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Simple Summary: The size of the reference population is critical to the accuracy of genomic pre-
diction. In addition, joining the reference populations from different breeding organizations is a
convenient and effective method by which to enlarge reference populations. By adding the Nordic
Holstein reference population to the Chinese Holstein reference population, we found that the ac-
curacy of genomic prediction in the Chinese Holstein population was improved substantially for
the traits with high or moderate genetic correlation between the two populations; however, the
low-genetic-correlation traits did not improve. These findings are important for the purposes of
multi-country joint genomic evaluation.

Abstract: The size of the reference population is critical in order to improve the accuracy of genomic
prediction. Indeed, improving genomic prediction accuracy by combining multinational reference
populations has proven to be effective. In this study, we investigated the improvement of genomic
prediction accuracy in seven complex traits (i.e., milk yield; fat yield; protein yield; somatic cell count;
body conformation; feet and legs; and mammary system conformation) by combining the Chinese and
Nordic Holstein reference populations. The estimated genetic correlations between the Chinese and
Nordic Holstein populations are high with respect to protein yield, fat yield, and milk yield—whereby
these correlations range from 0.621 to 0.720—and are moderate with respect to somatic cell count
(0.449), but low for the three conformation traits (which range from 0.144 to 0.236). When utilizing the
joint reference data and a two-trait GBLUP model, the genomic prediction accuracy in the Chinese
Holsteins improves considerably with respect to the traits with moderate-to-high genetic correlations,
whereas the improvement in Nordic Holsteins is small. When compared with the single population
analysis, using the joint reference population for genomic prediction in younger animals, results in a
2.3 to 8.1 percent improvement in accuracy. Meanwhile, 10 replications of five-fold cross-validation
were also implemented in order to evaluate the performance of joint genomic prediction, thereby
resulting in a 1.6 to 5.2 percent increase in accuracy. With respect to joint genomic prediction, the bias
was found to be quite low. However, for traits with low genetic correlations, the joint reference data
do not improve the prediction accuracy substantially for either population.

Keywords: genomic prediction; joint reference population; genotype by environment interaction;
multi-trait GBLUP
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1. Introduction

Genomic selection (GS) [1] is a new landmark method of genetic evaluation that
follows the BLUP method [2]. It has already become a tool for routine genetic evaluation
in regard to dairy cattle breeding. The principle of GS is that at least one genetic marker
in the whole genome is in linkage disequilibrium with the quantitative trait loci of the
trait of interest [1]. These genetic markers are used to estimate the effect of each QTL
and then calculate the genomic estimated breeding value for the target trait. In addition,
genetic markers can capture the relationship of individuals who cannot be traced to a
common ancestor in the pedigree. When compared with the traditional BLUP method,
genomic selection substantially improves the prediction accuracy in selection candidates
and shortens the generation interval [3,4]. In the United States, seven years after the
introduction of genomic selection in dairy cattle, the annual rates of genetic gain increased
from 50% to 100% for yield traits, and from three-fold to four-fold for lowly heritable
traits—including female fertility, herd life, and somatic cell count [5].

The reference population size is one of the most important factors for the purposes of
improving genomic prediction accuracy [6,7]. A cost-effective approach is to use genotype
imputation as a strategy in order to reduce cost or to increase/maintain the prediction
accuracy for selection candidates and to render genomic selection economically feasible.
Another cost-effective approach to increase the reference population size is to combine with
other reference populations. Furthermore, it has been reported that combining multiple
reference populations can increase genomic prediction accuracy [8–10]. Indeed, with the
help of frozen semen technology, the genetic material of Holstein dairy cattle has been
delivered globally. As such, this fact has provided a genetic basis for the joint genomic
evaluation of dairy cattle.

When combining multiple populations in order to enlarge the reference population,
the consistency of linkage disequilibrium (LD) among the populations requires consider-
ation. If high LD consistency exists among the respective populations, then combining
the different populations is expected to improve the genomic prediction accuracy consid-
erably. With respect to this, the EuroGeomics Consortium [9] and the North American
Consortium [11] combined multiple, genetically related populations into a large reference
population, thereby resulting in a significant improvement with respect to genomic pre-
diction accuracy. In addition, the combination of the Holstein populations from different
countries for the purposes of cross-country joint assessment resulted in good outcomes
for the countries who possessed relatively small reference populations. For instance,
Zhou et al. combined both Chinese and Nordic Holstein populations, which possessed
highly consistent LD (0.97), as a joint reference population. As such, they found a substan-
tial improvement in the genomic prediction accuracy of milk production traits in Chinese
populations [12]. In addition, Li et al. found that prediction reliabilities for the Brazil-
ian Holstein population could be greatly increased by including the data of Nordic and
French Holstein populations [8]. Meanwhile, certain studies have, instead, shown that
multi-population or multi-breed genomic selection, via the combination of distantly related
populations, could not improve prediction accuracy and even, in certain circumstances,
reduced it [13–15].

Genotype-by-environment interaction (G × E) is also a key factor that influences
the accuracy of multi-population genomic selection. This is due to the fact that many
economically important traits are influenced by a combination of genetics, environment,
and G × E. Moreover, different climates, housing conditions, nutritional levels, disease
pressure, and feeding densities may also cause G × E. Furthermore, when phenotypes
of different reference populations are measured in different environments, ignoring the
influence of G × E decreases the gain in genomic prediction accuracy when combining
reference populations. As such, the biases may increase [16] due to the fact that the LD
differences can lead to an increased bias in the estimation of SNP effects.

It must be noted that genomic selection has been carried out in Chinese Holstein
breeding since 2012. While the reference population mainly comprised cows [17], the
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number of progeny-tested bulls in the reference population has been increasing in recent
years. It is well-known that in a cattle population, a breeding bull possesses a large
number of daughters; thus, the phenotypic information of a bull is of greater importance
than that of a cow. The Chinese Holsteins were originally imported from Europe and
North America, whereby frozen semen and embryos were imported from abroad in recent
decades. Zhou et al. reported very high LD concordance with respect to the adjacent
markers between the Chinese and Nordic Holstein populations, as based on 54 K marker
data and with a correlation of 0.97 [12]. Therefore, after including the bull reference
population of the Nordic Holstein, which consisted of progeny-tested bulls, the genomic
prediction accuracy for the Chinese population is expected to improve considerably.

The objective of this study, therefore, was to investigate the improvement of genomic
prediction in the Chinese Holstein population, with a joint reference population that consists
of Chinese and Nordic Holsteins. We also tested the genomic prediction accuracy using
cross-population prediction, i.e., the Chinese Holstein reference population was used for
the prediction of Nordic Holsteins, and the Nordic Holstein reference population was used
for prediction of Chinese Holsteins.

2. Materials and Methods
2.1. Phenotypes

The dataset utilized in this study was derived from 9206 Chinese Holsteins with
genotypes born between 1984 and 2018 and 7084 Holsteins with genotypes born between
1977 and 2012 in certain Nordic countries (including Denmark, Finland, and Sweden).
The Chinese Holstein population comprises 5333 bulls and 3873 cows, while the Nordic
Holstein population consists of all bulls. Seven traits—milk yield (MY), fat yield (FY),
protein yield (PY), somatic cell score (SCS) (with respect to the Chinese Holsteins) or
somatic cell count (SCC) (regarding the Nordic Holsteins), body conformation (CONF),
feet and legs (FL), and mammary system conformation (MS)—were analyzed. In the
Chinese population, 6000 individuals with records were available for MY, FY, and PY, as
well as 7000 individuals that possessed records for the other traits. In regard to the Nordic
population, the number of individuals with phenotypes for MY, FY, and PY was the same as
in the Chinese population. However, the 6495 Holsteins did possess phenotypes for CONF,
FL, and MS, and 6347 Holsteins possessed phenotypes for SCC. In the two populations, the
numbers of individuals for the three milk-production traits were equal. In addition, the
numbers of individuals for the three types of traits were also the same. The de-regressed
proof (DRP) was a standardized DRP with respect to the Nordic population, but the original
DRP was revealed as a deviation from the base population in the Chinese population. The
summary statistics of the DRP for each trait are listed in Table 1. Among them, in regard
to the Nordic Holstein population, the averaged reliabilities of the DRP for both milk-
production traits and the SCC were found to be higher than or equal to 0.914; further, the
reliabilities of the DRP on type traits ranged from 0.710 to 0.844. In addition, the averaged
reliability of the DRP in the Chinese Holstein population was found to be lower. Moreover,
the milk-production traits and SCS possessed a reliability of 0.502 to 0.660 on average, and
the reliabilities of DRP on all type traits ranged from 0.401 to 0.409.
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Table 1. Descriptive statistics of DRP a regarding the Chinese and Nordic Holstein populations.

Milk
Yield
(kg)

Fat Yield
(kg)

Protein
Yield
(kg)

Body
Conformation

Feet and
Legs

Mammary
System

Conformation

Somatic
Cell Score
(103/mL)

Number of
Records

Nordic 6000 6000 6000 6495 6495 6495 6347
Chinese 6000 6000 6000 7000 7000 7000 7000

Cut-off
date b

Nordic December 2006 January 2017 April 2007
Chinese July 2013 September 2013 June 2013

DRP
reliability

Nordic 0.945 0.945 0.945 0.844 0.710 0.803 0.914

Chinese 0.656 0.660 0.658 0.401 0.409 0.403 0.502

Max
Nordic 132.8 130.3 146.8 159.2 201.4 160.3 150.4
Chinese 4907.8 192.5 130.0 51.5 48.5 48.4 389.5

Min
Nordic 45.0 36.7 7.7 56.8 −60.0 −7.3 51.1
Chinese −5390.9 −185.9 −182.0 −43.8 −37.2 −59.4 215.3

Mean
Nordic 93.6 93.4 90.7 100.0 94.8 91.1 94.7
Chinese 261.3 3.6 7.7 −1.8 −1.3 −1.5 300.1

S.D
Nordic 12.7 12.3 13.8 12.4 15.4 14.9 11.7
Chinese 1237.1 47.0 39.5 10.1 9.7 10.9 18.7

a The DRP is the standardized DRP in the Nordic population, but the original DRP is understood as the deviation
from the base population with respect to the Chinese population. b Cut-off date in order to divide the whole data
into reference and validation sets.

2.2. Genotypes and Quality Control

All the individuals in both populations were genotyped with Illumina BovineSNP50
BeadChip (Illumina Inc., San Diego, CA, USA). For each population, the SNPs with a
minor allele frequency (MAF) of less than 0.01 were deleted. Further, SNPs with a call
rate of less than 0.90 were removed. After genotype quality control was conducted, the
individuals with a call rate of less than 0.90 were excluded.. For the remaining individuals,
the SNPs with missing genotypes were imputed via using Beagle 3.31 software [18]. The
SNPs with an imputation accuracy (R square) less than 0.95 were also removed. As such,
after genotype quality control was performed, a total of 43,613 autosomal SNPs, but no
animals with a call rate of less than 0.90.

2.3. Phenotypes and Quality Control

We analyzed the following three scenarios:
(1) A single-trait GBLUP model was used in order to predict direct genomic breeding

values (DGV) while using thereference data of the same population;
(2) A single-trait GBLUP model was used to predict the DGV while using the reference

data of a population in order to predict another population (i.e., using the Nordic reference
population in order to predict the Chinese validation population);

(3) A two-trait GBLUP model was used for the purposes of genomic prediction while
using the joint Chinese–Nordic population, in which the same trait in the different popula-
tions was treated as different, but as genetically correlated traits.

The variance components and DGV were estimated using DMU [19]. Furthermore,
the algorithm used to estimate variance components was determined by the average
information that restricted the maximum likelihood (REML) [20,21].

2.3.1. Single-Trait GBLUP

The single-trait GBLUP model was defined as

y = 1µ + Zg + e
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where y is the vector of n pseudo-phenotypes (i.e., the de-regressed proof (DRP)); 1 is
a vector of 1 s; µ is the overall mean; g is the vector of additive genetic values with
respect to the individuals with a genotype; Z is the design matrix linking the phenotype
to the genetic values; and e is the vector of the random residuals. The assumptions of the
random effects are: g ∼ N

(
0, Gσ2

g

)
and e ∼ N

(
0, Dσ2

e
)
. Furthermore, σ2

g and σ2
e are the

addictive genetic variance and residual variance, respectively. In addition, G represents the
genomic relationship matrix, which was calculated with method 1, as was described by
VanRaden [22]. Lastly, D is the diagonal matrix of the weights for the residuals [23], where

the diagonal elements were calculated as dii =
1−r2

i
r2
i

, and r2
i is the reliability of the DRP

with respect to the individual i.

2.3.2. Two-Trait GBLUP

Two-trait GBLUP model is:[
y1
y2

]
=

[
1n1 0
0 1n2

][
µ1
µ2

]
+

[
Z1 0
0 Z2

][
g1
g2

]
+

[
e1
e2

]
where y1 and y2 are the vectors of DRP for trait 1 and trait 2, thus, corresponding to the
pseudo observations in the Chinese Holstein and Nordic Holstein populations, respectively.
Furthermore, µ1 and µ2 are the overall means of the two traits, and g1 and g2 are the
vectors of the additive genetic values of the two traits. Moreover, it was assumed that[

g1
g2

]
∼ N(0, G0 ⊗ G), whereby G0 is the genetic variance and the covariance matrix for

the two traits G0 =

[
σ2

g1
σg1g2

σg1g2 σ2
g2

]
. Then, G is the genomic relationship matrix of all

genotyped animals, and σ2
g1

and σ2
g2

are the additive genetic variance with respect to the
two populations. Further, σg1g2 is the genetic variance-covariance matrix between the two
populations. Next, e1 and e2 are the vectors of the random residuals of the two populations,
which were assumed to be independent of each other with respect to e1 ∼ N

(
0, D1σ2

e
)

and
e2 ∼ N

(
0, D2σ2

e
)
. The construction of G, D1, and D2 were the same as G and D, which

were described in the above single-trait GBLUP model.

2.3.3. Genomic Prediction Accuracy

The genomic prediction accuracy and prediction unbiasedness were obtained through
two ways. The first was in terms of predicting the younger individuals that were using the
older animals. All the individuals from the Chinese and Nordic Holstein populations were
divided into reference and validation population sets, with a ratio around 4:1 in population
size and according to the cut-off date as shown in Table 1. The 1/5 younger individuals were
also used as the validation population, thereby called the Chinese validation population
and the Nordic validation population. The remaining 4/5 individuals of each population
were used as the reference population, thus, called the Chinese reference population and
the Nordic reference population, respectively. Alternatively, a five-fold cross-validation was
also implemented. The prediction accuracy and prediction unbiasedness were obtained
through five-fold cross-validation. For each trait, the individuals in both populations were
randomly split into five groups, in which the numbers of individuals from the Chinese
population and the Nordic population were nearly the same among the five groups. In each
round of cross-validation, one group was taken as the validation population, the other four
groups were used as the reference population. Similarly, either with respect to the Chinese
population or the Nordic population, the five-fold cross-validation of a single population
was carried out via using their own five groups. Furthermore, the five-fold cross-validation
was replicated a total of 10 times.
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The prediction accuracy of the GBLUP was calculated as

acc = cor(DRP,DGV)
r ,

where cor(DRP, DGV) is the correlation between the DRP and the DGV for the animals
in the validation population. In addition, r is the averaged accuracy of the DRP in the
validation population.

Next, the prediction unbiasedness of GBLUP was calculated as:

b =
cov(DRP, DGV)

var(DGV)
(1)

where cov(DRP,DGV) is the covariance between the DRP and the DGV for the animals
in the validation population. Further, the var (DGV) is the variance of the DGV in the
validation population.

3. Results
3.1. Genetic Correlation of Traits in Two Holstein Populations

Table 2 shows the genetic correlations between the Chinese and Nordic Holstein
populations, which were estimated with a two-trait GBLUP model. Regarding the three
milk-production traits (i.e., MY, FY, and PY), the genetic correlations are high and range
between 0.621 to 0.720. Moreover, the SCS possess a genetic correlation of 0.449. Regarding
the type traits (i.e., CONF, FL, and MS), the genetic correlations from the Chinese and
Nordic Holstein populations are low (i.e., less than or equal to 0.236). Moreover, the genetic
correlation between the same trait in the two populations indicates that G×E exists [24].

Table 2. Genetic correlation of traits between Chinese and Nordic Holstein populations.

Traits
Variance

Covariance CorrelationChinese Nordic

Milk yield 470,936.770 102.627 5005.297 0.720
(0.030)

Fat yield 634.546 175.126 94.554 0.715
(0.031)

Protein yield 422.192 124.551 95.1678 0.621
(0.035)

Body conformation 29.540 12.190 102.790 0.221
(0.043)

Feet and legs 40.368 9.601 109.742 0.144
(0.044)

Mammary system conformation 31.657 14.707 123.003 0.236
(0.044)

Somatic cell score 58.536 34.502 101.069 0.449
(0.046)

Regarding the individuals with milk-production trait records, the average genomic
relationships withinthe Chinese and Nordic Holstein populations are 0.030 (±0.043) and
0.033 (±0.038), respectively. The average genomic relationship between the two popula-
tions is 0.022 (±0.022), which is lower than the average genomic relationships within the
populations. With respect to the individuals with type trait records, the average genomic
relationships withinthe Chinese and Nordic Holstein populations are 0.029 (±0.039) and
0.033 (±0.037), respectively. In addition, the average genomic relationship between the
two populations is the same as that found in the milk-production traits. Regarding the
individuals with SCC/SCS records, the average genomic relationship of the Chinese and
Nordic Holstein populations is 0.029 (±0.041) and 0.033 (±0.037), respectively. However,
the average genomic relationship between the two populations is 0.022 (±0.021).
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3.2. Comparison between Single Population and Joint Population Prediction Accuracy

Table 3 shows the prediction accuracy and unbiasedness of the younger validation
individuals with respect to both the Chinese and Nordic Holstein populations, which was
achieved using the own- and joint-reference populations. In regard to the milk-production
traits (i.e., MY, FY, and PY) and the SCS in the Chinese Holstein population, the genomic
prediction accuracies using the single Chinese reference population (i.e., as per the single-
trait model) are 0.402, 0.429, 0.394, and 0.253, respectively. Indeed, the genomic prediction
accuracy via using the joint reference population (i.e., the two-trait model) reaches 0.464,
0.510, 0.433, and 0.276, respectively. Moreover, the joint reference population gains 2.3 to
8.1 percentage points over the single reference population with respect to the accuracy of
genomic selection for the Chinese Holstein population. However, in regard to the Nordic
Holstein population, the prediction accuracy is improved very little when compared with
the own reference population. Further, the MY trait gains the greatest improvement in
terms of prediction accuracy, albeit only from 0.683 to 0.703. With respect to the type traits,
the prediction accuracy, with a negligible change of −0.4 to 0.2 percentage points when
compared to their single own reference groups, is not improved in either of the Chinese
orNordic Holstein populations.

Table 3. Prediction accuracy and unbiasedness regarding the younger individuals with respect to
the seven traits in the Chinese and Nordic Holstein populations, as predicted by the single/joint
reference populations.

Reference Validation Milk
Yield

Fat
Yield

Protein
Yield

Body
Conformation

Feet and
Legs

Mammary
System

Conformation

Somatic
Cell

Score

Single
Nordic

Accuracy 0.683 0.681 0.654 0.752 0.589 0.703 0.682
Unbiasedness 0.823 0.807 0.722 0.993 0.898 0.974 0.987

Chinese
Accuracy 0.402 0.429 0.394 0.439 0.493 0.507 0.253

Unbiasedness 0.937 0.948 0.860 0.839 0.800 0.989 0.726

Joint
Nordic

Accuracy 0.703 0.696 0.665 0.753 0.591 0.704 0.687
Unbiasedness 0.842 0.815 0.731 1.002 0.89 0.973 0.983

Chinese
Accuracy 0.464 0.510 0.433 0.441 0.489 0.507 0.276

Unbiasedness 0.976 0.983 0.898 0.82 0.773 0.946 0.927

For the Chinese Holstein population, the unbiasedness of genomic prediction ofthe
milk-production traits and the SCS is significantly improved when using the joint refer-
ence population. In particular, the unbiasedness of genomic prediction regarding SCS
dramatically improves from 0.726 to 0.927. However, for the type traits, the joint reference
population leads to a bigger bias. For example, the the genomic prediction unbiasedness
of MS is 0.989 when using the single Chinese reference population, but decreases to 0.946
when using the joint reference population. However, the Nordic Holstein population does
not benefit from the joint reference population with respect to the prediction unbiasedness,
as is the case in regards to accuracy.

Table 4 further details the prediction accuracy and unbiasedness, from the single and
joint reference populations in the 10 replicates of the five-fold cross-validation, for both the
Chinese and Nordic Holstein populations. When compared with the single population,
the impact of the joint reference data regarding the genomic prediction from the cross-
validation is consistent with that of the younger validation individuals. Nonetheless, the
improvement in the prediction accuracy of the milk-production traits and the SCS for the
Chinese population is found to be lower, ranging from 1.6 to 5.2 percentage points, than
the prediction accuracy of the younger validation individuals. Indeed, the changes in unbi-
asedness for all traits are small, and the genomic prediction unbiasedness obtained from
the cross-validation is generally found to be better than that from the younger validation
individuals, which is closer to 1.0.
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Table 4. Prediction accuracy and unbiasedness regarding the seven traits in the Chinese and Nordic
Holstein populations, as predicted by the single/joint reference populations in the 10 replicates of the
five-fold cross-validation.

Reference Validation Milk
Yield Fat Yield Protein

Yield
Body

Conformation
Feet and

Legs

Mammary
System

Conformation

Somatic
Cell Score

Single

Nordic
Accuracy 0.860

(±0.007)
0.854

(±0.009)
0.897

(±0.007)
0.783

(±0.013)
0.707

(±0.024)
0.853

(±0.016)
0.763

(±0.015)

Unbiasedness 1.006
(±0.021)

1.004
(±0.018)

1.009
(±0.016)

0.989
(0.033)

1.002
(±0.046)

1.016
(±0.027)

0.982
(±0.030)

Chinese
Accuracy 0.502

(±0.024)
0.475

(±0.026)
0.507

(±0.024)
0.590

(±0.033)
0.680

(±0.035)
0.590

(±0.037)
0.413

(±0.031)

Unbiasedness 1.086
(±0.080)

1.072
(±0.079)

0.897
(±0.007)

0.943
(±0.069)

0.904
(±0.054)

0.989
(±0.085)

1.212
(±0.111)

Joint

Nordic
Accuracy 0.864

(±0.007)
0.860

(±0.023)
0.902

(±0.019)
0.783

(±0.013)
0.708

(±0.024)
0.853

(±0.016)
0.766

(±0.015)

Unbiasedness 1.006
(±0.022)

1.006
(±0.020)

1.010
(±0.019)

0.988
(±0.033)

1.002
(±0.046)

1.016
(±0.028)

0.982
(±0.030)

Chinese
Accuracy 0.547

(±0.026)
0.527

(±0.055)
0.536

(±0.023)
0.593

(±0.032)
0.680

(±0.034)
0.594

(±0.037)
0.429

(±0.033)

Unbiasedness 1.070
(±0.075)

1.058
(±0.023)

1.067
(±0.068)

0.943
(±0.066)

0.904
(±0.053)

0.987
(±0.084)

1.200
(±0.114)

3.3. The Genomic Prediction Accuracy of Cross Population

In addition, we analyzed the genomic prediction with respect to the cross population,
as demonstrated in Tables 5 and 6. Regarding the younger validation individuals, the
prediction accuracy from the cross population (e.g., when predicting with respect to the
Chinese Holstein population using the Nordic reference population) is found to be worse
than the prediction that was obtained using their own, respective, reference population.
More specifically, there is a large decrease in the prediction accuracy of the type traits. For
example, the prediction accuracies of FL, for the validation population of the Chinese and
Nordic Holsteins, are found to be 0.493 and 0.589 (Table 3) when compared with their own
reference populations, respectively. However, the prediction accuracies of the FL, when
estimated from the cross population, are only 0.088 and 0.212 (Table 5) for the Chinese
and Nordic Holstein populations, respectively. This, therefore, implies the importance
of the own reference population. Similar results are also found in regard to the other
traits, but the decrease in accuracy when using the foreign reference population varies. For
example, the decrease in genomic prediction accuracy for milk-production traits is found
to be relatively small. However, the prediction accuracy of the MY trait in the Chinese
validation population predicted by the Chinese reference population is 0.402, while the
accuracy of prediction when using the Nordic reference population is 0.354. Similarly,
as shown in Table 6, the performance of the cross population in regard to the prediction
accuracy obtained in the 10 replicates of five-fold cross-validation is found to be worse,
even when compared with the own or joint reference population.

Table 5. Accuracy of the younger individuals in the cross population prediction.

Reference Validation Milk
Yield

Fat
Yield

Protein
Yield

Body
Conformation

Feet and
Legs

Mammary
System

Conformation

Somatic
Cell Score

Chinese Nordic 0.302 0.280 0.258 0.101 0.088 0.028 0.132
Nordic Chinese 0.354 0.323 0.303 0.198 0.212 0.142 0.194
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Table 6. Accuracy of the cross-population prediction in the 10 replicates of the five-fold
cross-validation.

Reference Validation Milk
Yield

Fat
Yield

Protein
Yield

Body
Conformation

Feet and
Legs

Mammary
System

Conformation

Somatic
Cell Score

Chinese Nordic 0.378
(±0.030)

0.390
(±0.029)

0.364
(±0.025)

0.332
(±0.037)

0.068
(±0.035)

0.349
(±0.030)

0.142
(±0.033)

Nordic Chinese 0.444
(±0.021)

0.468
(±0.028)

0.500
(±0.023)

0.323
(±0.035)

0.122
(±0.040)

0.303
(±0.033)

0.216
(±0.036)

4. Discussion

In this study, we investigated whether enlarging the Holstein reference population,
by combining the Chinese and Nordic Holstein reference populations, could improve the
accuracy of genomic selection in the two Holstein populations. The results show that the
genomic prediction of the milk-production traits (i.e., MY, FY, and PY) and SCC in the
Chinese population is improved substantially using the joint reference population, albeit
this is not the case for the type traits. However, the Nordic Holstein population does not
gain much improvement in terms of the genomic prediction of all the traits. Although the
reference population size of the Chinese and Nordic Holstein is nearly equal (Table 1), the
Nordic reference population provides much more information. This is due to the fact that
the Nordic reference population consists of progeny-tested bulls that possess a higher DRP
reliability with respect to the concerned traits. Therefore, the joint reference population
is found to be more helpful regarding the Chinese Holstein population. Regarding the
aforementioned, Lund et al. also demonstrate that the benefit that is obtained from the
joint reference population is influenced by the DRP reliability of the foreign reference
population [9]. Moreover, in the joint genomic prediction of the Holstein and Jersey
populations (which was conducted in Lund et al.’s study), it was also indicated that the
Jersey population, which possessed a smaller reference population, gained more of an
improvement in terms of genomic prediction, while the Holstein population acquired only
a slight improvement due to its larger reference population [15].

On the other hand, the accuracies of the genomic selection for all traits in the Nordic
Holstein population are higher than in those in the Chinese Holstein population, when their
own reference population (i.e., the progeny-tested bulls) is used only to further demonstrate
the composition of the reference population, which is essential for the purposes of genomic
selection. Nevertheless, it is feasible to add cows with genotypic information in order to
enlarge the reference population for the purposes of improving the genomic prediction
accuracy when the number of bulls is insufficient [25]. Indeed, Ding et al. [17] investigated if
it is plausible to use cows as the Holstein reference population. When 3084 cows were used
as the reference population, the correlation between the genomic EBV and the conventional
EBV, regarding the validation population of the five milk-production traits, went as high as
from 0.594 to 0.760. Moreover, Mc Hugh et al. also showed that the genomic information
that is obtained from cows could improve the genomic prediction accuracy [26]. In addition,
cows can be genotyped using low-density chips and then imputed with high-density chips
in order to achieve a low-cost increase in the cow reference population size [27].

Indeed, the size of the reference population is a critical factor regarding genome
prediction [6,7]. Combining populations is a simple and practical cost-efficient strategy
in order to improve genomic prediction accuracy. Moreover, Li et al. found that adding
Nordic and French bull data in order to enlarge the Brazilian reference population could
improve the genomic prediction reliability of the three milk-production traits by 0.030 to
0.055 [8]. Similar results were obtained by adding 870 foreign Brown Swiss cows to the US
Brown Swiss reference group. Further, the genomic prediction accuracy was improved by
3.2%, on average, with a single-trait model, and by 4.6% with a two-trait model [28]. In our
study, only a two-trait model was used to estimate the genomic breeding values. This was
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decided upon due to the fact that the single-trait model could not be carried out due to the
different scales with respect to the DRP in the Chinese and Nordic populations. Moreover,
the two-trait model could also account for G × E regarding the two populations [29].
Meanwhile, our results also indicate that the joint reference population is helpful with
respect to improving the genomic prediction accuracy of the milk-production traits and the
SCS/SCC, while no such improvements are gained regarding the type traits. The reason for
this could be that the genetic correlations of the three type traits (i.e., CONF, FL, and MS) are
much lower than those of the milk-production traits and the SCS/SCC (Table 2). Indeed, the
high genetic correlations mean that the foreign population could provide more information
and increase the efficiency of using the joint reference population. This point was confirmed
in the study of dairy cattle in the EuroGenomics project that was reported by Lund et al. A
12–19% increase, in the project, with respect to the genomic prediction accuracy was gained
on udder depth, as this trait possessed the highest genetic correlation (0.98) among the
collaborating countries. In contrast, the genetic correlation for the SCS was relatively low
(0.88), thereby resulting in an increase in accuracy of 8–15% [9]. In our study, the genetic
correlations of the type traits between the Chinese and Nordic Holstein populations are
quite low (0.144–0.236), which may be due to the different trait definitions or measurement
methods for these type traits in the two populations. Consequently, combining the two
reference populations does not provide more information than using a single population.
Thus, no improvements in genomic prediction accuracy are obtained.

Although the Chinese Holstein cows mainly originated from Europe and North Amer-
ica, the differences in climate, feeding environment, selection criterion, etc., between China
and the Nordic countries resulted in different performances with respect to the two Holstein
populations. This could be explained by the existence of G × E in these two populations.
Robertson proposed that a genetic correlation less than 0.80 between the same trait in
two different environments indicates the existence of G × E a [24]. According to this pro-
posal, all of the traits in this study showed G × E in the Chinese and Nordic populations,
e.g., milk-production traits possess a high genetic correlation (0.621–0.720), SCC/SCS are
moderately genetically correlated (0.449), and the type traits are lowly genetically correlated
(0.144–0.236). In the dairy cattle populations in the Eurogenomics project, the G × E could
be ignored in most traits, e.g., udder depth and SCC, as their genetic correlations were
greater than 0.8. Furthermore, these traits could, thus, be treated as one trait, i.e., a single-
trait model using the joint reference population could be a good approach [9]. However, in
the scenario with G × E, it is not reasonable to implement a single-trait model in terms of
genomic selection, particularly with respect to the traits with low genetic correlations. In
such situations, the single-trait model may generate large bias using a combined reference
population, while the two-trait model could be of better use due to its accounting for
G × E [30]. When treating the same trait of two populations as different traits, it enables
one to capture G × E as a covariance between the populations, which, in turn, allows one to
account for G × E in the model [31]. In addition, the two-trait model is more flexiblewhen
the scales used to measure phenotypes for the same trait are different in the different
populations. For example, the DRP is a standardized DRP in the Nordic population, but
the original DRP serves as a deviation from the base population in the Chinese population
in our study; as such, the single-trait model would, thus, be implausible.

The reliability of the DRP for each trait is found to be much higher in the Nordic
population than in the Chinese population. As such, we, therefore, analyzed whether
the Nordic reference population could yield a higher genomic prediction accuracy for the
Chinese Holstein population than the Chinese reference population could. The results of the
cross-population prediction (Table 5) show that the accuracies are worse when compared
with using the own reference population. Likewise, the Chinese reference population does
not yield a reasonable prediction accuracy with respect to the Nordic population. However,
it is consistent with the report by Ma et al. regarding the prediction of the Chinese Holstein
population when using French and USA reference populations [32]. Our results suggest
that the foreign reference population, in general, cannot lead to the higher accuracy of
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prediction that is found in the Chinese reference population. Having said this, however, the
LD is found to be similar between the two cattle populations [12], while a joint reference
population including the foreign reference population to the Chinese reference populations
is found to be helpful.

The genomic Chinese performance index (GCPI) that is currently used in the genomic
breeding of the Chinese Holstein cows consists of the seven traits that are investigated in
this study. The improvement in the prediction accuracy, regarding the production traits and
the SCS traits, is achieved by combining the Nordic population with the Chinese population,
which is, thus, found to be helpful for the purposes of Chinese Holstein breeding. Moreover,
the longevity traits, reproductive traits, feed conversion traits, etc., will also be gradually
added to the GCPI. The information regarding the reference population from the Nordic
countries and other countries/organizations would be also helpful in order to improve the
genomic prediction efficiency, as indicated in this study. Therefore, it is necessary to carry
out this joint genomic selection for China and for other countries.

5. Conclusions

Genomic prediction when using a foreign reference population may not obtain high
accuracy. However, the joint reference population can improve the prediction accuracy and
prediction unbiasedness. In particular, this is true for the traits that possess moderate-to-
high genetic correlations between the populations. As for traits that possess low genetic
correlations between the populations, a joint reference population may not improve the
prediction accuracy and prediction unbiasedness. However, the difference in prediction
accuracy when using own, foreign, and joint reference populations is also dependent on
the composition of the reference populations.
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