CT-3′ 61 qRT–PCR - 233 -

GAPDH NC_019460.2 F: 5′-GAG AAA CCT GCC AAG TAT GA-3′

R: 5′-TAC CAG GAA ATG AGC TTG AC-3′ 62 qRT–PCR - 203 -

β-Actin NC_019471.2 F: 5′-GAA AAC GAG ATG AGA TTG GC-3′

R: 5′-CCA TCA TAG AGT GGA GTT CG-3′ 62 qRT–PCR - 194 -

ANGPTL2 NC_040254.1 F: 5′-ACA GCT CTG CTC TTA GGA GA-3′

R: 5′-AGA AGC TAG GGA ATC TTG CC-3′ 62 Genotyping NsbI 454
GG: 154, 300 bp

AA: 454 bp
GA: 154, 300, 454 bp

OLFML3 NC_019458.2 F: 5′-ATG ATG GCT ACC AGA TTG TC-3′

R: 5′-AGT CTG CAG TAC AGA AGG AG-3′ 59 Genotyping MspI 498
CC = 195, 303 bp

TT = 498 bp
CT = 195, 303, 498 bp

THOC5 NC_019474.2 F: 5′-CCC AGG AAG GTT TGA TTC TC-3′

R: 5′-AGG ACT ACA TGG TAG GTG TG-3′ 60 Genotyping TaiI 322
CC = 129, 193 bp

TT = 322 bp
CT = 129, 193, 322 bp

Tm: melting temperature, bp: base pair.

2.6. Analysis of Gene Variation

SNP calls were made on the mapping files generated by the TopHat algorithm for gene
variation analysis using the ‘samtools mpileup’ command and associated algorithms [41].
For further analysis, we chose variants with a minimum Root Mean Square (RMS) mapping
quality of 20 and a minimum read depth of 100. The selected variants were compared to
the dbSNP database to identify previously studied polymorphisms. In order to identify
differentially expressed genes with sequence polymorphisms, we cross-checked and filtered
these variants based on their chromosomal positions against DEGs, retaining only those
variants that mapped to DEG chromosomal positions. In this way, we could pick a few
mutations that mapped to DEGs among thousands of identified potential sequence poly-
morphisms. Furthermore, we calculated the read/coverage depth of these polymorphisms
in all samples to determine whether they were segregated in only one sample group (high
or low tenderness) or in both groups (high and low tenderness). Using the GeneWise
software (http://www.ebi.ac.uk/Tools/psa/genewise/, accessed on 20 April 2021), the
identified SNPs were grouped as synonymous or non-synonymous by comparing protein
sequences and nucleotide incorporated SNP position [42].

2.7. SNP Validation and Association Study

A SNP in each of three highly polymorphic DEGs, and genes known to play roles in
tenderness (OLFML3, ANGPTL2, and THOC5) was chosen for validation (Table 2). The
muscle (Longissimus dorsi) samples from 140 sheep were collected for DNA extraction until
a final concentration of 50 ng/mL DNA was obtained. For genotyping, the PCR–RFLP
(Polymerase Chain Reaction–Restriction Fragment Length Polymorphism) method was
used. The PCR was carried out in a 15 µL volume with 1 µL of genomic DNA, 0.4 µL
of primers, 6.1 µL of MyTaq HS Red Mix, and 7.5 µL of nuclease water. A 1.5% agarose
gel (Fischer Scientific Ltd., Meridian, MS, USA) was used to examine the PCR product,
which was then digested with the appropriate restriction enzyme. The digested PCR-RFLP
products were resolved in 2% agarose gels. PROC GLM in SAS 9.2 was used to calculate
the effect of genotypes on meat quality traits (SAS Institute Inc, Cary, NC, USA). One-way

http://www.ebi.ac.uk/Tools/psa/genewise/
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analysis of variance (ANOVA) followed by Duncan’s test was used to compare the loci
genotypes’ least square mean values.

Yi = µ + genotypei + ei

where: Yi = the meat quality trait; µ = the population mean; genotypei = the fixed effect of
i-th genotype; ei = the residual error.

3. Results
3.1. Phenotype of Meat Quality Traits in Sheep

The phenotypic traits of meat quality measured were: pH, shear force (for tenderness),
cooking loss, and WHC. Descriptive parameters for meat quality traits’ data are given in
Table 1. The average pH, shear force, cooking loss, and WHC values were 5.98, 3.66, 46.46,
and 28.09, respectively. Sheep having a ‘shear force value’ greater and less than 4.6 kg/cm2

were defined as low- and high-meat tenderness, respectively [4].

3.2. Overview of the RNA Deep Sequencing Data

In this study, cDNA libraries have been sequenced from ten liver tissues collected
from phenotypically divergent (five HT, and five LT) sheep using Illumina HiSeq 2500. The
sequencing produced sequence read clusters with a maximum of 100 bp. The total number
of reads after quality control and filtering ranged from 20.02 to 21.90 million. The total
number of reads in each group, as well as the number of reads that have been mapped to
reference sequences are given in Table 3. In the LT group, 87.26% to 88.78% of total reads
were aligned to reference sequences, whereas 83.85% to 88.80% of total reads were aligned
to reference sequences in case of HT group (Table 3).

Table 3. Summary of hepatic sequence reads alignment to sheep reference genome.

Group Sample
Total Number

of Reads
(Million)

Unmapped
Reads

(Million)

Mapped
Reads

(Million)

Percentage of
Unmapped
Reads (%)

Percentage
of Mapped
Reads (%)

Q20
(%)

Q30
(%)

Low
Tenderness

LT1 20.95 2.67 18.28 12.74 87.26 96.48 92.68
LT2 21.90 2.62 19.28 11.96 88.04 96.52 92.80
LT3 20.06 2.40 17.66 11.96 88.04 96.06 91.95
LT4 21.04 2.36 18.68 11.22 88.78 96.32 92.45
LT5 20.84 2.48 18.36 11.90 88.10 96.45 92.67

High
Tenderness

HT1 21.29 2.62 18.67 12.31 87.69 96.40 92.58
HT2 20.00 3.23 16.77 16.15 83.85 96.50 92.70
HT3 20.18 2.46 17.72 12.19 87.81 96.65 93.05
HT4 20.02 3.12 16.90 15.58 84.42 96.41 92.56
HT5 21.17 2.37 18.80 11.20 88.80 96.65 93.12

3.3. Differential Gene Expression Analysis

The raw reads of DEGs in the liver tissues of sheep with HT and LT levels were
calculated using the R package DESeq. To identify DEGs in the liver with divergent
(high and low) tenderness, a negative binomial distribution-based method implemented
in DESeq was used. The differential expression analysis yielded 328 hepatic DEGs using
the criteria p adjusted 0.05 and log2 fold change > 1.5 (Figure 1). A total of 110 and
218 genes were identified as up- and down-regulated, respectively, in the HT and LT
groups (Supplementary Table S1). The log2 fold change values for DEGs ranged from
4.09 to 4.80. Heatmaps (Figure 2) depicted the top 30 up- and down-regulated hepatic genes
found in sheep with high and low tenderness. The top 30 up- and down-regulated genes,
along with log FC and p-values are presented in Supplementary Table S2. The differential
expression analysis of these data indicated both novel transcripts and genes previously
reported in other gene expression studies (Supplementary Table S1).



Animals 2023, 13, 674 7 of 19

Animals 2023, 13, x 7 of 21 
 

DESeq was used. The differential expression analysis yielded 328 hepatic DEGs using the 
criteria p adjusted 0.05 and log2 fold change > 1.5. (Figure 1). A total of 110 and 218 genes 
were identified as up- and down-regulated, respectively, in the HT and LT groups (Sup-
plementary Table S1). The log2 fold change values for DEGs ranged from 4.09 to 4.80. 
Heatmaps (Figure 2) depicted the top 30 up- and down-regulated hepatic genes found in 
sheep with high and low tenderness. The top 30 up- and down-regulated genes, along 
with log FC and p-values are presented in Supplementary Table S2. The differential ex-
pression analysis of these data indicated both novel transcripts and genes previously re-
ported in other gene expression studies (Supplementary Table S1). 

  
Figure 1. Volcano plot. The 110 differentially expressed protein coding genes (represented in blue) 
were plotted as a volcano with a fold change of 1.5 and a p-value of 0.05. The x-axis values are the 
base mean expression values, and the y-axis values are the log2 expression values (fold change). 

Figure 1. Volcano plot. The 110 differentially expressed protein coding genes (represented in blue)
were plotted as a volcano with a fold change of 1.5 and a p-value of 0.05. The x-axis values are the
base mean expression values, and the y-axis values are the log2 expression values (fold change).

Animals 2023, 13, x 8 of 21 
 

 
Figure 2. A heatmap depicting the expression of hepatic genes in sheep. The red blocks are overex-
pressed genes, while the green blocks are underexpressed genes. HT 1-5 sheep have high meat ten-
derness, and LT 1-5 sheep have low meat tenderness. 

3.4. Functional Analysis 
Cellular components, molecular functions, and biological processes were the most 

important GO terms discovered (Figure 3). Calcium ion binding and iron ion binding were 
the molecular functions that controlled the metabolism of tenderness-related molecules. 
The cellular processes identified were mainly related to extracellular exosome and extra-
cellular space. The biological mechanisms revealed were correlated to heart development 
and defense response to Gram-negative bacteria (Table 4). The DAVID tool identified 
KEGG pathways that were overrepresented for DEG. The dominant pathway for differ-
ences in lamb tenderness level was steroid hormone biosynthesis (Figure 4). The hepatic 
genes defined in these pathways with high and low tenderness levels are shown in Table 
5. 

Figure 2. A heatmap depicting the expression of hepatic genes in sheep. The red blocks are over-
expressed genes, while the green blocks are underexpressed genes. HT 1–5 sheep have high meat
tenderness, and LT 1–5 sheep have low meat tenderness.



Animals 2023, 13, 674 8 of 19

3.4. Functional Analysis

Cellular components, molecular functions, and biological processes were the most
important GO terms discovered (Figure 3). Calcium ion binding and iron ion binding were
the molecular functions that controlled the metabolism of tenderness-related molecules. The
cellular processes identified were mainly related to extracellular exosome and extracellular
space. The biological mechanisms revealed were correlated to heart development and
defense response to Gram-negative bacteria (Table 4). The DAVID tool identified KEGG
pathways that were overrepresented for DEG. The dominant pathway for differences in
lamb tenderness level was steroid hormone biosynthesis (Figure 4). The hepatic genes
defined in these pathways with high and low tenderness levels are shown in Table 5.
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Table 4. Functional categories and corresponding genes that were over expressed in the liver tissues
from sheep with high meat tenderness.

Category Term Count of Genes Genes

Biological
Process

Heart development 7 ADM, KCNJ8, RPS6KA2, PDLIM3, GLI2,
CACNA1C, DNAH5

Defense response to Gram-negative bacterium 3 ADM, HMGB2, SSC5D
Cardiac muscle cell apoptotic process 2 NOL3, RPS6KA2
Defense response to Gram-positive bacterium 3 ADM, HMGB2, SSC5D
Positive regulation of vasculogenesis 2 ADM, TMEM100
Odontogenesis of dentin-containing teeth 3 HAND2, SOSTDC1, GLI2
Negative regulation of cardiac muscle cell
apoptotic process 2 NOL3, HAND2

Negative regulation of oxidative stress-induced
intrinsic apoptotic signaling pathway 2 NOL3, VNN1

Cellular
Component

Extracellular matrix 5 OGN, AEBP1, EFEMP1, SSC5D, LOXL1

Extracellular space 16

F11, PLAT, AEBP1, ADAMTS13,
EFEMP1, HMGB2, POMC, S100A13,
TNFRSF9, OGN, ADM, SOSTDC1,
REN, GDF10, ANGPTL1, SSC5D

Proteinaceous extracellular matrix 5 BGN, ADAMTS13, COL6A1, PRELP,
WNT2B

Extracellular exosome 32

AEBP1, CSPG4, ALDH1L2, EXTL2,
CXCL12, OGN, ASPA, TGM3,
COL6A1, VNN1, ANGPTL1,
ANGPTL2, RHOF, RAP2B, PLAT, F11,
DDC, FAM26E, AK1, EFEMP1,
ACTN2, REEP2, S100A13, LIN7A,
PRELP, REEP5, BGN, CPE, FBLN7,
ZNF114, PCYOX1, CDH11

Sarcolemma 3 BGN, COL6A1, CCDC78

Molecular
Function

Oxidoreductase activity, acting on paired donors,
with incorporation or reduction of molecular
oxygen, reduced flavin or flavoprotein as one donor,
and incorporation of one atom of oxygen

3 CYP2D14, CYP2D14-like, CYP2E1

Oxidoreductase activity, acting on the CH-NH2
group of donors, oxygen as acceptor 2 LOXL3, LOXL1

Calcium ion binding 11
NOL3, SCUBE2, NOTCH4, EFEMP1,
MYL1, FBLN7, TGM3, ACTN2,
FKBP10, S100A13, CDH11

Iron ion binding 5 P3H3, CH25H, CYP2D14,
CYP2D14-like, CYP2E1

Copper ion binding 3 LOXL3, LOXL1, S100A13
Glycosaminoglycan binding 2 BGN, ENG
Scavenger receptor activity 3 LOXL3, SSC5D, SCARA5
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Table 5. KEGG pathway corresponding genes that were found to be overexpressed in liver tissues
from sheep with high and low meat tenderness.

Function Number
of Genes

Benjamini-Hochberg
p-Value Genes

Ascorbate and aldarate metabolism 3 0.025004 UGT2B18-like, UGT2B31-like, UGT2A1-like
Pentose and glucuronate interconversions 3 0.045079 UGT2B18-like, UGT2B31-like, UGT2A1-like
Porphyrin and chlorophyll metabolism 3 0.066439 UGT2B18-like, UGT2B31-like, UGT2A1-like
Drug metabolism—other enzymes 3 0.066439 UGT2B18-like, UGT2B31-like, UGT2A1-like
Renin secretion 4 0.029158 REN, GUCY1B2, CACNA1C, LOC101116002
Retinol metabolism 4 0.030325 UGT2B18-like, UGT2B31-like, ADH1C, UGT2A1-like
Rheumatoid arthritis 4 0.089781 MMP1, DQA, CXCL12
Serotonergic synapse 4 0.095866 DDC, CYP2D14, CYP2D14-like, CACNA1C
Drug metabolism—cytochrome P450 5 0.003294 UGT2B18, UGT2B31-like, ADH1C, UGT2A1-like, CYP2E1
Metabolism of xenobiotics by cytochrome P450 5 0.004904 UGT2B18-like, UGT2B31-like, ADH1C, UGT2A1-like, CYP2E1
PPAR signaling pathway 5 0.005732 MMP1, PLIN1, APOA5, ACSL6, FABP5
Chemical carcinogenesis 5 0.007657 UGT2B18-like, UGT2B31-like, ADH1C, UGT2A1-like, CYP2E1
cGMP-PKG signaling pathway 5 0.099557 KCNJ8, GUCY1B2, MRVI1, CACNA1C, MYL9

Steroid hormone biosynthesis 7 8.33 × 10−5 UGT2B18, UGT2B31, DHD3-like, UGT2A1, CYP2D14,
CYP2D14-like, CYP2E1

3.5. The Hepatic Transcriptome Network’s Regulatory Hub Genes

A PPI network with 117 seed genes and 944 nodes connected by 1138 edges was
built to identify potential regulatory hub genes in the hepatic transcriptional network.
The potential hub genes were identified using network centrality measures, with ACTN2,
SOD1, TPM2, THOC5, PLAT, TRIM9, FKBP10, MEIS1, CACNA1C, SPRY1, and GAAR1 up-
regulated, and GRIP1, PFN2, NOL3, NR2F1, MARCKS, MAP2K6, E2F2, ENG, and PRMT2
down-regulated (Figure 5A,B). In addition, a liver-specific gene co-expression network
was developed to identify additional hub genes that may have been missing in the PPI
network. The co-expression network revealed that the majority of the potential hub genes,
including COL6A1, AEBP1, PRELP, ANGPTL2, EEEMP1, SCARF2, ENG, LOX1, and SSC5D,
were downregulated, while only four hub genes (FKBP10, IGFBP7, GABBR1, and SPRY1)
among the top twenty were upregulated in the liver tissue obtained from GCS (Figure 6A,B).
Surprisingly, the common hub genes in both the PPI and the co-expression network were
FKBP10, GABBR1, ENG, NR2F1, and SPRY1 (Supplementary Tables S3 and S4).
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3.6. Quantitative Real-Time PCR Validation of Selected DEGs (qRT–PCR)

To validate the RNA-Seq results, a total of ten genes (HSD17B13, ANGPLT2, IGFBP7,
TP53INP1, ADH1C, OLFML3, THOC5, CYP2E1, LPIN1, and FABP5) were chosen and
quantified using qRT–PCR. The same samples that were used for deep sequencing were
used for this purpose. A comparison of qRT–PCR data for ten selected genes revealed
quantitative expression concordance with RNA-Seq results (Figure 7). The qRT–PCR gene
expression values were normalized using two housekeeping genes (GAPDH and β-Actin).
Detailed GenBank accession numbers, primer sequences, and annealing temperatures for
qRT–PCR used in this study are provided in Table 2.
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3.7. Analysis of Gene Variation and an Association Study

In 54 DEGs with high and low tenderness, 334 single nucleotide polymorphisms
(SNPs) were found (Supplementary Table S5). The selected polymorphisms identified in
hepatic DEGs are listed in Supplementary Table S6. Figure 8A,B show the distribution of the
number of genes with SNPs and the selected SNPs used for validation. Furthermore, three
SNPs were chosen for association analysis based on gene functions related to tenderness
(Figure 8B and Supplementary Table S6). The selected SNPs were found in the genes
OLFML3, ANGPTL2, and THOC5. Note, the SNP in OLFML3 and ANGPTL2 genes are
located in intron 4 and 5, respectively, whereas the SNP in THOC5 gene is located in exon 17.
The segregation and association of these SNPs in the sheep population (n = 140) used in
this study were validated. The association analysis suggested that the polymorphisms in
OLFML3, ANGPTL2, and THOC5 were associated (p < 0.05) with tenderness (Table 6) in the
sheep population.
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Table 6. Genotypes and association studies of selected candidate meat quality markers.

Meat
Quality

OLFML3 C > T ANGPTL2 G > A THOC5 C > T

Genotype (µ ± S.D) Genotype (µ ± S.D) Genotype (µ ± S.D)

CC
(n = 57)

CT
(n = 62)

TT
(n = 21)

GG
(n = 21)

GA
(n = 69)

AA
(n = 50)

CC
(n = 135)

CT
(n = 3)

TT
(n = 2)

pH value 6.08 ± 0.58 5.93 ± 0.56 5.83 ± 0.54 6.09 ± 0.75 5.98 ± 0.61 6.06 ± 0.55 6.01 ± 0.62 5.97 ± 0.10 5.90 ± 0.41
Tenderness
(shear force,
kg/cm2)

3.63 ± 0.91 ab 3.79 ± 0.67 a 3.35 ± 0.44 b 3.09 ± 0.51 a 3.61 ± 0.74 a 3.75 ± 0.86 b 3.55 ± 0.70 b 4.97 ± 0.53 a 3.45 ± 1.20 b

Cooking
loss (%) 45.31 ± 8.53 b 46.47 ± 7.76 ab 49.54 ± 7.35 a 49.47± 5.90 46.36± 8.09 46.85± 8.01 46.44± 8.05 48.42± 3.00 49.69± 3.88

WHC
(mgH2O) 84.80± 12.00 83.88± 8.02 84.07± 6.98 84.04± 7.36 84.59± 9.37 84.16± 10.48 84.18± 9.53 77.95± 11.30 84.87± 4.32

WHC
(% mgH2O) 28.26± 4.00 27.96± 2.67 28.02± 2.32 28.01± 2.45 28.19± 3.12 28.05± 3.49 28.06± 3.17 25.98± 3.76 28.29± 1.44

µ: mean, S.D: standard deviation, a,b Means differ significantly (p < 0.05) in the same row with different su-
perscripts. The numbers in parentheses represent the number of individuals who have the specified genotype
(Duncan’s test).
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4. Discussion
4.1. Analysis of RNA Seq Data

Transcriptome profiling sheds light on the genetics underlying tenderness in sheep.
Hence, this comparative RNA-Seq study involving divergent (high vs. low) tenderness
in GCS was performed. The identified DEGs determine the functional complexity of
tenderness and provide important information on phenotypic and functional differences
in tenderness in lamb. The mapping results showed that the average number of reads
was 20.74 million, with 87.27% of the reads classified as mapped reads corresponding to
exon reads (Table 3). The percentage of mapped reads was higher than the previous study
by Gunawan et al. [17] (85.73%) and Gunawan et al. [18] (85.89%) in Indonesian Javanese
fat-tailed sheep. The percentage of mapped reads is an indicator of the overall sequencing
accuracy and absence of contaminating DNA [43].

4.2. Differentially Expressed Gene Analysis

Among 328 DEGs, the differences in gene expression were more clearly shown using
the top 30 genes that were highly expressed and the top 30 genes that were expressed the
lowest in liver tissue with different levels of tenderness, along with FC log values and p-
values (Supplementary Table S2). Potential candidate genes that were upregulated include
TP53INP1, APOA5, CYP2E1, HSD17B13, ADH1C, and LPIN1. The TP53INP1 gene belongs
to the p53 tumor protein family which has been shown to be associated with skeletal muscle
growth, myocytes’ division and maturation in pigs [44]. The APOA5 (Apolipoprotein A5)
gene is reported to have an influence on FA metabolism in Indonesian sheep [10]. The
CYP2E1 gene (Cytochrome P450 2E1) plays a key role in the enzymes’ metabolism in the
liver that affects the meat flavor in pig [45]. Note, the CYP2A6 gene was previously found
to be associated with lamb flavor and odor in sheep [9]. The HSD17β13 is a 17β-HSD
family gene that mediates the physiological functions of reproductive hormones, and the
HSD17β gene family was reported to be associated with meat quality traits in pigs [46].
It has been reported that the ADH1C (Alcohol Dehydrogenase 1C) gene is associated with
vitamin A content and muscle tenderness in Korean cattle [47]. The Lipin 1 (LPIN-1) gene
is a key factor regulating lipid, dietary glucose, and polyunsaturated FA metabolism [48],
and thus may regulate muscle tenderness.

The top down-regulated candidate genes found to influence the metabolism of muscle
tenderness-related molecules were ANGPTL2, IGFBP7, FABP5, CH25H, LOXL3, OLFML3,
THOC5, and AEBP1. The ANGPTL2 gene is a member of angiopoietin-like proteins family
that was reported to be associated with fat deposition in cattle [49]. Both the AEBP1
and IGFBP7 genes were reported to influence muscle development in pigs [50]. The
IGFBP7 (Insulin-like growth factor binding-protein 7) binds to IGF and regulates IGF-signaling
pathways. Overexpression of the IGFBP7 gene is reported to inhibit lipid accumulation
in tissues [51], thus downregulation may positively affect the lipid accumulation and
muscle tenderness because the IMF content or marbling is positively correlated with
tenderness. The FABP5 gene is a member of FABPs (fatty acid-binding proteins) family
that controls lipid metabolism [52] and thus may affect muscle tenderness. Furthermore,
CH25H (cholesterol 25-monooxygenase) inhibits the cholesterol biosynthetic enzymes and has
a defense function [53], but its association with muscle tenderness is yet to be deciphered.
LOXL3 (Lysyl oxidase-like 3) is a member of the lysyl oxidase family that play roles in
extracellular matrix maturation and are involved in bone development [54]. The OLFML3
(Olfactomedin-like 3) gene has been reported to be differentially expressed during muscle
development in pigs [55]. The THOC5 gene is well known for playing a key role in lipid
and FA metabolism in cattle [56]. The positive effect of lipids on meat tenderness might be
due to the presence of lipids in the perimysium, that separates muscle fiber bundles [56].
Note, some of the important DEGs have been studied in cattle and pigs [49,50,55,56], but
very little or no study has been performed in sheep with regards to meat quality traits,
including tenderness.
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4.3. Biological Function Analysis for DEGs

This study enriched the GO categories of biological processes, cellular components,
and molecular functions (Figure 3 and Table 4). The enriched biological processes identified
were mostly related to heart development, defense response to bacteria, positive regulation
of vasculogenesis, negative regulation of muscle cell apoptotic processes, and negative
regulation of the oxidative stress-induced intrinsic apoptotic signaling pathway. Oxidative
and apoptotic processes are involved in metabolism of molecules that affect meat tenderness.
The majority of the oxidative metabolism-related proteins are found to play a role in stress
regulation too [57]. Muscles are usually exposed to a variety of reactive oxygen species
resulting from oxidative stress, thus, increased antioxidant activities may regulate apoptosis
and influence meat tenderness [58]. Several studies reported that biological pathways
related to meat tenderness usually include proteolysis, muscular structure and contraction,
oxidative stress, heat shock proteins, and apoptosis [59,60].

Cellular components identified consist of extracellular matrix, extracellular space, pro-
teinaceous extracellular matrix, extracellular exosomes, and sarcolemma (Figure 3). The
extracellular matrix provides biomechanical strength to the intramuscular connective tissues
and regulates the structural properties of myocytes. Decorin and laminin are two extracellu-
lar matrix molecules that modulate the activity of myostatin, which regulates skeletal muscle
mass. Furthermore, decorin has been shown to activate the insulin-like growth factor-I re-
ceptor (IGF-IR) and myogenic cell differentiation, and thus functions as a signaling molecule
for myogenic cells. The structural integrity of the intramuscular connective tissues increases
with animal growth. The collagen fibrils within the endomysium get connected, and the
collagen fibers in the perimysium become increasingly thick and their wavy pattern becomes
more regular during muscle development. These modifications increase the mechanical
strength of the intramuscular connective tissues which contributes to meat toughening [61].
The molecular functions controlling the tenderness-related molecules’ metabolism were
related to oxidoreductase activity, acting on paired donors with incorporation or reduction
of molecular oxygen, reduced flavin or flavoprotein, oxidoreductase activity acting on
the CH-NH2 group of oxygen, calcium ion binding, iron ion binding, copper ion binding,
glycosaminoglycan binding, and scavenger receptor activity (Figure 3). Oxidoreductase
activity that controls the muscle mass and strength, and calcium ion binding that regulates
the muscle contractile properties along with hormones were previously identified in meat
quality traits analysis in Duroc pigs [62]. Pathway analysis showed that steroid hormone
biosynthesis, the PPAR signaling pathway, metabolism of xenobiotics by cytochrome P450,
chemical carcinogenesis, cGMP-PKG signaling pathway, and drug metabolism—cytochrome
P450 were the dominant pathways for differences in tenderness in lamb (Figure 4). Steroid
hormones play critical roles during myogenesis by influencing cell differentiation [63]. The
PPAR signaling pathway, which is involved in lipid metabolism, has long been recognized
as an important biological pathway controlling meat quality in animals. The primary tran-
scription regulator in PPAR signaling, peroxisome proliferator-activated receptor gamma
has been reported to be a key factor in controlling the transcription of many genes involved
in adipogenesis pathways [64]. PPAR signaling pathway genes influence muscle tenderness
by causing phenotypic differences in marbling in livestock [65].

4.4. The Hepatic Transcriptome Network’s Regulatory Hub Genes

Muscle tenderness traits, like many other quantitative traits, are most likely regulated
by multiple genes that interact with one another via an interconnected network. As a result,
network-based approaches are thought to be more sensitive in identifying regulatory
gene molecules for global transcriptome alterations [66]. Herein, PPI network and co-
expression analysis was performed to scrutinize the regulatory hepatic genes in GCS with
divergent tenderness. The hepatic transcriptome network’s regulatory hub genes identified
several key genes, including ACTN2, SOD1, TPM2, THOC5, PLAT, TRIM9, FKBP10, MEIS1,
CACNA1C, SPRY1, and GAAR1, which were upregulated in the liver tissue (Figure 5A,B).
The ACTN2 gene is involved in muscle fiber composition and muscle contraction [67].
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TPM2 is involved in muscle contraction, muscle development, and lipid accumulation [68].
THOC5 gene is reported to influence lipid and FA metabolism, as well as affecting meat
tenderness [56]. The potential down-regulated hub genes were identified including GRIP1,
PFN2, NOL3, NR2F1, MARCKS, MAP2K6, E2F2, ENG, and PRMT2 (Figure 5A,B). The GRIP1
gene was previously reported to be associated with marbling [69]. SNPs in the MAP2K6
gene are associated with marbling score, back fat thickness, and carcass weight in Hanwoo
cattle [70]. MAP2K6 belongs to the protein kinase family and regulates the mitogen-
activated protein kinase pathway that controls muscle growth [71]. The E2F2 gene plays
an important role in skeletal muscle development by activating transcription factor-2 [72].
The advent of transcriptional network analyses has proved that functionally related genes
are usually co-expressed in various tissue and organism. Constructing a co-expression
network from transcriptome datasets has become a widely used alternative to conventional
analysis method for searching highly relevant genes of complex biological function. The
co-expression network identified several downregulated hub genes including COL6A1,
AEBP1, PRELP, ANGPTL2, EEEMP1, SCARF2, ENG, LOX1, and SSC5D, whereas only four
upregulated hub genes, namely FKBP10, IGFBP7, GABBR1, and SPRY1 were identified in
the liver tissue obtained from GCS with the divergent meat tenderness trait (Figure 6A,6B).
The AEBP1 and IGFBP7 genes influence muscle development in pigs [50]. The ANGPTL2
gene is reported to be associated with the fat deposition process in cattle [49]. The IGFBP7
gene is considered a candidate gene associated with meat quality traits according to results
of function and pathway analysis in crossbred sheep [73]. The GABBR1 gene is also reported
to be a candidate gene for fat deposition in the sheep tail [74].

4.5. Association between Candidate Markers and Phenotypes

In this study, selected polymorphisms in the OLFML3, ANGPTL2, and THOC5 genes
were revealed to be associated with meat quality traits (Table 6). The polymorphism in the
OLFML3 (C > T, g.90317673) gene was significantly (p < 0.05) associated with tenderness
and cooking loss. The percentage of cooking loss is proportional to the shear force value.
The higher the percentage of cooking loss, the higher the shear force value [75]. The
polymorphism in the ANGPTL2 (G > A, g.8930776) and THOC5 (C > T, g.68234589) genes
were significantly (p < 0.05) associated with tenderness. Meat tenderness is affected by
the biochemical properties of muscle fibers and the connective tissue matrix, as well
as by age, primarily due to cytoskeletal protein degradation. Tenderness is a key trait
influencing repurchase decisions because it is a major factor that contributes to eating
satisfaction and consumer acceptance [76]. The OLFML3 gene was previously reported to
be influencing meat tenderness in cattle [56]. The THOC5 gene was also reported to affect
meat tenderness [56]. A recent study has identified that the OLFML3 gene is associated with
meat quality traits including tenderness [77], however, due to fewer association studies in
sheep, the scope of comparing the results is limited.

5. Conclusions

This transcriptome analysis using RNA deep sequencing revealed potential candidate
hepatic molecules, genes, and polymorphisms affecting lamb tenderness. This study
suggests several candidate genes such as TP53INP1, CYP2E1, HSD17B13, ADH1C, LPIN1,
ANGPTL2, IGFBP7, FABP5, OLFML3, and THOC5 that might control the metabolism of
molecules involved in lamb tenderness. Furthermore, several SNPs were detected in the
hepatic DEGs and associations of selected markers with tenderness were validated, such
as polymorphisms in the OLFML3, ANGPTL2, and THOC5 genes that could be potential
markers for meat tenderness in sheep. However, further validation is needed to confirm the
effect of these genetic markers in other sheep populations, so that they can be considered
in selection for sheep with higher meat tenderness.
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