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Simple Summary: Protozoan parasites of the genus Sarcocystis are characterised by a two-host prey–
predator life cycle. To date, more than 25 Sarcocystis species have been confirmed to form sarcocysts
in muscles and CNS of birds. Avian Sarcocystis species are transmitted via predatory birds, placental
mammals, and opossums. The objective of the study was to examine the role of predatory mammals
of the family Mustelidae in the transmission of avian Sarcocystis spp. by means of molecular methods.
In total, 115 small intestine samples of mustelids collected in Lithuania were tested for the presence
of Sarcocystis spp. using anseriforms and domestic fowl (Gallus domesticus) as their intermediate hosts.
Based on the DNA sequence analysis, S. rileyi known as forming macrocysts in muscles of ducks
was detected in 11.3% of examined small intestine samples and Sarcocystis sp. was identified in two
samples. The latter species was most closely related to Sarcocystis spp. isolates infecting chickens and
causing encephalitis. This is the first report of avian Sarcocystis identified by molecular methods in the
small intestines of mustelids, indicating the significance of these small predators for the spreading of
Sarcocystis spp. using birds as intermediate hosts. Based on current knowledge, canids and mustelids
are most likely the definitive hosts of S. rileyi in Europe.

Abstract: The genus Sarcocystis is a group of numerous protozoan parasites having a two-host life
cycle. Based on laboratory experiments and/or phylogenetic analysis results it was shown that seven
Sarcocystis spp. producing sarcocsyts in bird tissues are transmitted via predatory placental mammals.
To date the role of small mammals of the family Mustelidae in the distribution of avian Sarcocystis spp.
have not been studied. During the current investigation, intestinal mucosa scrapings of 115 mustelids
belonging to five species were tested for S. albifronsi, S. anasi, S. rileyi, and S. wenzeli infecting
anseriforms and chickens. Microscopically, free sporocysts, sporulating oocysts, and loose oocysts
were found in 61 samples (53.0%). Using nested PCR targeting the ITS1 region and sequencing,
S. rileyi was confirmed in eight American minks, two European polecats and single European badger.
Sarcocystis sp. was identified in one American mink and one European pine marten. Based on the
partial ITS1 region this parasite showed that 100% identity to pathogenic Sarcocystis sp. caused a
fatal infection in backyard chickens from Brazil. Phylogenetically, the Sarcocystis sp. identified in our
study was most closely related to S. wenzeli parasitising domestic fowl (Gallus domesticus).

Keywords: Sarcocystis rileyi; mustelidae; anseriformes; chickens; definitive host; ITS1; molecular
identification

1. Introduction

Members of the genus Sarcocystis (Apicomplexa: Sarcocystidae) are protozoan par-
asites distributed worldwide. The genus Sarcocystis has a broad host spectrum encom-
passing mammals, birds and reptiles. These parasites are distinguished by an obligatory
prey–predator two-host life cycle [1]. Sarcocysts are found mainly in muscles or CNS of
intermediate hosts, while endogenous sporulation of oocysts take place in the intestine of

Animals 2023, 13, 467. https://doi.org/10.3390/ani13030467 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani13030467
https://doi.org/10.3390/ani13030467
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0002-7559-9316
https://orcid.org/0000-0002-7702-1817
https://orcid.org/0000-0003-2892-0493
https://doi.org/10.3390/ani13030467
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani13030467?type=check_update&version=1


Animals 2023, 13, 467 2 of 13

the definitive host [2]. To date more than 200 Sarcocystis species are known, some of them
being pathogenic for their intermediate host [1,3]. Sarcocystis species are morphologically
characterised and described in intermediate hosts, while oocyst and sporocyst of parasite
species found in definitive hosts can be differentiated only by molecular methods [4].

Birds serve as intermediate hosts for more than 25 known species of Sarcocystis [5].
Based on laboratory experiments, predatory birds, placental mammals, and opossums of
the genus Didelphis are definitive hosts of Sarcocystis species forming sarcocysts in tissues
of birds [1,6]. Phylogenetic results indicate that seven species, S. albifronsi, S. anasi, S. atraii,
S. chloropusae, S. cristata, S. rileyi, and S. wenzeli are transmitted via predatory mammals
of the order Carnivora [1,5,7–11]. Three species, S. albifronsi, S. anasi, and S. rileyi infect
muscles of ducks and geese [7,8,12,13], S. wenzeli are found in chickens [11], S. atraii and S.
chloropusae were described in birds of order Gruiformes [9,10], and S. cristata was detected in
the representative of order Musophagiformes [5]. Of these seven species, three, S. albifronsi,
S. anasi, and S. rileyi, were confirmed in Lithuania [7,12].

Sarcocystis species are mostly genetically characterised at nuclear 18S rDNA, 28S
rDNA, ITS1, and mitochondrial cox1 [1,5]. The choice of genetic loci for the identification
of Sarcocystis species depends on their hosts [14]. For instance, cox1 is most appropriate for
the differentiation of Sarcocystis species employing ruminants as intermediate hosts [15,16].
Avian Sarcocystis spp. could be differentiated on the basis of the 28S rDNA and ITS1, and
the ITS1 is more variable of these two genetic markers [1,17]. By contrast, 18S rDNA and
cox1 appeared to be insufficiently variable for the discrimination of some Sarcocystis spp.
employing birds as intermediate hosts [17].

Representatives of the family Mustelidae are widespread in Lithuania [18,19]. They
occur in all habitats and with nine species compose most diverse family of the order
Carnivora [19–23]. It has been shown that mustelids play a significant role in transmitting
Sarcocystis species forming sarcocysts in rodents and ungulates [16,24].

So far, no research has been carried out to find out whether mustelids can contribute
to the transmission of Sarcocystis species those intermediate hosts are birds. The invasive
American mink (Neovison vison) is an important predator of ducks in wetland habitats
of Finland and Denmark [25,26]. In Lithuania and Latvia, the mass killing of incubating
females of mallard (Anas platyrhynchos), common pochard (Aythya farina), and tufted duck
(Aythya fuligula) by American mink was recorded, particularly on small islands of lakes
where ducks breed almost colonially [27]. Birds are an important food component also for
other mustelid species in Lithuania [28]. The diet of mustelids includes eggs, young and
adult individuals of various waterbird species, and also birds found dead, particularly in
winter [18,19]. Taking into account the diet of mustelids and their abundance in Lithuania,
the aim of this study was to investigate the potential role of mustelids in spreading Sarco-
cystis species using birds as intermediate hosts. To achieve this objective, intestinal mucosa
scrapings of mustelids collected in Lithuania were tested for the presence of S. albifronsi,
S. anasi, S. rileyi, and S. wenzeli by means of molecular methods.

2. Materials and Methods
2.1. Sample Collection and Isolation of Oocysts/Sporocysts

A total of 115 animals (61 American mink, 26 European pine marten Martes martes,
18 European polecat Mustela putorius, 6 European badger Meles meles, and 4 Beech marten
Martes foina) from the Mustelidae family were collected in accordance with national and
institutional guidelines from licensed third parties. The animals were legally hunted mainly
in southern, eastern, and central Lithuania between 2017 and 2021, in September–April
and were kept frozen at –20 ◦C. The small intestine was removed from the animals and cut
lengthwise. The intestinal epithelium was lightly scraped using a scalpel and suspended
in 50 mL of water. The isolation of oocysts/sporocysts of Sarcocystis spp. was performed
using previously described methodology [24].
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2.2. Molecular Identification and Phylogenetic Analysis

Genomic DNA extraction was performed using a GeneJET Genomic DNA Purification
Kit (Thermo Fisher Scientific Baltics, Vilnius, Lithuania) according to the manufacturer’s
instructions. The DNA samples were kept frozen at −20 ◦C until further molecular analysis.

Nested PCR amplification of internal transcribed spacer 1 (ITS1) partial sequences was
performed. In the first step, forward SU1F (5’- GATTGAGTGTTCCGGTGAATTATT -3’)
and reverse 5.8SR2 (5’- AAGGTGCCATTTGCGTTCAGAA -3’) primer pair was used [29].
Whereas in the second step, two primer pairs, GsSrilF2 (5’- ACGTTGTTCTATATTATGT-
GACCATT -3’)/GsSrilR2 (5’- TACTATAGAGGTGAAAGGGAGGTGA -3’) and AZVF1 (5’-
TCAAAACGTCCAAATAATGGTAT -3’)/AZVR1 (5’- ACACATTCCTACTGCCTTCCAC
-3’) were used. The following primers were designed using the Primers 3 Plus program [30].
In silico, the first primer pair was chosen to amplify ITS1 fragments of S. rileyi, while
the second primer pair was selected to amplify fragments of S. albifronsi, S. anasi, and
S. wenzeli. Positive controls (DNA of S. albifronsi, S. anasi and S. rileyi extracted from single
sarcocysts) were used in each set of PCRs. Three negative controls (nuclease free water
instead of target DNA) were used: one for the first amplification step and two for the
second step of nested PCR. The third negative control was obtained by transferring two
µL from the negative control of the first amplification step to the negative control of the
second amplification step.

PCR reactions were carried out using DreamTaq PCR Master Mix (Thermo Fisher
Scientific Baltics, Vilnius, Lithuania) according to the manufacturer’s instructions. The PCR
cycling conditions were as followed: initial denaturation for 5 min at 95 ◦C, 35 cycles of
45 s at 94 ◦C, 45 s at 55, 57, or 63 ◦C depending on the primer pair, 60 s at 72 ◦C, and final
extension for 10 min at 72 ◦C. PCR products were observed in agarose gel and purified
using Exonuclease I and FastAP Thermosensitive Alkaline Phosphatase (Thermo Fisher
Scientific Baltics, Vilnius, Lithuania). Amplified products of the second nested PCR step
were sequenced directly with the 3500 Genetic Analyzer (Applied Biosystems, Foster City,
CA, USA) using the same forward and reverse primers as for PCR. The obtained ITS1
sequences were deposited in GenBank with accession numbers OP970969–OP970981.

The examined sequences were combined into single fragments, truncated exclud-
ing primer-binding nucleotide positions, checked manually for ambiguously placed nu-
cleotides, and compared by BLAST (http://blast.ncbi.nlm.nih.gov/, accessed on 30 Novem-
ber 2022). For phylogenetic analysis sequences were aligned using MUSCLE algorithm
loaded in MEGA7 software [31]. Selection of the evolutionary model best fit to the obtained
multiple-sequence alignment and construction of phylogenetic tree by Bayesian methods
were conducted with the help of TOPALi v2.5 software [32].

2.3. Data Analysis

Sterne’s exact method [33] was used to compute 95% confidence interval (CI) for
the prevalence of Sarcocystis spp. in host species and in animals hunted during different
months. Differences in the detection of Sarcocystis species in the examined mustelid species
were evaluated using a Chi-squared test. The unconditional exact test was used to compare
S. rileyi prevalence in animals collected in different months [34]. Statistical tests were
carried out using the Quantitative Parasitology 3.0 software [35].

3. Results
3.1. Microscopical Examination of Sarcocystis spp. Oocysts/Sporocysts

Sarcocystis spp. sporocysts and/or oocysts were noticed in the intestinal epithelium of
the small intestines of all five species of mustelids analysed in the current study (Figure 1).
In some samples, only a few (one-five) sporocysts and/or oocysts were detected in the area
of the 24 × 24 mm coverslip, while in other samples, numerous parasites of different stages
were found and it was even difficult to count the exact number of oocysts/sporocysts.

http://blast.ncbi.nlm.nih.gov/
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Figure 1. Oocysts/sporocysts found in small intestine mucosal scrapings of Mustelidae species.
(a,c,d,f,h,i) Sporocysts. (b) Oocysts. (e,g,h) Sporulated oocysts. Sarcocystis spp. from American
mink (a,b), European pine marten (c), European polecat (d,e), European badger (f,g), and Beech
marten (h,i).

Under a light microscope, oocysts and/or sporocysts of Sarcocystis spp. were de-
tected in 61 of 115 (53.0%, 95% CI = 43.9%–62.2%) analysed samples (Table 1). The dif-
ferences in Sarcocystis spp. detection rates among five predator species were insignif-
icant (χ2 = 4.47, df = 4, p = 0.349). It should be noted that free sporocysts were seen
more often than sporulating oocysts or loose oocysts. Free sporocysts of Sarcocystis
spp. measured 11.8 × 8.3 µm (7.1–14.5 × 6.5–10.9 µm; n = 450), whereas ellipsoidal sporu-
lated oocysts were thin-walled, contained two sporocysts, and measured 18.1 × 15.6 µm
(17.5–19.0 × 15.1–15.9; n = 130). Oocysts measured 19.9 × 17.1 µm (13.9–23.5 × 12.0–22.4;
n = 46) and were seen in the intestinal mucosa of American mink, European pine marten,
and European polecat. The morphometric sizes of sporocysts and oocysts found in differ-
ent predator species overlapped (Table 1). Further molecular analysis was used for the
identification of selected parasite species in the examined specimens of intestine mucosal
scrapings.

3.2. Sarcocystis Species Identification and Their Distribution in Intestine Samples of Mustelids

Based on the nested PCR targeting the partial ITS1 region, the sequencing of amplified
products, and the comparison of obtained sequences, two Sarcocystis species were identified
(Table 2). The more common S. rileyi was confirmed in 11 samples (9.6%, 95% CI = 5.1%–
16.4%). This Sarcocystis species forming macrocysts in ducks [12,13] was identified in eight
American minks (13.1%, 95% CI = 6.2%–24.4%), two European polecats (11.1%, 95% CI =
20.0%–33.0%), and a single European badger (16.7%, 95% CI = 8.6%–58.9%). Meanwhile,
undescribed Sarcocystis sp. was established in one American mink (1.6%, 95% CI = 0.9%–
8.7%) and one European pine marten (3.8%, 95% CI = 0.2%–18.8%). The ITS1 fragments of
S. rileyi and Sarcocystis sp. were amplified using GsSrilF2/GsSrilR2 and AZVF1/AZVR1
primer pairs, respectively. Notably, S. rileyi and Sarcocystis sp. were identified in different
animals and the overall prevalence of Sarcocystis spp. in the intestinal mucosa of mustelids
accounted for 11.3% (95% CI = 6.3%–18.6%).
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Table 1. Detection rates and morphology of oocysts/sporocysts found in small intestine mucosal
scrapings of Mustelidae species from Lithuania.

Host Species

Microscopical
Detection of Sarcocystis spp. The Size of

Sporocysts
The Size of

Sporulating Oocysts
The Size of Free

OocystsInfected/Investigate
(%) 95% CI

American mink 31/61 (50.8%) 38.5–63.2 10.2–14.1 × 7.1–9.4
(12.3 × 8.3; n = 170)

14.5–21.1 × 10.9–17.5
(18.0 × 14.0; n = 30)

14.8–23.5 × 13.5–22.4
(21.1 × 18.3; n = 14)

European pine
marten 15/26 (57.7%) 38.3–75.4 10.1–14.1 × 6.9–10.1

(11.6 × 8.2; n = 115)
12.4–19.2 × 10.1–18.3
(14.9 × 12.8; n = 20)

17.9–23.1 × 15.5–21.5
(21.8 × 17.6; n = 17)

European polecat 11/18 (61.1%) 37.4–81.5 10.0–14.6 × 6.7–9.9
(12.4 × 8.3; n = 140)

13.3–19.5 × 11.1–18.0
(17.5 × 13.3; n = 40)

13.9–23.0 × 12.0–22.0
(19.2 × 18.5; n = 15)

European badger 1/6 (16.7%) 8.6–58.9 10.0–14.1 × 6.4–9.6
(12.7 × 8.1; n = 15)

13.5–18.6 × 9.7–16.0
(16.2 × 13.1; n = 17) -

Beech marten 3/4 (75.0%) 24.9–98.7 7.0–12.6 × 7.0–8.6
(10.2 × 7.8; n = 10)

13.5–23.9 × 10.1–17.5
(16.2 × 13.1; n = 23) -

Overall 61/115 (53.0%) 43.9–62.2 7.0–14.6 × 6.4–10.2
(12.1 × 8.2; n = 450)

12.4–23.9 × 9.7–18.3
(16.5 × 13.2; n = 130)

13.9–23.5 × 12.0–22.2
(20.6 × 17.4; n = 46)

Table 2. Molecular identification of two avian Sarcocystis species in the mucosal scrapings of the
examined mustelids.

Host Species N Sarcocystis rileyi (%, 95% CI) Sarcocystis sp. (%, 95% CI)

American mink 61 8 (13.1, 6.2–24.4) 1 (1.6, 0.9–8.7)
European pine

marten 26 0 1 (3.8, 0.2–18.8)

European polecat 18 2 (11.1, 20.0–33.0) 0
European badger 6 1 (16.7, 8.6–58.9) 0

Beech marten 4 0 0
Overall 115 11 (9.6, 5.1–16.4) 2 (3.3, 0.3–6.3)

Eleven 611–612 bp-long ITS1 sequences of S. rileyi determined in the present investiga-
tion displayed 99.18%–100% identity between each other. Of the 11 sequences, 9 identical
ones (OP970971-79) showed an 100% match with other sequences of S. rileyi available in
GenBank (GU188427, HM185744, KJ396584, MZ151434, MZ468639-40, and LT992314-16).
The remaining two sequences of S. rileyi obtained in the current work (OP970980-81) dif-
fered from the most common haplotype by two nucleotide substitutions and one deletion
and by two nucleotide substitutions, respectively. The sequences of S. rileyi obtained from
mucosal scrapings of mustelids showed 91.22%–92.34% similarity to S. atraii from the
common coot (Fulica atra) from Egypt and less than 74% similarity compared with the
sequences of other Sarcocystis species.

Two 817 bp-long ITS1 sequences of Sarcocystis sp. LT-2022 obtained in the present
work (OP970969-70) did not differ from each other. These two ITS1 sequences showed 100%
identity with the sequence of Sarcocsytis sp. Chicken-2016-DF-BR (MN846302) isolated from
brain tissues of two chickens in Brazil [36], 98.17%–98.66% similarity with the sequences of
S. wenzeli (MT756994-98) parasitising chickens [11], and 95.49%–96.99% similarity with the
sequences (OP490606-9, OP490613-4) obtained from pooled samples of the brain, pectoral
muscle, lung, and heart of native village chickens in Malaysia.

We observed seasonal changes in the abundance of S. rileyi in our sample (Figure 2).
S. rileyi was determined by molecular methods in one animal hunted in October, in two
animals each hunted in September, November, and December, and in four animals hunted
in January. The unconditional exact test showed that the detection of S. rileyi in September–
January (15.5%, 95% CI = 8.5%–25.9%) was significantly higher (p = 0.0034) than in the
February–April period (0%, 95% CI = 0%–8.5%). Meanwhile, Sarcocystis sp. LT-2022 was
established in two animals collected in March and April.



Animals 2023, 13, 467 6 of 13

Animals 2023, 13, x FOR PEER REVIEW 6 of 13 
 

the common coot (Fulica atra) from Egypt and less than 74% similarity compared with the 

sequences of other Sarcocystis species. 

Two 817 bp-long ITS1 sequences of Sarcocystis sp. LT-2022 obtained in the present 

work (OP970969-70) did not differ from each other. These two ITS1 sequences showed 

100% identity with the sequence of Sarcocsytis sp. Chicken-2016-DF-BR (MN846302) iso-

lated from brain tissues of two chickens in Brazil [36], 98.17%–98.66% similarity with the 

sequences of S. wenzeli (MT756994-98) parasitising chickens [11], and 95.49%–96.99% sim-

ilarity with the sequences (OP490606-9, OP490613-4) obtained from pooled samples of the 

brain, pectoral muscle, lung, and heart of native village chickens in Malaysia.  

We observed seasonal changes in the abundance of S. rileyi in our sample (Figure 2). 

S. rileyi was determined by molecular methods in one animal hunted in October, in two 

animals each hunted in September, November, and December, and in four animals hunted 

in January. The unconditional exact test showed that the detection of S. rileyi in Septem-

ber–January (15.5%, 95% CI = 8.5%–25.9%) was significantly higher (p = 0.0034) than in the 

February–April period (0%, 95% CI = 0%–8.5%). Meanwhile, Sarcocystis sp. LT-2022 was 

established in two animals collected in March and April.  

 

Figure 2. The molecular identification of S. rileyi in the mucosal scrapings of the mustelids collected 

during different months in Lithuania. 

3.3. Phylogenetic Relationships of Identified Sarcocystis Species 

Comparing the ITS1 fragments established in the current work, sequences of Sarco-

cystis sp. were longer at the 5’ end and the sequences of S. rileyi were longer at the 3’ end. 

Thus, after multiple alignment and sequence truncation, 547 bp-long sequences of S. rileyi 

and 554 bp-long sequences of Sarcocystis sp. were used for phylogenetic analysis. In the 

phylogenetic tree, S. rileyi obtained from mustelids grouped with other S. rileyi isolates 

obtained from various intermediate hosts (Figure 3). Based on ITS1, S. rileyi was the sister 

taxon to S. atraii and these two species formed separate clusters in the phylogram.  

Based on the analysed ITS fragment, Sarcocystis sp. LT-2022 isolated from two repre-

sentatives of two mustelid species were identical to Sarcocystis sp. Chicken-2016-DF-BR 

isolated from chickens in Brazil and they were placed in one well-supported cluster to-

gether with S. wenzeli and Sarcocystis sp. from chickens from Malaysia. Whereas, S. cristata 

described in the muscles of the great blue turaco (Corythaeola cristata) was the sister taxon 

to the Sarcocystis isolates established in Brazil, Malaysia, and Lithuania, and S. wenzeli. The 

remaining Sarcocystis spp., S. albifornsi, S. anasi from anseriforms, and S. chloropusae from 

the common moorhen (Gallinula chloropus) made a separate cluster in the phylogenetic 

tree.  

Figure 2. The molecular identification of S. rileyi in the mucosal scrapings of the mustelids collected
during different months in Lithuania.

3.3. Phylogenetic Relationships of Identified Sarcocystis Species

Comparing the ITS1 fragments established in the current work, sequences of Sarcocystis
sp. were longer at the 5’ end and the sequences of S. rileyi were longer at the 3’ end. Thus,
after multiple alignment and sequence truncation, 547 bp-long sequences of S. rileyi and
554 bp-long sequences of Sarcocystis sp. were used for phylogenetic analysis. In the
phylogenetic tree, S. rileyi obtained from mustelids grouped with other S. rileyi isolates
obtained from various intermediate hosts (Figure 3). Based on ITS1, S. rileyi was the sister
taxon to S. atraii and these two species formed separate clusters in the phylogram.
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and scaled according to branch length. The posterior probability values supporting branching are
shown next to the branches. The sequences determined in the present study are presented in blue.



Animals 2023, 13, 467 7 of 13

Based on the analysed ITS fragment, Sarcocystis sp. LT-2022 isolated from two repre-
sentatives of two mustelid species were identical to Sarcocystis sp. Chicken-2016-DF-BR
isolated from chickens in Brazil and they were placed in one well-supported cluster to-
gether with S. wenzeli and Sarcocystis sp. from chickens from Malaysia. Whereas, S. cristata
described in the muscles of the great blue turaco (Corythaeola cristata) was the sister taxon
to the Sarcocystis isolates established in Brazil, Malaysia, and Lithuania, and S. wenzeli. The
remaining Sarcocystis spp., S. albifornsi, S. anasi from anseriforms, and S. chloropusae from
the common moorhen (Gallinula chloropus) made a separate cluster in the phylogenetic tree.

4. Discussion
4.1. The Role of Mustelids in Distribution of Sarcocystis Species

In the present study, free sporocysts, sporulating oocysts, and loose oocysts were
found in the intestinal mucosa of the five examined species, American mink, European
pine marten, European polecat, European badger, and beech marten (Figure 1 and Table 1).
The morphometric sizes of parasite stages detected in five hosts overlapped. Thus, it was
impossible to determine whether the studied host species were infected with the same or
different Sarcocystis species. Furthermore, it is known that predators can be simultaneously
infected with sporocysts of several Sarcocystis species [16,24,38]. Therefore, the identification
of Sarcocystis species was performed using molecular methods.

Based on the nested PCR and subsequent BLAST analyses of the obtained DNA
sequences, two Sarcocystis species using birds as intermediate hosts were confirmed. The
prevalence of Sarcocystis spp. defined by means of molecular examination was relatively
low, reaching 11.3% (13/115). By microscopical analysis, sporocysts and/or oocysts of
Sarcocystis spp. were noticed in more than half (53.0%, 61/115) of the investigated samples.
Thus, the obtained results of the present work indicate that the examined mustelids spread
considerably more than Sarcocystis species, employing mammals rather than birds as their
definitive hosts. Our previous research on the small intestine samples of mustelids by
species-specific PCR revealed a high prevalence (89.3%, 75/84) of Sarcocystis species using
cattle as their intermediate hosts [24]. Furthermore, 32 of the 40 (80.0%) examined small
intestine samples of American mink tested positive for S. elongata, S. entzerothi, S. japonica,
S. silva, and S. truncata by molecular methods, producing sarcocysts in muscles of ungulates
of the family Cervidae [16]. It was also confirmed by experimental infection that possible
definitive hosts of S. campestris, S. citellivulpes, S. muris, S. putorii, and S. undulati are
members of family Mustelidae [39]. Research carried out until now implies that mustelids
play a significant role for the transmission of various Sarcocystis species using hosts that
belong to different taxonomic groups.

4.2. Mustelids as Possible Definitive Hosts of S. rileyi

Eleven ITS1 sequences obtained in the current study demonstrated 99.18%–100%
similarity to the sequences of S. rileyi available in GenBank and showed less than 93%
similarity with any other known species of Sarcocystis. Hence, S. rileyi was confirmed in the
intestinal mucosa of eight American minks, two European polecats and single European
badger (Table 2). The overall prevalence of S. rileyi in the analysed samples of mustelids
was 9.6% (95% CI = 5.1%–16.4%). In the present study, the identified S. rileyi is a well-
known Sarcocystis species forming macroscopic sarcocysts resembling grains of rice in
the muscles of ducks. This species was described in the late nineteenth century [40] and
redescribed in 2003, providing detailed morphological characterisation [41]. For a long time,
macrocysts in numerous duck species were recorded only in North America [42–48]. Based
on light microscopy, transmission electron microscopy, and molecular characterisation at
three genetic loci (18S rDNA, 28S rDNA, and ITS1), S. rileyi was identified in Lithuania
in 2011 [12]. According to the current data, the distribution of S. rileyi covers the eastern,
northern, and central parts of Europe [12,13,29,49–53]. In this continent, S. rileyi was
mostly recorded in mallard [12,13,49,52] and with much less frequency in several other
duck species [29,53]. The mallard is the most abundant species of ducks and also one
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of most important bird game species in Europe [54–56]. Sarcocystis rileyi cause economic
losses, since hunted duck meat contaminated with macrocysts is not suitable for human
consumption [13]. Additionally, severe infection of S. rileyi may result in weakness of hosts,
reduced flying capacity, and infected birds may be more easily caught by predators [57]. The
stripped skunk (Mephitis mephitis) of the family Mephistidae is an experimentally proved
definitive hosts of S. rileyi in North America [58,59]. This small predatory animal lives only
in captivity in Europe [60]. Therefore, for a long time it was unclear which predators are
responsible for the spread of S. rileyi in Europe. Based on molecular analysis, red foxes
(Vulpes vulpes) and raccoon dogs (Nyctereutes procyonoides) of the family Canidae were
identified as definitive hosts of S. rileyi in Lithuania and Germany [38,50]. Hence, based
on the findings of previous and current investigations, S. rileyi is transmitted in Europe
by predators of family Canidae and Mustelidae. It should be noted that Mephistidae
and Mustelidae families are closely related and together with Ailuridae and Procyonidae
compose a superfamily, Musteloidea [61]. Thus, the current findings indicate the co-
evolution of S. rileyi with their definitive hosts. A co-evolution of Sarcocystis spp. with
their definitive host rather than the intermediate host has been shown in the phylogenetic
investigations of various groups of Sarcocystis species [15,62,63]. The raccoon (Procyon lotor)
of the family Procyonidae which is native to North America is now spreading in Lithuania
through the western part of the country [64]. Taking into account the close relationship of
raccoon with mustelids and mephistids, this invasive predator should be screened for the
distribution of S. rileyi.

In general, Sarcocystis species are more host-specific for their intermediate hosts than
for their definitive hosts. For instance, S. cruzi, the most common species of Sarcocystis
of cattle worldwide, is transmissible via dogs, coyotes, foxes, and wolves [1]. With the
exception of S. wenzeli, Sarcocystis species transmitted by canids cannot be transmitted by
felids and vice versa [65]. However, laboratory experiments evidenced that some Sarcocystis
spp. transmitted via canids or felids can be spread via mustelids [39,66]. Furthermore, on
the basis of molecular investigations of small intestine samples it was shown that S. cruzi
can be spread not only by canids, but also by mustelids [24]. The current study on the basis
of ITS1 sequence analysis also indicates that S. rileyi can be transmitted in Europe by the
members of two families, Canidae and Mustelidae.

It should be emphasised that in the present study S. rileyi was identified in mustelids,
which were hunted from September to January (15.5%, 11/71). This Sarcocystis species
was mostly confirmed in American mink, while S. rileyi was not detected in 44 animals
which were collected during February–April (Figure 2). In Lithuania, during September,
large flocks of ducks and waders concentrate in partly drained fishponds and these birds
form a large part of the diet of invasive American mink [67]. In summer–early autumn,
birds are also an important food component for other mustelid species in various regions
of Lithuania [18]. Whereas, in late autumn and winter mustelids only occasionally hunt
ducks [18–20,28,68–70]. Oocysts/sporocysts of Sarcocystis spp. are found in the faeces of
definitive hosts 7–14 days post infection and excretion of infective parasite stages mostly
lasts several months [1]. Thus, the observed variations in the identification of S. rileyi during
different months are congruent with the diet of mustelids and the life cycle peculiarities
of Sarcocystis parasites. The results of the abundance of S. rileyi depending on the season
mustelids were hunted are in congruent with the investigation of S. rileyi in canids. During
a previous study conducted in Lithuania, S. rileyi was identified in the small intestines
of red foxes and raccoon dogs hunted in November and December, but the parasite was
not detected in animals hunted in February and March [50]. Thus, future research on the
prevalence of Sarcocystis in predatory mammals through different seasons is needed.

4.3. Detection of Sarcocystis sp. Closely Related to S. wenzeli in Small Intestine of Mustelids

Based on the obtained ITS1 sequence analysis, Sarcocystis sp. was identified in a single
American mink and in a single American pine marten (Table 2). Two 817 bp-long ITS1
sequences were 100% identical to the sequence of Sarcocystis sp. Chicken-2016-DF-BR
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obtained from the brains of two chickens in the midwest of Brazil [36]. This parasite caused
fatal outcomes in backyard chickens. The infected chickens suffered from anorexia, weight
loss, incoordination, ataxia, and opisthotonos. The histopathological analysis showed
necrotizing granulomatous and meningoencephalitis with intralesional Sarcocystis-like
schizonts and merozoites. Infected chickens remained free during the day and were kept in
the coop at night [36]. It should be noted that severe myositis and encephalitis associated
with Sarcocystis parasites has been reported several times in domestic fowl in different
geographical regions [71,72].

The ITS1 region is highly variable for Sarcocystis spp. [8]. Due to the large number of
indels (insertions/deletions) it is hard to align ITS1 sequences of Sarcocystis spp. sharing rel-
atively low similarity. Therefore, the ITS1 region is not a good choice for the discriminating
phylogenetic relationships of genetically remote group of Sarcocystis. However, this ge-
netic locus is suitable for phylogenetic analysis of closely related Sarcocystis species [63,73].
Several studies have demonstrated that ITS1 is an appropriate genetic marker inferring phy-
logenetic relationships of Sarcocystis spp. using birds as intermediate hosts [5,9–11,73–78].
Furthermore, for this group of Sarcocystis species, ITS1 and 28S rDNA give congruous
topology [73,79]. Based on the ITS1 sequence analysis conducted in the current study,
the topology of the examined Sarcocystis species using birds–predatory mammals in their
intermediate–definitive host life cycle (Figure 3) in general corresponded to that determined
in the latest phylogenetic studies [5,36]. Sarcocystis sp. LT-2022 obtained in the present work
and Sarcocystis sp. Chicken-2016-DF-BR were placed in one phylogenetic cluster together
with S. wenzeli infecting chickens and Sarcocystis sp. isolated from pooled various tissue
samples of native village chickens in Malaysia (Figure 3). Thus, the obtained sequences
were grouped with those of Sarcocystis spp. parasitising chickens. Further molecular
studies are needed to clarify the number of species that represent S. wenzeli, Sarcocystis sp.
Chicken-2016-DF-BR, Sarcocystis sp. from Malaysian chickens, and Sarcocystis sp. LT-2022
identified in the present work.

There is ongoing debate on the classification of Sarcocystis species in chickens [39].
In the latest taxonomic review of the genus Sarcocystis, two species infecting chickens,
S. horvathi and S. wenzeli, were distinguished [1]. Sarcocystis wenzeli is characterised mor-
phologically in detail and based on transmission experiments dogs and cats are confirmed
as definitive hosts of this species [65], whereas the definitive hosts of S. horvathi are un-
known [1].

The data of the current work indicate that mustelids might be involved in the trans-
mission of Sarcocystis species infecting domestic gallinaceous fowl. However, laboratory
infection experiments are definitely necessary to test the results obtained. Additionally, here
we present the first identification of Sarcocystis sp. in Lithuania, closely related to Sarcocystis
parasitizing chickens. Despite extensive studies of Sarcocystis conducted in Lithuania in
various groups of wild birds [7,8,12,73,75–79], these parasites have not been studied in
poultry so far. In Lithuania, chickens are mainly raised in poultry farms [80]. However, in
rural regions small numbers of domestic fowl are kept free. The main predators of backyard
chickens in Lithuania are mustelids and red fox [18]. Mustelids can potentially cause the
transmission of highly pathogenic Sarcocystis species in poultry farming.

5. Conclusions

Based on the nested PCR and sequencing of the ITS1 region, S. rileyi producing
macroscopic sarcocysts in muscles of ducks was for the first time confirmed in small
intestine scrapings of three mustelid species collected in Lithuania. The prevalence of
S. rileyi in the examined mustelids was 9.6%. According to the current data obtained by
molecular investigations, canids and mustelids are responsible for the spread of S. rileyi
in Europe.

Undescribed Sarcocystis sp. LT-2022 showed 100% similarity within the 817 bp-long
ITS1 fragment with Sarcocystis sp. Chicken-2016-DF-BR, which caused a fatal infection in
two backyard chickens in Brazil. The detected Sarcocystis parasite was most closely related
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to S. wenzeli and Sarcocystis sp. using chickens as their intermediate hosts. Thus, this is
the first report of Sarcocystis sp. associated with possible infection in gallinaceous birds
in Lithuania.
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28. Baltrūnaitė, L. Diet Composition of the Red Fox (Vulpes Vulpes L.), Pine Marten (Martes Martes L.) and Raccoon Dog (Nyctereutes

Procyonoides Gray) in Clay Plain Landscape, Lithuania. Acta Zool. Litu. 2002, 12, 362–368. [CrossRef]
29. Gjerde, B. Molecular characterisation of Sarcocystis rileyi from a common eider (Somateria mollissima) in Norway. Parasitol. Res.

2014, 113, 3501–3509. [CrossRef] [PubMed]
30. Rozen, S.; Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Bioinform. Methods Protoc. 2000,

132, 365–386.
31. Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol.

Evol. 2016, 33, 1870–1874. [CrossRef] [PubMed]
32. Milne, I.; Wright, F.; Rowe, G.; Marshall, D.; Husmeier, D.; McGuire, G. TOPALi: Software for automatic identification of

recombinant sequences within DNA multiple alignments. Bioinformatics 2004, 20, 1806–1807. [CrossRef]
33. Reiczigel, J. Confidence intervals for the binomial parameter: Some new considerations. Stat. Med. 2003, 22, 611–621. [CrossRef]
34. Reiczigel, J.; Abonyi-Tóth, Z.; Singer, J. An exact confidence set for two binomial proportions and exact unconditional confidence

intervals for the difference and ratio of proportions. Comput. Stat. Data Anal. 2008, 52, 5046–5053. [CrossRef]
35. Rózsa, L.; Reiczigel, J.; Majoros, G. Quantifying Parasites in Samples of Hosts. J. Parasitol. 2000, 86, 228–232. [CrossRef] [PubMed]
36. Wilson, T.M.; Sousa, S.K.; Paludo, G.R.; de Melo, C.B.; Llano, H.A.; Soares, R.M.; Castro, M.B. An undescribed species of Sarcocystis

associated with necrotizing meningoencephalitis in naturally infected backyard chickens in the Midwest of Brazil. Parasitol. Int.
2020, 76, 102098. [CrossRef]

37. Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide
sequences. J. Mol. Evol. 1980, 16, 111–120. [CrossRef]

38. Moré, G.; Maksimov, A.; Conraths, F.; Schares, G. Molecular identification of Sarcocystis spp. in foxes (Vulpes vulpes) and raccoon
dogs (Nyctereutes procyonoides) from Germany. Veter Parasitol. 2016, 220, 9–14. [CrossRef] [PubMed]

39. Odening, K. The present state of species-systematics in Sarcocystis Lankester, 1882 (Protista, Sporozoa, Coccidia). Syst. Parasitol.
1998, 41, 209–233. [CrossRef]

40. Stiles, C.W. On the presence of sarcosporidia in birds. USDA Bur. Anim. Ind. Bull. 1893, 3, 79–89.
41. Dubey, J.P.; Cawthorn, R.J.; Speer, C.A.; Wobeser, G.A. Redescription of the sarcocysts of Sarcocystis rileyi (Apicomplexa:

Sarcocystidae). J. Eukaryot. Microbiol. 2003, 50, 476–482. [CrossRef] [PubMed]
42. Erickson, A.B. Sarcocystis in Birds. Auk 1940, 57, 514–519. [CrossRef]
43. Cornwell, G. New Waterfowl Host Records for Sarcocystis rileyi and a Review of Sarcosporidiosis in Birds. Avian Dis. 1963, 7, 212.

[CrossRef]
44. Chabreck, R.H. Sarcosporidiosis in Ducks in Louisiana. Trans. N. Am. Wildl. Conf. 1965, 30, 174–184.
45. Drouin, T.E.; Mahrt, J.L. The Prevalence of Sarcocystis Lankester, 1882, in some Bird Species in Western Canada, with Notes on its

Life Cycle. Can. J. Zool. 1979, 57, 1915–1921. [CrossRef] [PubMed]
46. Fedynich, A.M.; Pence, D.B. Sarcocystis in Mallards on the Southern High Plains of Texas. Avian Dis. 1992, 36, 1067. [CrossRef]
47. Dubey, J.P.; Rosenthal, B.M.; Felix, T.A. Morphologic and Molecular Characterization of the Sarcocysts of Sarcocystis rileyi

(Apicomplexa: Sarcocystidae) from the Mallard Duck (Anas platyrhynchos). J. Parasitol. 2010, 96, 765–770. [CrossRef] [PubMed]

http://doi.org/10.1007/s00436-021-07180-1
http://doi.org/10.1007/s00436-018-6083-4
http://doi.org/10.1007/bf02189692
http://doi.org/10.1186/1741-7007-6-10
http://doi.org/10.3106/041.036.0401
http://doi.org/10.1093/sysbio/syx047
http://doi.org/10.3390/ani11030822
http://doi.org/10.1016/j.biocon.2006.09.006
http://doi.org/10.1007/s10530-021-02608-2
http://doi.org/10.1080/13921657.2002.10512525
http://doi.org/10.1007/s00436-014-4062-y
http://www.ncbi.nlm.nih.gov/pubmed/25082019
http://doi.org/10.1093/molbev/msw054
http://www.ncbi.nlm.nih.gov/pubmed/27004904
http://doi.org/10.1093/bioinformatics/bth155
http://doi.org/10.1002/sim.1320
http://doi.org/10.1016/j.csda.2008.04.032
http://doi.org/10.1645/0022-3395(2000)086[0228:QPISOH]2.0.CO;2
http://www.ncbi.nlm.nih.gov/pubmed/10780537
http://doi.org/10.1016/j.parint.2020.102098
http://doi.org/10.1007/BF01731581
http://doi.org/10.1016/j.vetpar.2016.02.011
http://www.ncbi.nlm.nih.gov/pubmed/26995715
http://doi.org/10.1023/A:1006090232343
http://doi.org/10.1111/j.1550-7408.2003.tb00274.x
http://www.ncbi.nlm.nih.gov/pubmed/14733440
http://doi.org/10.2307/4078693
http://doi.org/10.2307/1588054
http://doi.org/10.1139/z79-254
http://www.ncbi.nlm.nih.gov/pubmed/120223
http://doi.org/10.2307/1591577
http://doi.org/10.1645/GE-2413.1
http://www.ncbi.nlm.nih.gov/pubmed/20496959


Animals 2023, 13, 467 12 of 13

48. Padilla-Aguilar, P.; Romero-Callejas, E.; Osorio-Sarabia, D.; Ramírez-Lezama, J.; Cigarroa-Toledo, N.; Machain-Williams, C.;
Manterola, C.; Zarza, H. Detection and Molecular Identification of Sarcocystis rileyi (Apicomplexa: Sarcocystidae) from a Northern
Shoveler (Anas clypeata) in Mexico. J. Wildl. Dis. 2016, 52, 931–935. [CrossRef] [PubMed]

49. Kalisinska, E.; Betlejewska, K.M.; Schmidt, M.; Gozdzicka-Jozefiak, A.; Tomczyk, G. Protozoal Macrocysts in the Skeletal Muscle
of a Mallard duck in Poland: The First Recorded Case. Acta Parasitol. 2003, 48, 1–5.
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fulicae n. sp.(Apicomplexa: Sarcocystidae) from the Eurasian coot (Fulica atra). J. Wildl. Dis. 2018, 54, 765–771. [CrossRef]
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