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Simple Summary: This research aims to evaluate the possibility of introducing modern methods for
the selection of dairy cattle in Serbia. A total of eight models were applied to estimate the genetic
values and their accuracy based on the data of milk yield, milk fat yield, milk fat content, milk
protein yield and milk protein content. A total of 6041 animals were included, and of them, 2565
had data for milk production traits. Two cases were studied, the first when only the first lactations
were observed, and the second when all lactations were observed using a repeatability model. For
the formation of a genomic relationship matrix, 58 K SNP data were used for a total of 1491 cows.
Higher accuracy was obtained using models with repeated measurements. Multivariate analysis
with repeated measurements showed the best results. An ssGBLUP methodology showed promising
results. Expanding the genotyped population is necessary to achieve better accuracy.

Abstract: In this paper, six univariate and two multivariate best linear unbiased prediction (BLUP)
models were tested for the estimation of breeding values (BV) in Holstein Friesian cattle in Serbia.
Two univariate models were formed using the numerator relationship matrix (NRM), four using the
genomic relationship matrix (GRM). Multivariate models contained only an NRM. Two cases were
studied, the first when only first lactations were observed, and the second when all lactations were
observed using a repeatability model. A total of 6041 animals were included, and of them, 2565 had
data on milk yield (MY), milk fat yield (FY), milk fat content (FC), milk protein yield (PY) and milk
protein content (PC). Finally, out of those 2565 cows, 1491 were genotyped. A higher accuracy of BV
was obtained when using a combination of NRM and GRM compared to NRM alone in univariate
analysis, while multivariate analysis with repeated measures gave the highest accuracy with all 6041
animals. When only genotyped animals were observed, the highest accuracy of the estimated BV was
calculated by the ssGBLUPp model, and the lowest by the univariate BLUP model. In conclusion, the
current breeding programs in Serbia should be changed to use multivariate analysis with repeated
measurements until the optimal size of the reference population, which must include genotyping
data on both bulls and cows, is reached.

Keywords: milk production traits; cattle; SNP; accuracy of breeding values; genomic selection

1. Introduction

Animal breeding, by studying variability, primarily genetic, and using different statis-
tical methods, aims to select parents of the next generations that are characterized by high
production capacity, appropriate functional and conformational characteristics, and the
ability to pass them on to offspring. Selection programs, when setting the criteria for the
selection of parents, rely on the statistical analysis of large databases made up of data on
the origin and the phenotype measurements of the desired traits, most often by the method
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of the best linear unbiased prediction (BLUP), which is used to estimate the breeding values
of candidates for selection. In the last few years, traditional methods of selection, based on
quantitative genetics, have increasingly been complemented by molecular genetic analyses.
Molecular genetics has enabled the direct analysis of animal genomes, and for this purpose
polymerase chain reaction (PCR), analysis of genetic markers, DNA sequencing, etc., are
used. Several types of genetic markers have been developed, of which single nucleotide
polymorphism (SNP) is the most widely used today. By providing insight into the structure
and function of the genome, SNPs have become powerful tools for improving the selection
of all types of domestic animals. On the basis of this knowledge, genomic selection has
been recently developed, a new method that enables greater genetic progress compared to
previous forms of selection. Genomic selection is based on applying statistical models to
a set of fully phenotyped and genotyped individuals, and then using the applied model
to predict the genetic value of unmeasured individuals [1]. The first official genomic eval-
uations in the United States were published in 2009 for the Holstein, Jersey, and Brown
Swiss breeds. The incorporation of DNA-marker technology and genomics into traditional
methods for evaluating animal breeding values has doubled the rate of genetic progress for
economically important traits, reduced the generation interval, increased selection accuracy,
reduced costs relative to progenic testing and enabled the identification of recessive lethal
alleles [2]. The core data set, which makes such prediction possible, is the reference data set
consisting of animals for which three sources of information are available: SNP genotypes,
phenotypes and pedigree [3].

Modern breeding programs that include molecular methods for data collection on
animals generate large amounts of information. The whole process, from data storage
to drawing conclusions, requires complex computer operations, and so presents a great
challenge in the search for new algorithms and methods. Therefore, animal breeding is
a multidisciplinary scientific field that relies on achievements from genetics, computer
science and statistical mathematics. Additionally, the collection, analysis and dissemination
of biological data fall within the scope of bioinformatics. In bioinformatics, mathematical,
statistical and computational methods are aimed at solving biological problems using
genomic data and related information. Genome sequencing is the first step towards un-
derstanding genome organization and gene structure, and in addition, it is necessary to
develop techniques for quantifying gene expression through complex computer-based
modeling. The implementation of complex analytical methods requires the proper applica-
tion of mathematical and statistical knowledge to the study of biological systems. Based on
the above, it can be said that genomic selection is an example of how the advantages of
bioinformatics are used in animal husbandry in order to improve the production system.

Genomic selection implies making selection decisions based on genomically estimated
breeding values (gEBVs). gEBVs are calculated using an estimate of SNP effects from
a prediction equation, which is derived from animals in a reference (train set) group,
and which have certain SNP genotypes and phenotypes for the traits of interest. The
accuracy of the gEBV depends on the size of the reference population used to calculate the
prediction equation, the heritability of the traits, and the degree of relatedness between
the candidate for selection and the reference population [4]. The mostly used methods for
genomic prediction include best linear unbiased prediction, and several different models are
available, such as TABLUP, RRBLUP, GBLUP, ssGBLUP, and ssSNPBLUP. Ref. [5] pointed
out that the TABLUP method provides better results compared to RRBLUP and GBLUP
because the TA matrix takes into account one marker that explains to a greater extent the
genetic variance for a certain trait, while the matrix is created based on all other data from
the pedigree and markers regardless of their influence on a given trait. Ref. [6] studied two
dairy cattle populations (German-Austrian-Czech Fleckvieh and German-Austrian Brown
Swiss) and concluded that the application of ssGBLUP clearly improves genomic evaluation.
Ref. [7] pointed out that ssGBLUP uses all available phenotype, genotype and pedigree
information to provide unbiased genomic prediction with higher accuracy than other
genomic prediction models. Furthermore, those authors reported that ssSNPBLUP proved
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to be the most efficient of all variants of the ssGBLUP model, highlighting its advantage in
large database applications, such as data processing of up to a million genotyped animals.

The dominant dairy breed in the registered cattle population in Serbia is the Holstein
Friesian. The largest part of the population is breeding on the territory of AP Vojvodina,
where, according to the data of the Central Breeding Organization for the year 2021, there
were registered 67,671 heads [8]. According to the data from this report, the average
milk production of Holstein Friesian cows in AP Vojvodina during 305 days of lactation
in 2021 was 7405 kg. By comparing this value with the milk yield of recorded cows in
other ICAR member countries [9], we see that there are opportunities for improving the
traits in the Serbian dairy population, and one of the ways is through the improvement
of the methods of the selection of cows. This research aims to evaluate the possibility
of introducing the most modern methods for the prediction of breeding values in dairy
cattle breeding programs in Serbia. In this regard, the objectives of this research are to:
1) test the implementation of the GBLUP and ssGBLUP methods for calculating breeding
values instead of standard uni- and multivariate BLUP models; 2) compare the accuracy
of breeding value estimates obtained by the applied methods if only the first lactation
is observed; and 3) compare the accuracy of breeding value estimates using the applied
methods and when using all lactations, i.e., repeated measurements. Based on the obtained
results, recommendations will be defined for changing the existing breeding programs in
terms of assessing national breeding values and ranking cattle.

2. Materials and Methods
2.1. Data Sets and Quality Control

The initial database consisted of 1600 Holstein Friesian cows genotyped with the
GeneSeek GGP Bovine 100 K SNP chip, for which data were collected on milk yield
traits (MY—milk yield; FY—milk fat yield; FC—milk fat content; PY—milk protein yield;
PC—milk protein content). The production results referred to lactation milk production
standardized to 305 days using ICAR approved methods for calculating daily yields
from AM/PM milkings [10,11] and were provided by the Central Breeding Organization,
Department of Animal Husbandry, Faculty of Agriculture Novi Sad.

2.1.1. Preparation of SNP File

The first processing of SNPs meant turning off the chips for the so-called Mendelian
traits, as well as turning off the double SNPs with a smaller GeneTrain parameter. This
was followed by the preparation of SNPs for use in the Wombat software [12], which does
not accept markers with missing values. For this purpose, some SNPs and animals were
eliminated, after which the database consisted of 1566 animals with 62,807 SNPs, each
with a call rate of 100%. The next step included SNP quality control in the preGSF90
software [13], whereby one SNP with Mendelian conflicts (MC) and 4091 SNPs with a
minor allele frequency of <0.05 were removed. Those animals (n = 14) with parent-progeny
Mendelian conflicts were also removed. The database after quality control included 1491
animals with 58,715 SNPs.

2.1.2. Preparation of Pedigree Files

Three files were prepared based on origin data for two generations of ancestors. The
first file is related to the standard pedigree file for calculating the numerical relationship
matrix (A) from the pedigree, which is organized through three columns (animal, father,
mother). A second pedigree file was created to calculate a genomic relationship matrix (G),
which is organized through four columns and includes ID numbers for only genotyped
animals. The first three columns refer to data on origin (animal, father, mother), and the
fourth column indicates that there is a SNP marker for the animal. The third pedigree file
was a combination of the previous two files and was used to calculate a hybrid relationship
matrix (H), which used both pedigree data and SNP data to calculate relationships. It was
also organized through four columns with the same meaning as in the second file.
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2.1.3. Preparation of Data Files for Measurements of Traits and Factors

First, two files were prepared for a total of 2565 animals, i.e., cows from the pedigree
file A, for which there were measurement results for the investigated production traits.
One file related to the cows for which there were data on production during the first
lactation, while the second file included repeated measurements, i.e., production results
from other lactations as well (I lactation—2565 measurements; II—1448 measurements;
III—768 measurements; IV—344; V—116; VI—40). Lactations refer to calvings from 2012 to
2021, which were grouped into three seasons (I—November, December, January, February;
II—March, April, September, October; III—May, June, July, August). Then, a third file was
prepared, which included the aforementioned data, but only for genotyped animals.

Table 1 provides an overview of the number of animals included in the input files that
participated in the trials.

Table 1. Number of animals included in the input files.

Number of Animals
Pedigree File

A G H

Total 6041 1491 6041
Complete pedigree 4087 1491 4087

Measurement results 2565 1491 2565
Genotyped - 1491 1491

A—pedigree file for the NRM matrix of relationships; G and H—pedigree files for the GRM matrix of relationships.

2.2. Statistical Analysis of Data

BLUP is often used in animal breeding and is a method that evaluates random effects,
which in animal breeding, are most often related to evaluations of breeding values. In all
the presented models, the values suggested by Wombat [12] were used for the initial values
of the variance components. These are actually variances that were calculated according
to well-known formulae. Covariances of A and B are calculated based on the formula

ˆcov(A, B) = rA,B ×
√

s2
A ×

√
s2

B where rA,B is the correlation coefficient and s2
A and s2

B
are variances of A and B. Final values of sample variances and sample covariances were
obtained by REML estimation of (co)variance components. Additionally, in all analyses,
the fixed part of the model included the influence of the interaction between farm, year
and season (FYS), and in the model with repeated measurements (Fix2), the influence of
lactation number (L) was additionally included, as follows:

Fix1: yij = µ + FYSi + eij

Fix2: yijk = µ + FYSi + Lj + eijk

2.2.1. Univariate Models
Prediction of Breeding Values Using Numerical Relationship Matrix (NRM), Single
Random Effect Model (Model 1—BLUP)

Ref. [14] first developed BLUP, by which fixed effects and breeding values can be
estimated simultaneously. BLUP has found wide use in the genetic evaluation of domestic
animals due to its statistical properties. With the constant progress of computers, its
application has expanded from simpler models, such as the father model, to more complex
models, such as the animal model and its derivatives.

We considered the following equation for a mixed linear model:

y = Xb + Za + e (1)

where: y is the vector of observations (features) dimensions n× 1, and n is the number
of data; b is the vector of unknown fixed effects of dimension p× 1, and p is the number
of levels of fixed effects; a is the vector of unknown random effects (breeding values) of
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dimension q× 1, and q is the number of levels of random effects; e is the vector of random
error effects of dimension n× 1; X is a known design matrix of dimension n× p relating
the given data to the fixed effects; Z is a known design matrix of dimension n× q relating
the given data to the random effects. Matrices X and Z are also called incidence matrices
and their elements are 0 and 1.

As in ref. [15], we assumed that the expectations are actually: E(y) = Xb, E(a) =
E(e) = 0, and as the error effects are independently distributed with variance σ2

e , var(e) =
Iσ2

e = R, var(a) = Aσ2
a = F i cov(a, e) = cov(e, a) = 0, where A is a matrix of relationship

dimension q× q, and I is the unit matrix of dimension n× n. That is, when

var(y) = ZAZ′σ2
a + Iσ2

e , cov(y, a) = ZAσ2
a , cov(y, e) = Iσ2

e

Z′ denotes the transposed matrix Z. Mathematically speaking, BLUP provides an
estimate for b that we denoted by b̂, and an estimate for a, denoted by â, and which were
obtained by solving the equations (MME—Mixed Model Equations) which are, for Equation
(1), given as [

X′R−1X X′R−1Z
Z′R−1X Z′R−1Z + F−1

][
b̂
â

]
=

[
X′R−1y
Z′R−1y

]
(2)

assuming that the matrices R and F are regular. Note that when F−1 tends to the zero
matrix, then Equations (2) become a generalized least-squares equations (LSE), and then
both b and a are considered as fixed effects [16]. Based on the earlier definition of the matrix
R, Equation (2) become [

X′X X′Z
Z′X Z′Z + α1A−1

][
b̂
â

]
=

[
X′y
Z′y

]
(3)

where α1 = σ2
e /σ2

a . If the matrix in Equations (3) is singular, then a generalized inverse

matrix can be used. Also, if the matrix in Equations (3) is written in the form
[

U11 U12
U21 U22

]
,

and with
[

U11 U12

U21 U22

]
its generalized inverse matrix, then the accuracy (r) of the breeding

values prediction is obtained by the previously published formula [15], r =
√

1− uiα1,
where ui is the i-th diagonal element of the matrix U22.

Prediction of Breeding Values Using Numerical Relationship Matrix (NRM), Model with
Two Random Effects (Model 2—BLUPp)

The repeatability model was used to analyze data when multiple measurements of the
same trait, such as milk yield in consecutive lactations, were recorded in an individual [17].

For models with repetition, the following form was used:

y = Xb + Za + Wp + e (4)

where: y is the vector of observations, b is the vector of unknown fixed effects, a is the vector
of unknown random effects, p is the vector of unknown environmental random effects of
dimension r× 1, and e is the vector of error effects. Furthermore, X and Z are the design
matrices for the given data regarding fixed and random effects, respectively. The matrix W
is a design matrix related to the effects of the external environment (i.e., only those animals
for which we had repeated measurements were observed) of dimension n× r.

The vector a contains only the additive random effects of the animal, while the non-
additive genetic effects are contained in the vector p. The assumption is that environmental
effects and error effects are independently distributed with a mean of zero and variances
σ2

p and σ2
e , respectively. That is when

var(p) = Iσ2
p , var(e) = Iσ2

e = R, var(a) = Aσ2
a
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and

var(y) = var(Za + Wp + e) = Zvar(a)Z′ + Wvar(p)W′ + var(e)= ZAZ′σ2
a + WW′σ

2
p + Iσ2

e

The phenotypic variance σ2
y is equal to σ2

a + σ2
p + σ2

e , while the repeatability coefficient

is equal to R = (σ 2
a + σ2

p

)
/σ2

y .
The MME model for Equation (4) is of the formX′R−1X X′R−1Z X′R−1W

Z′R−1X Z′R−1Z + 1
σ2

a
A−1 Z′R−1W

W′R−1X W′R−1Z W′R−1W + 1
σ2

p
I


b̂

â
p̂

 =

X′R−1y
Z′R−1y
W′R−1y

 (5)

After replacing matrix R with matrix Iσ2
e from Equations (5) we getX′X X′Z X′W

Z′X Z′Z + α1A−1 Z′W
W′X W′Z W′W + α2I

b̂
â
p̂

 =

X′y
Z′y
W′y

 (6)

where α1 = σ2
e /σ2

a and α2 = σ2
e /σ2

p . The aim was to evaluate the effects of number of
lactations and to predict the breeding values for the animals and the lasting effect of
the environment on the observed cows. If the matrix in Equations (6) is written in the

form

U11 U12 U13
U21 U22 U23
U31 U32 U33

, and with

U11 U12 U13

U21 U22 U23

U31 U32 U33

 being its generalized inverse matrix,

then the accuracy (r) of the prediction of breeding values is obtained using the formula
r =
√

1− uiα1, where ui i-th is the diagonal element of the matrix U22.

Prediction of Breeding Values Using Genomic Relationship Matrix (GRM), Single Random
Effect Model (Model 3—GBLUP)

First, we will explain the algorithm for obtaining the genomic relationship matrix [18]
assuming the matrix M012 is of dimensions q×m, where is q the number of animals, and m
is the number of marker columns, i.e., locuses (number of SNPs). If the alleles are A and B
and if AA = 0, AB = 1 and BB = 2, then the matrix M012 consists of the elements 0, 1 and
2. After its centering, we get the matrix M, that is M = M012 − J, where J is a matrix of
dimension q×m and all elements of which are equal to 1. The elements of matrix M are
the numbers −1, 0 and 1. For example, the main diagonal of the matrix MM′ shows the
number of homozygotes for each individual, and outside the diagonal is the number of
alleles they share with relatives.

It is necessary to determine the frequencies of allele A and allele B in each of the
columns in matrix M. First, in each column in matrix , we determined how many times
the numbers −1, 0 and 1 were repeated. Then, pj,−1, pj,0 and pj,1 marked the number
of occurrences of the numbers −1, 0 and 1 in the j-th column of matrix M, respectively,
j = 1, 2, . . . , m. The frequency pj,A of allele A and the frequency pj,B of allele B in the j-th
column were obtained using the formula

pj,A =
2pj,−1 + pj,0

2q
, pj,B =

2pj,1 + pj,0

2q
, j = 1, 2, . . . , m.

Now, matrix P =
[
pij
]

q×m is formed, where its elements are of the form

pi,j = 2
(

pj,B − 0.5
)
, i = 1, 2, . . . , q, j = 1, 2, . . . , m
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Finally, the matrix S is of the form S = M − P. This means that the mean of the
elements in each column of the matrix S is exactly 0. One way to obtain the genomic
relationship matrix G is to use the following formula [18]

G =
SS′

2∑m
j=1 pj,B

(
1− pj,B

)
By dividing SS′ by 2∑m

j=1 pj,B
(
1− pj,B

)
, the matrix G becomes analogous to the rela-

tionship matrix A. The genomic inbreeding coefficient for the i-th individual is obtained by
subtracting 1 from the i-th element on the main diagonal of matrix G.

As in [19], we wrote the vector of breeding values a as a function of the marker
effect, a = Sm. With var(m) = Iσ2

m, we denoted the variance of the marker vector m [20].
Assuming the same variance per locus, variance of a is

var(a) = Svar(m)S′ = SS′σ2
m (7)

As the genetic variance is equal [21]

σ2
a = 2

m

∑
j=1

pj,B
(
1− pj,B

)
σ2

m (8)

then it follows from Equation (8) that

σ2
m =

σ2
a

2∑m
j=1 pj,B

(
1− pj,B

) (9)

and after including Equation (9) in (7), we have

var(a) =
SS′

2∑m
j=1 pj,B

(
1− pj,B

)σ2
a (10)

As calculated by another author [18], the genomic relationship matrix (G) is given by

G =
SS′

2∑m
j=1 pj,B

(
1− pj,B

) (11)

with dimensions q× q, and then, based on Equations (10) and (11)

var(a) = Gσ2
a

The basic model is the same as in Equation (1), where var(e) = Iσ2
e = R. An appropri-

ate MME model is [
X′X X′Z
Z′X Z′Z + α1G−1

][
b̂
â

]
=

[
X′y
Z′y

]
where is α1 = σ2

e /σ2
a .

If the matrix G is singular, then it is replaced by Gr [22], where

Gr = λ(β(G + εI) + αJ) + (1− λ)A

with 0 ≤ λ ≤ 1, we denoted the ratio of the total genetic variance and the marker effect,
A, as the relationship matrix, α, and β as the leveling factors proposed in [23] and [24], J
is a square matrix with all elements equal to 1, I is a unit matrix and 0 < ε� 1 is a small
constant. Thus, GBLUP is BLUP, where A is replaced by the genomic matrix G, i.e., Gr.
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Prediction of Breeding Values Using Genomic Relationship Matrix (GRM), All Animals
Were Genotyped, Model with Two Random Effects (Model 4—GBLUPp)

The basic model was then Equation (4) with var(e) = Iσ2
e = R, var(a) = Gσ2

a and
var(p) = Iσ2

p . The MME model isX′X X′Z X′W
Z′X Z′Z + α1G−1 Z′W
W′X W′Z W′W + α2I

b̂
â
p̂

 =

X′y
Z′y
W′y

 (12)

where α1 = σ2
e /σ2

a and α2 = σ2
e /σ2

p . If the matrix in Equations (12) is singular, its general-
ized inverse matrix is used when obtaining b̂, â and p̂.

Prediction of Breeding Values Using Genomic Relationship Matrix (GRM), and Including
Animals That Were Not Genotyped, Single Random Effect Model (Model 5—ssGBLUP)

The idea for ssGBLUP arose from the fact that a smaller part of the animals from the
observed population was genotyped. A relationship matrix of the form A is observed

A =

[
A11 A12
A21 A22

]
where index number 1 refers to animals that have not been genotyped, and index number 2
to animals that have been genotyped. Now, the matrix Mg012 has dimensions qg ×m, where
qg is the number of genotyped animals and m is the number of marker columns (i.e., the
number of SNPs). After centering the matrix Mg012, we get the matrix Mg, whose elements
are −1, 0 and 1. After determining the allele frequency (as in the previous section), the
matrix S will be of the form S = Mg − P. The genomic relationship matrix (Gg) is given by

Gg =
SS′

2∑
mg
j=1 pj,B

(
1− pj,B

)
where pj,B is the frequency of allele B in the j-th column of the SNP. If the matrix Gg is
singular, then it is replaced by Ggr where

Ggr = λ
(

β
(
Gg + εI

)
+ αJ

)
+ (1− λ)A22

Clearly, A22 is a matrix of dimension qg × qg and is the relationship matrix only for
genotyped animals. Matrices J and I were defined in the previous section. The matrix H−1

is obtained as follows [25]

H−1 = A−1 +

[
0 0
0 G−1

gr −A−1
22

]
The MME model for Equation (1) is[

X′X X′Z
Z′X Z′Z + α1H−1

][
b̂
â

]
=

[
X′y
Z′y

]
(13)

where are α1 = σ2
e /σ2

a , var(e) = Iσ2
e = R, var(a) = Hσ2

a . Thus, ssGBLUP is BLUP, where A
is replaced by the genomic matrix H. Note that if all animals are genotyped, H−1 = G−1

gr .
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Prediction of Breeding Values Using Genetic Markers (GRM), Existing Animals Not
Genotyped, Model with Two Random Effects (Model 6—ssGBLUPp)

The basic model is Equation (4) with var(e) = Iσ2
e = R, var(a) = Hσ2

a and var(p) = Iσ2
p .

The MME model isX′X X′Z X′W
Z′X Z′Z + α1H−1 Z′W
W′X W′Z W′W + α2I

b̂
â
p̂

 =

X′y
Z′y
W′y

 (14)

where α1 = σ2
e /σ2

a and α2 = σ2
e /σ2

p . In the case of a singular matrix for this model, its
generalized inverse matrix was used.

2.2.2. Multivariate Models

In this study, we had some dairy cow data that encompassed only the first lactation,
but other data encompassing multiple lactations. Therefore, we defined MBLUP and
MBLUPp methods that referred only to the first lactation and to all lactations, respectively,
but each method simultaneously analyzed all five traits.

Prediction of Breeding Values by Multivariate Analysis Using Relationship Matrix (NRM),
Single Random Effect Model (Model 7—MBLUP)

The model for multivariate analysis is reduced to the grouping of multiple univariate
models for each of the traits. If the number of traits is np, then the univariate model for
each of the np traits is yi = Xibi + Ziai + ei for i = 1, 2, . . . , np. Here, yi is the observation
vector for the i-th trait, bi is the vector of fixed effects for a trait i; ai is the vector of random
effects of animals for a trait i, ei is the vector of random effects of error for i-th trait. Xi
and Zi are known matrices of the design that relate to the given data to fixed effects and
random effects, respectively, and also for trait ii. In matrix form, a multivariate model can
be written in the form

y1
y2
...

ynp

 =


X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xnp




b1
b2
...

bnp

+


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 · · · Znp




a1
a2
...

anp

+


e1
e2
...

enp

 (15)

We assumed the version reported previously [15].

var



a1
a2
...

anp
e1
e2
...

enp


=



g11A g12A · · · g1,npA 0 0 · · · 0
g21A g22A · · · g2,npA 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

gnp,1A gnp,2A · · · gnp,npA 0 0 · · · 0
0 0 · · · 0 r11I r12I · · · r1,npI
0 0 · · · 0 r21I r22I · · · r2,npI
...

... · · ·
...

...
...

. . .
...

0 0 · · · 0 rnp,1I rnp,2I · · · rnp,npI


where: G =

[
gij
]

np×np is the additive genetic matrix of variances and covariances of animal
effects where, for example, g11 is the additive genetic variance of the first trait, g12 = g21 is
the additive genetic covariance between the first and second traits, etc.; A is a relationship
matrix;R =

[
rij
]

np×np is a matrix of variances and covariances of error effects.
The MME model for Equations (15) is[

X′R−1X X′R−1Z
Z′R−1X Z′R−1Z + A−1⊗G−1

][
b̂
â

]
=

[
X′R−1y
Z′R−1y

]
(16)
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where

X =


X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xnp

, Z =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 · · · Znp

, b̂ =


b̂1

b̂2
...

b̂np

, â =


â1

â2
...

ânp

, y =


y1

y2
...

ynp

 (17)

If G−1 =
[
gij]

np×np, then

A−1
⊗

G
−1

=
[
A−1g

ij]
np×np

=


A−1g11 A−1g12 · · · A−1g1,np

A−1g21 A−1g22 · · · A−1g2,np

...
...

. . .
...

A−1gnp,1 A−1gnp,2 · · · A−1gnp,np


np×np

Prediction of Breeding Values by Multivariate Analysis Using Relationship Matrix (NRM),
Model with Two Random Effects (Model 8—MBLUPp)

In matrix form, a multivariate model (np traits) with environmental effects was writ-
ten as

y1
y2
...

ynp

 =


X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xnp




b1
b2
...

bnp

+


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 · · · Znp




a1
a2
...

anp

+


W1 0 · · · 0
0 W2 · · · 0
...

...
. . .

...
0 0 · · · Wnp




pe1
pe2

...
penp

+


e1
e2
...

enp

 (18)

where Wi is the design matrix related to the effects of the external environment for the i-th
trait. If C =

[
cij
]

np×np is the matrix of variances and covariances of external environmental
effects, the MME model for Equations (18) isX′R−1X X′R−1Z X′R−1W

Z′R−1X Z′R−1Z + A−1⊗G−1 Z′R−1W
W′R−1X W′R−1Z W′R−1W + I

⊗
C−1

b̂
â
p̂

 =

X′R−1y
Z′R−1y
W ′R−1y

 (19)

where, along with (17),

W =


W1 0 · · · 0
0 W2 · · · 0
...

...
. . .

...
0 0 · · · Wnp

, p̂ =


p̂1
p̂2
...

p̂np


If C−1 =

[
cij]

np×np, then I
⊗

C−1 =
[
Icij
]

np×np
.

2.3. Two-Tailed t-Test

A two-tailed t-test [26] was performed to check statistically significant differences
in the average estimation of accuracy and breeding values between two selected models.
Suppose we have two independent normal populations with unknown means µ1 and µ2,
and unknown but equal variances. Let a random sample from the first population have n1
observations and a random sample from the second population have n2 observations. Let
−
X1,

−
X2, S2

1 and S2
2 be the sample means and sample variances, respectively. For

S2
p =

n1 − 1
n1 + n2 − 2

S2
1 +

n2 − 1
n1 + n2 − 2

S2
2
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the quantity

t =

−
X1 −

−
X1 − (µ1 − µ2)

Sp

√
1

n1
+ 1

n2

has a t distribution with n1 + n2 − 2 degrees of freedom. We wish to test

H0 : µ1 − µ2 = 0H1 : µ1 − µ2 6= 0

rejecting the H0 if t > tα,n1+n2−2 or t < −tα,n1+n2−2. Here, tα,n1+n2−2 is the value in the
t-statistic table for level of significance α. In this manuscript, these two populations were
estimates of the accuracy of breeding values or estimates of the breeding values for two
different mathematical models that have been considered in the case of all traits. The null
hypothesis were that there was no statistically significant difference between the average
estimate of the accuracy of breeding values or the average estimate of the breeding values
regarding the two performed mathematical models.

2.4. Spearman’s Rank and Pearson’s Correlation Coefficients

Spearman’s rank correlation [27] measures the strength and direction of association
between two ranked variables (breeding values). It basically provides the measure of
monotonicity of the relation between two variables, i.e., how well the relationship between
two variables could be represented using a monotonic function. The formula for Spearman’s
rank coefficient is:

ρ = 1−
6∑n

i=1 d2
i

n(n2 − 1)

where ρ is Spearman’s rank correlation coefficient, di is the difference between two ranks of
each observation, n is the number of observations. The Spearman’s rank correlation can
take a value from +1 to −1. A value of +1 means a perfect association of rank. A value of
0 means that there is no association between ranks. Finally, a value of −1 means a perfect
negative association of rank.

Pearson’s correlation coefficient [27] measures the strength between the different
variables and their relationships. Therefore, whenever any statistical test is conducted
between the two variables (breeding values), it is always a good idea for the person
analyzing to calculate the value of the correlation coefficient to know how strong the
relationship between the two variables is. Let X11, X12, . . . , X1n be the samples of the first
variable and X21, X22, . . . , X2n of the second variable. Pearson’s correlation coefficient (R) is

R =
n∑n

i=1 X1iX2i −∑n
i=1 X1i∑n

i=1 X2i√
n∑n

i=1 X2
1i − (∑n

i=1 X1i)
2
√

n∑n
i=1 X2

2i − (∑n
i=1 X2i)

2

Pearson’s correlation coefficient returns a value between −1 and 1. The interpretation
of the correlation coefficient is: if the correlation coefficient is −1, it indicates a strong
negative relationship, implying a perfect negative relationship between the variables; if the
correlation coefficient is 0, it indicates no relationship; if the correlation coefficient is +1, it
indicates a strong positive relationship, implying a perfect positive relationship between
the variables.

3. Software Tools for Data Preparation and Processing

Within the BioITGenoSelect project, several software solutions were developed that
were used in the preparation of data for this work. Some of the functionality is part
of a central application that manages animal data (e.g., origin, lactation), and several
programs were written to run independently and can be run from the command line on
given input files.

Genotype data were obtained from the Neogen laboratory in a format standard for
Illumina GenomeStudio Software (https://www.illumina.com/techniques/microarrays/

https://www.illumina.com/techniques/microarrays/array-data-analysis-experimental-design/genomestudio.html
https://www.illumina.com/techniques/microarrays/array-data-analysis-experimental-design/genomestudio.html
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array-data-analysis-experimental-design/genomestudio.html, accessed on 12 December
2022). The exports important for the project are in the so-called Final Report format, in
which pairs of animals and SNP reads are given in several forms. For the purposes of the
work, it was necessary to convert the data into 0125 input form, in which the number of
alleles marked with B was counted, while the number 5 represented an unknown value.
In the output format, each animal has an associated sequence of numbers representing
individual SNP values. Additionally, applications were written that allowed the minimum
amount of SNP columns and animals to be removed that would achieve 100% of known
values (i.e., 5 does not appear in the output). Since the work used tools from the BLUPF90
family [13] and Wombat [12], which have different input formats for this data, applications
were also written that performed translations where necessary.

Data on origin and lactations were generated from the web application BioITGenoSe-
lect (https://bioitgenoselect.polj.uns.ac.rs/genoselect, accessed on 12 December 2022) for
the requested animals, based on imported data from the databases curated by the Faculty
of Agriculture of the Central Breeding Organization in the livestock sector in Vojvodina
province, Serbia.

3.1. PreGSF90

PreGSF90 is an interface program for the genomic module to process the genomic in-
formation for the BLUPF90 family of programs. Within the BLUPF90 program package [13],
there are a number of applications that can be used in different steps of data processing.
The package as a whole is designed for various calculations using mixed models in animal
breeding. For the purposes of this project, some of the program’s data quality control
applications were used, primarily PreGSF90, in combination with RENUMF90, which was
required for some of the inputs.

3.2. Wombat

Wombat [12] is a software for analyzing data related to quantitative genetics and
animal breeding, and uses linear mixed models with a focus on REML estimation of
(co)variance components. It was first presented at the eighth WCGALP 2006, and in the last
few years, it has been significantly improved and expanded, primarily with multivariate
analyses and analyses for solving mixed model equations using genomic data and ssGBLUP
methods. In Serbia, this program is currently used for estimations of breeding values and
ranking of cattle for the purposes of implementing national breeding programs, using
univariate analysis with the random effect of the animal. In this study, existing analyses
were extended to the use of multivariate analysis (MBLUP), as well as the use of models for
genomic prediction (GBLUP and ssGBLUP), with the aim of defining and recommending
the model that best fits the currently available data.

4. Results

BLUP(p), ssGBLUP(p) and MBLUP(p) models were first compared because they pro-
vided breeding values for all 6041 animals. After that, BLUP(p), GBLUP(p) and ssGBLUP(p)
methods were compared, but only for 1491 genotyped animals because GBLUP(p) methods
gave breeding values only for those. As the Wombat software does not support multivariate
analysis when using SNP markers, it was applied only in cases where the NRM was used,
and not when the GRM was used.

4.1. Comparison of BLUP(p), ssGBLUP(p) and MBLUP(p) Models

When solving Equations (3)—BLUP model, (6)—BLUPp model, (13)—ssGBLUP model,
(14)—ssGBLUPp model, (16)—MBLUP model, and (19)—MBLUPp model, 2565 animals
were used, for which there were data for all five observed traits: milk yield (MY), milk fat
yield (FY), milk fat content (FC), milk protein yield (PY) and milk protein content (PC) The
pedigree file consisted of 6041 animals, so breeding value estimates were obtained for all
6041 animals. Table 2 provides the accuracies of the evaluations of the obtained breeding

https://www.illumina.com/techniques/microarrays/array-data-analysis-experimental-design/genomestudio.html
https://www.illumina.com/techniques/microarrays/array-data-analysis-experimental-design/genomestudio.html
https://bioitgenoselect.polj.uns.ac.rs/genoselect
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values for each observed trait, which were created by solving Equations (3), (6), (13), (14),
(16) and (19).

Table 2. Descriptive statistics and p-values obtained using a two-tailed t-test for the accuracy of
prediction of breeding values calculated using the BLUP(p), ssGBLUP(p) and MBLUP(p) models.

Trait
BLUP BLUPp

p-Value An Increase/
Reduction (%)−

X SD Min Max −
X SD Min Max

MY 0.334 0.1724 0.035 0.822 0.385 0.1947 0.041 0.877 9.79× 10−52 +15.27
FY 0.349 0.1783 0.037 0.837 0.404 0.2024 0.044 0.89 1.29× 10−56 +15.76
FC 0.429 0.2090 0.051 0.897 0.530 0.2486 0.068 0.946 1.12× 10−124 +23.54
PY 0.355 0.1808 0.038 0.843 0.376 0.1915 0.039 0.870 1.05× 10−9 +5.92
PC 0.476 0.2266 0.059 0.920 0.438 0.2152 0.049 0.910 9.90× 10−22 −7.98

Trait
ssGBLUP ssGBLUPp

p-value An increase/
reduction (%)−

X SD Min Max −
X SD Min Max

MY 0.367 0.1899 0.015 0.903 0.424 0.2123 0.017 0.927 1.02× 10−53 +15.53
FY 0.362 0.1838 0.005 0.899 0.421 0.2094 0.020 0.927 4.09× 10−59 +16.30
FC 0.443 0.2136 0.060 0.928 0.532 0.2495 0.055 0.957 1.46× 10−99 +20.09
PY 0.376 0.1942 0.007 0.907 0.403 0.2039 0.006 0.921 3.31× 10−13 +7.18
PC 0.483 0.2298 0.057 0.941 0.454 0.2150 0.026 0.936 9.40× 10−13 −6.00

Trait
MBLUP MBLUPp

p-value An increase/
reduction (%)−

X SD Min Max −
X SD Min Max

MY 0.419 0.2051 0.049 0.889 0.470 0.2257 0.057 0.924 6.82× 10−38 +12.17
FY 0.419 0.2050 0.049 0.889 0.475 0.2274 0.058 0.926 2.26× 10−44 +13.37
FC 0.442 0.2136 0.053 0.902 0.522 0.2454 0.067 0.942 3.00× 10−79 +18.10
PY 0.399 0.1971 0.046 0.874 0.466 0.2242 0.056 0.923 5.61× 10−67 +16.79
PC 0.480 0.2278 0.060 0.920 0.456 0.2204 0.054 0.913 5.40× 10−9 −5.00

BLUP—univariate, first lactation only, BLUPp—univariate, all lactations, ssGBLUP—univariate, first lactation
only, ssGBLUPp—univariate, all lactations, MBLUP—multivariate, first lactation only, MBLUPp—multivariate,

all lactations,
−
X—mean, SD—standard deviation, Min—smallest value, Max—highest value, MY, kg—milk yield,

FY, kg—milk fat yield, FC, % —milk fat content, PY, kg—milk protein yield, PC, %—milk protein content.

For each observed trait, there was a statistically significant difference in the average
estimate of accuracy depending on the method used. The average accuracy was higher
using the BLUPp model compared to BLUP, except in the case of the trait PC. The same
was true for the ssGBLUPp and MBLUPp models versus ssGBLUP and MBLUP models,
respectively. The average increase in accuracy of the BLUPp model compared to the BLUP
model for the first four traits was 15.12%, the accuracy increase of ssGBLUPp compared to
ssGBLUP was 14.78%, while for the MBLUPp model compared to MBLUP, it was 15.11%.
For each trait, the MBLUP model gave higher accuracy than the BLUP model. The same
trend was clear for the MBLUPp model in relation to BLUPp (MBLUPp was more accurate),
except for the trait FC.

Table 3 shows the mean values of the estimated breeding values obtained by solving
the observed systems, as well as the p-values of the applied two-tailed t-test (the mean
values obtained by the BLUP and BLUPp models, ssGBLUP and ssGBLUPp models, and
MBLUP and MBLUPp models were compared).

A two-tailed t-test showed that there were no statistically significant differences in the
average estimates of breeding values when comparing BLUP and BLUPp, except for the
trait PC. When the ssGBLUP and ssGBLUPp models were compared, there were statistically
significant differences in the average estimates of breeding values for all traits except for the
trait FC. When comparing MBLUP and MBLUPp models, there were statistically significant
differences in the average estimates of breeding values for all the traits studied.
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Table 3. Descriptive statistics and p-values obtained using a two-tailed t-test for breeding values
calculated using the BLUP(p), ssGBLUP(p) and MBLUP(p) models.

Trait
BLUP BLUPp

p-Value−
X SD Min Max −

X SD Min Max

MY 45.6 206.57 −833.2 973.2 52.6 274.44 −1277 1140 0.116
FY 2.66 10.873 −39.9 116.1 2.68 14.321 −65.0 100.3 0.936
FC 0.010 0.1248 −0.549 1.40 0.009 0.1883 −0.853 1.74 0.817
PY 1.36 7.361 −35.8 67.4 1.58 8.117 −45.5 51.0 0.126
PC −0.004 0.0602 −0.272 0.950 −0.001 0.0521 −0.242 0.842 0.003

Trait
ssGBLUP ssGBLUPp

p-value−
X SD Min Max −

X SD Min Max

MY −22.1 250.74 −1155 1029 30.7 351.91 −1530 1574 2.40× 10−21

FY −1.03 11.621 −56.8 129.0 0.848 15.4857 −85.8 119.4 4.37× 10−14

FC −0.003 0.1278 −0.576 1.393 −0.007 0.1887 −0.849 1.67 0.151
PY −0.667 8.3835 −45.5 68.5 0.562 9.3995 −50.8 51.9 3.57× 10−14

PC 0.001 0.0614 −0.263 0.894 −0.0025 0.05621 −0.255 0.772 2.72× 10−4

Trait
MBLUP MBLUPp

p-value−
X SD Min Max −

X SD Min Max

MY 48.2 304.56 −1199 2335 63.5 418.04 −2179 1690 0.022
FY 1.87 11.757 −46.2 90.4 3.38 19.656 −94.3 134.1 2.84× 10−7

FC 0.004 0.1227 −0.563 0.779 0.011 0.1806 −0.856 1.08 0.022
PY 0.806 7.9649 −38.0 115.7 2.05 12.520 −60.6 80.2 1.03× 10−10

PC −0.003 0.0602 −0.285 1.08 −0.0002 0.05424 −0.199 0.720 0.002

BLUP—univariate, first lactation only, BLUPp—univariate, all lactations, ssGBLUP—univariate, first lactation
only, ssGBLUPp—univariate, all lactations, MBLUP—multivariate, first lactation only, MBLUPp—multivariate,

all lactations,
−
X—mean, SD—standard deviation, Min—smallest value, Max—highest value, MY, kg—milk yield,

FY, kg—milk fat yield, FC, % —milk fat content, PY, kg—milk protein yield, PC, %—milk protein content.

4.2. Estimates of Breeding Values and Comparison of Accuracy of Estimates Using NRM for
BLUP(p) Models and GRM for GBLUP(p) and ssGBLUP(p) Models for 1491 Genotyped Animals

Breeding value estimates for 1491 genotyped animals were extracted from data gen-
erated by the BLUP(pe) and ssGBLUP(p) models that had provided breeding values for
6041 animals, to compare the accuracy of breeding values estimated by the GBLUP(p) mod-
els; these models used data and calculated breeding values only for genotyped animals.
Descriptive statistics for these methods are shown in Table 4.

When we consider only the first lactations, the GBLUP model proved to be more
accurate than the BLUP model, except for the PC trait. The most accurate method was
ssGBLUPp, with a maximum standard error of 0.0406. The average percent increase in milk
fat yield when estimated using the ssBLUP model compared to BLUP was 5.01%. If we
look at all lactations, for all five traits, the highest estimate of accuracy was obtained by
the ssGBLUPp model. With the BLUPp model, the accuracy ranged from 0.540 to 0.753,
with GBLUPp from 0.529 to 0.736 and with ssGBLUPp from 0.582 to 0.766. The average
percentage increase in accuracy of the ssGBLUPp method was 5.91% over the BLUPpe
method. With the ssGBLUPp model, the standard error was not greater than 0.0559.

Table 5 shows the mean estimated breeding values calculated using the BLUP(p),
GBLUP(p) and ssGBLUP(p) models.
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Table 4. Descriptive statistics and p-values obtained using a two-tailed t-test for the accuracy of
prediction of breeding values calculated using the BLUP(p), GBLUP(p) and ssGBLUP(p) models.

Trait
BLUP GBLUP ssGBLUP

Increase * (%)
−
X SD Min Max −

X SD Min Max −
X SD Min Max

MY 0.496 0.0390 0.291 0.580 0.523 0.0521 0.050 0.618 0.545 0.0397 0.342 0.631 +9.88
FY 0.517 0.0379 0.304 0.600 0.521 0.0514 0.038 0.617 0.534 0.0406 0.334 0.623 +3.29
FC 0.630 0.0308 0.375 0.703 0.632 0.0468 0.149 0.712 0.650 0.0307 0.432 0.718 +3.17
PY 0.526 0.0374 0.310 0.608 0.545 0.0498 0.119 0.635 0.559 0.0384 0.354 0.643 +6.27
PC 0.697 0.0269 0.411 0.760 0.676 0.0459 0.196 0.754 0.714 0.0257 0.482 0.777 +2.44

Trait
BLUPp GBLUPp ssGBLUPp

Increase * (%)
−
X SD Min Max −

X SD Min Max −
X SD Min Max

MY 0.554 0.0576 0.376 0.674 0.561 0.0534 0.384 0.704 0.615 0.0533 0.424 0.737 +11.01
FY 0.579 0.0596 0.403 0.704 0.561 0.0540 0.383 0.705 0.608 0.0543 0.414 0.733 +5.01
FC 0.753 0.0573 0.587 0.875 0.736 0.0509 0.572 0.862 0.766 0.0483 0.639 0.872 +1.73
PY 0.540 0.0593 0.357 0.644 0.529 0.0559 0.329 0.675 0.582 0.0559 0.376 0.709 +7.78
PC 0.624 0.0615 0.456 0.752 0.527 0.0605 0.316 0.682 0.649 0.0534 0.470 0.772 +4.01

BLUP—univariate, first lactation only, GBLUP—univariate, first lactation only, all genotyped, ssGBLUP—
univariate, first lactation only, not all genotyped, * Percentage increase in accuracy obtained by the ssGBLUP
model compared to the BLUP model, BLUPp—univariate, all lactations, GBLUPp—univariate, all lactations, all
genotyped, ssGBLUPp—univariate, all lactations, not all genotyped, * Percentage increase in accuracy obtained

by the ssGBLUPp model compared to the BLUPpe model,
−
X—mean, SD—standard deviation, Min—smallest

value, Max—highest value, MY, kg—milk yield, FY, kg—milk fat yield, FC, % —milk fat content, PY, kg—milk
protein yield, PC, %—milk protein content.

Table 5. Descriptive statistics for breeding values calculated using the BLUP(p), GBLUP(p) and
ssGBLUP(p) models.

Trait
BLUP GBLUP ssGBLUP

−
X SD Min Max −

X SD Min Max −
X SD Min Max

MY 117.2 268.25 −728.4 973.2 4.62× 10−8 349.241 −1219.3 880.3 0.120 346.6788 −1089.1 1029.0
FY 6.50 14.406 −30.3 116.1 4.74× 10−9 18.063 −59.9 159.4 0.006 16.4807 −51.9 129.0
FC 0.023 0.172 −0.505 1.40 6.80× 10−12 0.193 −0.580 1.67 2.38× 10−5 0.183 −0.576 1.39
PY 3.446 9.4380 −29.1 67.4 −1.33× 10−9 11.70 −43.5 77.7 0.004 11.3563 −36.3 68.5
PC −0.012 0.0773 −0.253 0.950 2.46× 10−11 0.079 −0.251 0.940 −1.03× 10−5 0.082 −0.258 0.894

Trait
BLUPp GBLUPp ssGBLUPp

−
X SD Min Max −

X SD Min Max −
X SD Min Max

MY 131.9 337.34 −1052 1015 −8.50× 10−8 415.623 −1468.4 1258.3 −0.470 458.5280 −1482.1 1377.8
FY 6.45 18.273 −65.3 100.3 −5.09× 10−10 19.626 −75.5 136.6 −0.011 20.8048 −85.8 119.4
FC 0.023 0.2531 −0.732 1.74 5.11× 10−11 0.245 −0.809 1.87 1.51× 10−4 0.261 −0.682 1.67
PY 4.23 10.0231 −41.2 51.0 −5.74× 10−9 11.32 −39.4 51.0 −0.011 12.3842 −49.3 51.9
PC 0.001 0.0666 −0.197 0.842 5.26× 10−11 0.056 −0.189 0.557 7.38× 10−6 0.075 −0.234 0.772

BLUPp—univariate, all lactations, GBLUPp—univariate, first lactation only, all genotyped, ssGBLUPp—

univariate, all lactations, not all genotyped,
−
X—mean, SD—standard deviation, Min—smallest value, Max—

highest value, MY, kg—milk yield, FY, kg—milk fat yield, FC, % —milk fat content, PY, kg—milk protein yield,
PC, %—milk protein content.

4.3. Correlations between BVs

The correlations between BVs for the BLUP, GBLUP and ssGBLUP models are shown
in Table 6. These correlations were performed on 1491 cows because GBLUP and GBLUPp
can only be used on genotyped cows.

For all five traits, the highest correlations were between GBLUP and ssGBLUP. The
highest Spearman’s rank correlation coefficient is 0.956 (PC trait, GBLUP—ssGBLUP) and
the lowest 0.785 (MY trait, BLUP—GBLUP). The highest Pearson’s coefficient is 0.962 (PC
trait, GBLUP—ssGBLUP) and the lowest 0.789 (MY trait, BLUP—GBLUP). In Figure 1, for
the MY trait, the scatter plots between BVs predicted in BLUP, GBLUP and ssGBLUP are
shown.
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Table 6. Spearman’s rank (above diagonal) and Pearson’s correlation coefficients (below diagonal)
between predicted breeding values for milk production traits in first lactation.

MY BLUP GBLUP ssGBLUP

BLUP 1.000 0.785 0.842
GBLUP 0.789 1.000 0.935

ssGBLUP 0.849 0.937 1.000

FY BLUP GBLUP ssGBLUP

BLUP 1.000 0.803 0.849
GBLUP 0.822 1.000 0.953

ssGBLUP 0.862 0.958 1.000

FC BLUP GBLUP ssGBLUP

BLUP 1.000 0.820 0.879
GBLUP 0.850 1.000 0.952

ssGBLUP 0.899 0.958 1.000

PY BLUP GBLUP ssGBLUP

BLUP 1.000 0.787 0.848
GBLUP 0.804 1.000 0.935

ssGBLUP 0.864 0.938 1.000

PC BLUP GBLUP ssGBLUP

BLUP 1.000 0.856 0.910
GBLUP 0.881 1.000 0.956

ssGBLUP 0.924 0.962 1.000
BLUP—univariate, first lactation only, GBLUP—univariate, first lactation only, ssGBLUP—univariate, first
lactation only, MY, kg—milk yield, FY, kg—milk fat yield, FC, % —milk fat content, PY, kg—milk protein yield,
PC, %—milk protein content.
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The correlations between BVs for the BLUPp, GBLUPp and ssGBLUPp models are
also shown in Table 7 for 1491 genotyped cows.

In this case, for all traits, the highest correlations were between GBLUPp and ssG-
BLUPp. The highest Spearman’s rank correlation coefficient is 0.959 (FC trait, GBLUPp—
ssGBLUPp) and the lowest 0.702 (PY trait, BLUPp—GBLUPp). The highest Pearson’s
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coefficient is 0.962 (FC trait, GBLUPp—ssGBLUPp) and the lowest 0.732 (PY trait, BLUPp—
GBLUPp). In Figure 2, for the PY trait, the scatter plots between BVs predicted in BLUPp,
GBLUPp and ssGBLUPp are shown.

Table 7. Spearman’s rank (above diagonal) and Pearson’s correlation coefficients (below diagonal)
between predicted breeding values for milk production traits in all lactations.

MY BLUPp GBLUPp ssGBLUPp

BLUPp 1.000 0.723 0.802
GBLUPp 0.733 1.000 0.925

ssGBLUPp 0.811 0.935 1.000

FY BLUPp GBLUPp ssGBLUPp

BLUPp 1.000 0.761 0.841
GBLUPp 0.783 1.000 0.941

ssGBLUPp 0.859 0.945 1.000

FC BLUPp GBLUPp ssGBLUPp

BLUPp 1.000 0.881 0.932
GBLUPp 0.902 1.000 0.959

ssGBLUPp 0.946 0.962 1.000

PY BLUPp GBLUPp ssGBLUPp

BLUPp 1.000 0.702 0.779
GBLUPp 0.732 1.000 0.921

ssGBLUPp 0.807 0.933 1.000

PC BLUPp GBLUPp ssGBLUPp

BLUPp 1.000 0.792 0.867
GBLUPp 0.848 1.000 0.945

ssGBLUPp 0.905 0.955 1.000
BLUPp—univariate, all lactations, GBLUPp—univariate, all lactations, ssGBLUPp—univariate, all lactations, MY,
kg—milk yield, FY, kg—milk fat yield, FC, % —milk fat content, PY, kg—milk protein yield, PC, %—milk protein
content.
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5. Discussion

The estimation of breeding values and animal ranking are important parts of mod-
ern breeding programs. The accuracy of an estimated breeding value is defined as the
correlation between the true and estimated breeding values [28]. This precision is highly
dependent on the amount of information available on any single animal, including data on
its relatives. Three main sources of information are: the performance data, measured on
animals; data on correlations between different traits; and pedigree data, which nowadays
are often accompanied by the results of molecular genetic analysis [29]. This enables the
implementation of genomic selection that results in great genetic progress and lowers
the costs of progeny testing, presenting breeders with the opportunity to select animals
that have inherited desirable gene combinations [30,31]. Genomic selection includes the
genotyping of animals irrespective of their age and sex, and this allows breeding values to
be calculated, even for a newborn male or female animal. This selection approach is recog-
nized by the relevant international organizations, and its advantages in animal breeding
are a shorter generation interval, increased selection effect, more accessible data validation
and inbreeding prevention. The application of genomic selection in dairy cattle breeding
started during the last years of the first decade of the 21st century [32,33], enabled by the
analysis of SNP markers that are utilized over the whole genome, and by being relatively
inexpensive.

Breeding value estimation and the ranking of dairy cows in Serbia is currently based
on the application of the univariate BLUP animal model, where the greatest emphasis is
placed on the milk yield characteristics, primarily on the milk yield in the first lactation [34].
Milk yield traits are of primary economic importance in breeding programs because they
directly affect the profitability of cattle production [35]. However, the selection of breeding
animals should be based on the combination of traits included in a selection index by
which the animals are then ranked. Multivariate analysis is the optimal methodology for
the analysis of several traits because it simultaneously evaluates the breeding values of
animals and calculates phenotypic and genetic correlations between these traits [15]. In
addition, one of the major advantages of multivariate over univariate analysis is that it
increases the accuracy of the estimate [15]. While observing the data presented in Table 2,
it can be seen that using the multivariate analyses (MBLUP/MBLUPp), higher accuracies
of breeding values were obtained, on average, for all traits compared to the univariate
analyses (BLUP/BLUPp). Additionally, from Table 2, increases in the accuracies of the
estimated breeding values were also achieved by the use of the repeated measurements
(milk yield results from repeated lactations), which was confirmed for the majority of
traits (except for the protein content), regardless of whether it was a standard univariate or
multivariate analysis with the use of a numerical relationship matrix or analysis combining
numerical and genomic relationship matrices (ssGBLUP).

It is well known that increasing the amount of information on a single animal moves
an estimated breeding value closer to the true breeding value. Table 4 shows that, for all
traits included, ssGBLUP(p) produced more accurate estimated breeding values than did
BLUP(p) and GBLUP(p), while GBLUP had better accuracy than BLUP. However, data
in Table 2 show that the application of the ssGBLUP model only partially improved the
accuracy. More precisely, the inclusion of SNP marker data resulted in increased accuracy
over the univariate BLUP(p) models, but not over the multivariate BLUP(p) models. It
can be concluded that models that include genomic data produce more accurate estimated
breeding values for genotyped animals, while the same is not necessarily true at the level
of the whole population; we speculate that in our case, this was probably a result of the
small number of genotyped animals within the population. Ref. [36] compared single-step
blending models and GBLUP models with and without adjustment of the genomic relation-
ship matrix for the genomic prediction of 16 traits in a Nordic Holstein population. The
accuracy for traits of milk, fat and protein yields were 0.657, 0.675 and 0.655, respectively,
and these results were obtained using the GBLUP model. In the current research, the
accuracies of milk, fat and protein yields were 0.523, 0.521 and 0.545, respectively, with
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the GBLUP model. Ref. [37] compared the accuracies of genomic prediction for milk, fat
and protein yields from Philippine dairy buffaloes using BLUP, GBLUP and ssGBLUP. In
their research, the ssGBLUP model was 13% more accurate than the GBLUP model for
milk yield, while in our research, the difference in milk yield estimates between those same
models was 4.2%. For fat yield, [37] found an increase of 4%, while ours was 2.5%, and for
protein yield, the increase was 3% in [37], while it was 2.6% in our current study. Similar
comparisons were also made in other species. The accuracy of BLUP and ssGBLUP for
predicting breeding value in Huacaya Alpacas were compared in [38]. Their model with
genomic data was, on average, 3.51% more accurate. In our current study, the ssGBLUP
model was 4.90% more accurate than the BLUP model. In [39], authors compared the
accuracy of BLUP and GBLUP predictions of immune traits in Beijing oil chickens. Average
accuracies were 0.316 and 0.274, using BLUP and GBLUP models, respectively. In our
current research, these accuracies were 0.573 and 0.579, using BLUP and GBLUP models,
respectively. According to [40] accuracies in genomic selection depend on the number,
distribution, and contributions of genotypes and phenotypes to the genomic evaluation
and [41] conclude that the design and size of the reference population plays a major role in
achieving accuracy for the breeding schemes.

A comparison of predicted breeding values calculated using different analyses (BLUP,
GBLUP and ssGBLUP) was also performed using Spearman’s and Pearson’s correlation
coefficients, which is in agreement with [42]. In this research, high positive correlations were
also obtained in relation to the applied analyses, and the highest were between GBLUP and
ssGBLUP, regardless of the investigated trait. Some authors compared genomic prediction
using GBLUP and ssGBLUP methods in Iranian Holstein cattle by calculating reliability [43].
In this research of ssGBLUP, the average confidence of genomic predictions for the three
traits (milk, fat, and protein yield) was 0.39, which is 0.98% points higher than the average
confidence from the GBLUP method.

6. Conclusions

The integration of bioinformatics in animal breeding is a new approach in Serbia,
offering numerous advantages regarding the accuracy and speed of achieving previously
set goals. The development of databases that incorporate pedigree, performance and
genotype data results in valuable resources for detecting new candidate genes, linked with
traits of economic interest, while also increasing the accuracy of estimated breeding values
of animals that are candidates for selection.

Greater accuracy when using repeated measures over multiple lactations was con-
firmed for almost all traits. Furthermore, greater accuracy was obtained with the combina-
tion of NRM and GRM, i.e., using the ssGBLUP model compared with either NRM or using
GRM in BLUP and GBLUP models, but only when focusing just on genotyped animals. At
the level of the examined population that combined both genotyped and non-genotyped
animals, the highest accuracy was achieved using multivariate analysis with repeated
measures.

In conclusion, this study shows that the current breeding programs in Serbia should be
changed to use multivariate analysis with repeated measurements for estimating breeding
values and for ranking animals that are candidates for selection, until the optimal size
of reference population data, which must include genotyping data on both bulls and
cows, is reached. This would have economic significance at the national level because
greater accuracy in the prediction of breeding value expands the possibilities for increasing
the intensity of selection and leads to an increase in the rate of genetic improvement of
economically useful traits in cows.
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