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Simple Summary: The clutches of berried female lobsters can be classified into four stages based on
appearance: black with tightly packed eggs (stage 1), brown (stage 2) or orange (stage 3) with loosely
packed eggs (stage 3), and hatching (stage 4, clutch “mossy”). This scheme has been used for decades,
yet precisely how it relates to the biology of the developing eggs has not been investigated. We kept
berried females in aquaria and monitored both the appearance of their clutches and investigated eggs
closely by picking ten at regular intervals and inspecting them under a microscope. Our findings
suggest additional criteria to the staging scheme to increase its accuracy. Firstly, clutches should be
inspected closely enough to note whether individual eggs are uniform in colour or two-toned, which
indicates how much yolk is present. Secondly, stage 3 clutches should include all eggs that contain
≤1/3 yolk to capture the period of rapid spring-time development leading to hatch. Thirdly, the
presence of pre-zoea should be used to indicate a hatching (stage 4) clutch as they do not turn “mossy”
(empty egg casings and adhesive substance visible) until late in the hatching process. Pre-zoea are
newly hatched embryos not yet moulted to larvae and recognizable by their oval shape.

Abstract: Qualitative visual clutch staging is a useful tool for rapidly and non-invasively assessing
the developmental stage of American lobster, Homarus americanus, embryos. While such a scheme
has been used in fisheries monitoring strategies in Canada since the 1980s, the biological relevance
of its four visually distinguishable stages is poorly understood. We conducted a laboratory experi-
ment in which 10 ovigerous females were housed and the development of their embryos regularly
assessed, both qualitatively and quantitatively, from November until hatching in July/August. We
confirmed the biological relevance of the qualitative staging scheme by showing clear quantitative
differences in the duration and rate of embryonic development of stages 2–4 (stage 1 was not assessed
as the precise spawning date was unknown). Stage 2 represents winter–spring “dormancy”. Stage
3 represents a shorter period of rapid development preceding hatch. Stage 4 represents hatching.
We also recommend some improvements to the qualitative staging scheme, specifically (1) adding
criteria related to the portion of eggs that are occupied by yolk to increase the accuracy of staging,
(2) slightly redefining stage 3 to ensure it encompasses the full period of rapid embryonic development
pre-hatch, and (3) adding the presence of pre-zoeae as a key indicator of hatching to avoid the misclas-
sification of clutches in the early stages of hatching or those that are completely spent but still have
adhesive substance.
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1. Introduction

The American lobster Homarus americanus (hereafter, lobster) supports the most socio-
economically important fishery on the east coast of North America, employing well over
20,000 licenced harvesters [1–3] and generating landings valued at nearly CAD 3 billion in
2021 [2,4]. The fishery is “effort controlled”, including restrictions on licences, gear, and
seasons, regulations concerning minimum legal size that (generally) relate to female size at
maturity, and a complete ban on landing ovigerous females [5]. The protection of ovigerous
female lobsters is actually one of the oldest fishery regulations in Canada, dating back to
the early 1870s [6].

Reproduction in female lobsters is typically considered a two-year process in which
a female moults and mates in one summer, stores the sperm in her seminal receptacle
until the following summer when she spawns and fertilizes her eggs, and then carries the
fertilized eggs/embryos under her abdomen for nine to twelve months before hatching and
releasing larvae during the third summer [7]. Gonadic, embryonic, and larval development
all vary positively with temperature, within tolerance limits [8–12]. Consequently, there
is considerable potential for lobster reproductive phenology to be affected by interannual
variation in the thermal conditions experienced during different parts of the reproductive
cycle. Upper water (<75 m) temperature has been increasing globally on average by
approximately 0.1 ◦C per decade since 1970 and by 1 ◦C per decade in the northwest
Atlantic [13–17], and there is evidence that females may have begun hatching their eggs
earlier in the spring in response to increased fall temperatures several months before
hatching occurs [18]. Given decreases in settlements of post-larval lobsters in some areas,
and the relationship between settlement rates and subsequent recruitment to the fishery
and landings [19,20], reproductive phenology should be monitored for this commercially
important species.

Most Lobster Fishing Areas (LFAs) in Canada have a spring fishing season and are
closed to fishing during later parts of the summer [1,5]. There are different motivations
behind the summer closures, including protecting lobsters during moulting, egg laying, and
hatching [21]. Although ovigerous females are always protected, their handling during the
fishery can result in significant egg loss, particularly when embryos are in the late stages
of development [22,23]. Monitoring of spring-time clutch condition and development,
including assessing how these might be changing with rising water temperature, is therefore
highly relevant to the fishery. This monitoring can also provide indications of interannual
variation in hatching time, which may impact larval dispersal and survival by influencing
food supply and the environmental conditions they experience. A temporal mismatch
between lobster larvae and their prey is particularly likely if the hatching time of lobster
larvae is influenced by temperatures in the fall, many months before hatching, given that
these fall temperatures are unlikely to have the same impact on zooplankton prey with
shorter life cycles [18,24–26].

A scheme for visually classifying the developmental stage of ovigerous females’
clutches has been included in fisheries monitoring strategies in the southern Gulf of St.
Lawrence since the 1980s [27] and has been used by many groups in other regions, includ-
ing in a recent large collaboration that spanned most fishing areas in Canada [28]. This
staging scheme allows for a rapid and non-invasive assessment of clutch developmental
stage in situ, on a scale from 1 to 4, based primarily on changes in color related to embryo
development. Clutch colour has been used to indicate embryonic development stage for
other decapods as well, such as the red deep-sea crab [29]. At stage 1, an American lobster
clutch consists of newly spawned eggs that appear black or olive green in colour with no
embryo visible to the naked eye. At stage 2, the eggs are further developed, and the clutch
is lighter in colour, usually a shade of brown, with the embryos’ eye spots visible within the
eggs. At stage 3, embryos are well developed and closer to hatching, with the overall clutch
appearing tan to orange in colour. At stage 4, embryos are in the process of hatching as
“pre-zoea”, and empty egg casings and adhesive material are found on the abdomen (i.e.,
the clutch appears “mossy”). During stage 4, embryos/pre-zoea will hatch over several
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days to weeks [30]. In the early years of the monitoring program in the southern Gulf of
St. Lawrence [27], stages 3 and 4 were not distinguished but rather grouped together as
“clutches with well-developed embryos”; all four categories were distinguished beginning
in 2004.

The developmental staging of embryos to predict hatching via the inspection of eggs
under a microscope is used in current research, e.g., [31–33], but the visual clutch staging
scheme is also still commonly used as it provides a less invasive and more rapid assessment
that can readily be made during fishing activities. Although this classification scheme has
been in use for over 40 years in Canada, there are no quantitative estimates of the character-
istics of each stage, such as their duration and relative rates of embryonic development.
Such estimates would enhance the information conveyed by these monitoring data and
hence their usefulness; they could, for example, better inform us about the imminence of
hatch and/or the duration of the hatch period. We therefore conducted a laboratory study
with the objectives of (i) confirming the biological relevance of the stages in relation to the
monitoring of hatch and (ii) determining whether clutch descriptions could be improved to
ensure this relevance and increase staging consistency. Clutch development was observed
from late fall through to hatching the following summer, and we quantified the duration
and embryo development rate of clutch stages 2–4. We did not include stage 1 clutches in
the analyses as stage 1 precedes the winter period of minimum growth (see [11] for why
this is not a true diapause period) and have little to no potential to forecast the next larval
release period.

2. Materials and Methods

Pre-ovigerous female lobsters were collected during a trawl survey near Grand Manan
and the Wolves in the southwest Bay of Fundy, Canada, on 5 July 2013 and brought to the
Department of Fisheries and Oceans Canada St. Andrews Biological Station. On November
20th, we selected 10 females (96–145 mm carapace length) that had spawned in the lab in
September, and we housed them in individual floating crates in large flow-through holding
tanks with a natural photoperiod and twice-weekly food rations (primarily herring). The
water temperature followed the ambient seasonal temperatures of the nearby cove from
which water was pumped, dropping from 13 ◦C in September to 1 ◦C in February and
March and then increasing to 11–14 ◦C during the period of hatching in July and August.

Clutch stage and embryonic development were assessed from 20 November 2013 to
the point at which all females had completed hatching, with the last sampling on 26 August
2014. Clutch stage was qualitatively assessed based on the clutch staging scheme described
above, and embryo development status was quantitatively assessed using the Perkins
Eye Index (PEI), which is the mean of the maximum length and width of the oval-shaped
embryo eye [8]; the PEI is proportional to embryonic size, and it provides a proxy for
embryo development status [8,11,34]. The average PEI of the 10 clutches (10 embryos per
clutch) ranged from 255 to 415 µm (44–72% development per Helluy and Beltz, 1991 [34])
at the start of the study. Qualitatively, all these clutches were in stage 1 at this point as eye
spots were not visible to the naked eye (i.e., only discernable when individual eggs were
placed under a dissecting scope), and the eggs appeared solid black/dark green and were
tightly packed.

On each sampling date, clutch status was visually assessed, and a small sample of
eggs (10–20 from 3–4 haphazard locations within the clutch) was taken from each female
and preserved in 65:35 ethanol/glycerol; the PEI was later measured on a sub-sample of
10 embryos haphazardly chosen from each of these females. All females were sampled
more extensively in April, prior to the onset of stage 3, to determine whether there were
differences in embryo development status based on their location in the clutch; 80 eggs were
systematically collected from different positions within the brood (different combinations
of each of the four pleopod pairs, the left and right sides, the surface and bottom of the egg
mass, and the periphery and centre of the eggs mass; n = 5 for each position). Intra-brood
variability in embryo PEI was assessed by using the AIC to compare ANOVA models
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involving all possible combinations of potential clutch locations, including interaction
terms and considering the female as a random variable [35]. The null model (i.e., no
consideration of position within the clutch) obtained the lowest AIC score and 30% of the
AIC weight. Consequently, egg position within the clutch was not considered further, and
eggs were simply sampled haphazardly from different locations within each clutch.

To minimise the handling of females while still capturing changes in embryo devel-
opment status over time, the females’ clutches and embryos were assessed increasingly
frequently over the study period as the temperature and embryo development rate in-
creased: monthly from November to March, every other week in April, weekly in May
and June, and daily (visual staging) or every other day (egg samples) in July and August.
This does mean, however, that our estimates of stage duration are less precise for clutches
of stage 2 than those of stages 3 and 4 due to the less frequent sampling at the beginning
than at the end of the experiment. However, considering the markedly longer duration of
stage 2 compared to stages 3 and 4, the relative precision was similar and is inconsequential
to the use of staging to assess hatch.

Although our analyses of embryo development confirm a strong biological basis for
the visual staging scheme (see Section 3), the qualitative features of the staging scheme are
obviously not perfectly distinct, and there are “transitionary periods” during which the
clutches can be difficult to classify. By the second sampling date on 17 December 2013, all
clutches were transitioning to stage 2. In terms of colour and packing density, they still
most closely resembled stage 1, yet the embryos’ eye spots were discernable by the naked
eye in most eggs. Giving weight to the visibility of eye spots, we considered clutches to be
in stage 2 during this December sampling. The following month, all clutches clearly met all
criteria for stage 2, and all embryos inspected had eyespots that were visible to the naked
eye. There were similarly clutches later during development that exhibited an intermediate
colour between the typical brown of stage 2 and the orange/tan of stage 3 and that we
temporarily classified as stage 2.5 to allow for a further investigation of the best criteria to
distinguish the two stages upon analyses of embryonic development rates.

The duration of clutch stages 2, 3, and 4, and the rate of embryonic development
during each stage were compared using mixed model ANOVAs, with the clutch stage as
a fixed-effect factor and the female as a random-effect block factor; in other words, we
assessed variability among clutch stages after accounting for variability among females.
The duration of each stage was assessed for each female as the most conservative and
the most liberal estimates given that sampling was not continuous, and thus the precise
dates of the end and onset of a stage were not known. The most conservative duration
estimate was the number of days between the first and last dates on which a given stage
was observed for a female. The most liberal estimate for a particular stage and female
was the number of days between the last date the previous stage was observed plus one
day and the first date the following stage was observed minus one day. The rate of clutch
development during each stage was calculated as the slope of the mean clutch PEI (µm)
over time, resulting in a metric of mean daily increment in embryonic eye diameter for
each clutch stage and female.

3. Results and Discussion

Our laboratory study confirmed that the visual clutch-staging scheme distinguishes
biologically meaningful phases of embryonic development (Figure 1). The precise duration
of stage 1 was unknown as the precise spawning dates were unknown. However, given
that the females were known to have spawned in the lab sometime in September, this stage
lasted approximately 2–3 months (from September to late November or mid-December)
and is therefore only a rough indicator of spawning time. Based on previous studies,
embryonic development rates are known to be rapid during this time relative to what they
are in later fall and winter [8,11,34]. The smallest PEI measured in this study (156 µm) was
larger than the smallest PEI (ca. 70 µm) measured in these earlier studies, which measured
the first PEI earlier in the fall than we did. However, the first PEI values we measured are
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within range of the PEI values obtained at the same time of year in these earlier studies.
Embryo eye spots are clearly present during a large portion of stage 1, even though the key
distinction between this stage and stage 2 is the presence of said eye spots. However, stage
I eye spots are not visible to the naked eye due to the large amount of dark yolk masking
their presence.
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Stage 2 is a relatively long period of very slow embryo development. All 10 clutches
reached stage 2 by mid-December and remained in this stage throughout the winter and
until May–July, for an estimated mean (±95% confidence interval) stage duration estimated
conservatively at 182 ± 20 days (range among females: 149–216 days) and more liberally at
227 ± 7 days (range: 214–243 days) (Figure 2). On average, the embryos developed at a
rate of 0.35 ± 0.16 µm day−1 during stage 2 (range: 0.07–0.72 µm day−1). These findings
are consistent with the long period of slow or no embryonic development from late fall to
spring reported by Perkins [8] and Gendron and Ouellet [11]. Our study further suggests
that this dormancy period largely corresponds to stage 2 in the clutch staging scheme,
while the periods of rapid embryonic development in fall and late spring/early summer
correspond to stages 1 and 3, respectively.
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Figure 2. Graph showing (1) the mean daily temperature during the study (grey lines), (2) embryo
development status (Perkins Eye Index) on each sampling date for each female (points), and (3) the
minimum duration and mean embryonic development rate of each clutch stage (stage 2 embryos are
shown by green points, stage 3 by turquoise and stage 4 by purple; see Figure 1 for descriptions) for
each female. Clutches were in stage 1 (red) when we started the study, but we did not capture the
duration of this stage.



Animals 2023, 13, 3856 7 of 12

Stage 3 is a much shorter phase of markedly more rapid embryonic development
in summer (Figure 2) leading up to hatching. Development in this stage was in fact so
rapid that not all females’ clutches were observed meeting all criteria for stage 3 (clutch or-
ange/tan, eggs loosely packed) before proceeding to stage 4, nor were all clutches observed
in the “transitionary period”, aka stage 2.5, where some characteristics of
stages 2 and 3 were visible (primarily an intermediate colour). Qualitatively, the dis-
tinction between stages 2, 2.5, and 3 is likely related to the resorption of yolk by the embryo,
which results in an overall lightening of the clutch’s visual appearance from brown to
orange/tan. In the intermediary stage that we called 2.5, yolk does remain in the eggs, but
the amount is reduced to less than approximately a third of the eggs’ volume, resulting in
the overall appearance of the clutch being a lighter brown than stage 2 but not yet as light
as stage 3. For females whose clutches were observed in stage 2.5, embryonic development
was markedly more rapid than for stage 2 and similar to stage 3 (an average increase in PEI
of 7.7 µm day−1 (3–15 µm day−1) for stage 2.5 and 11.0 µm day−1 (6–24 µm day−1) for stage
3). Consequently, we classified as stage 3 (rather than stage 2) those clutches that could not
easily be distinguished visually as stage 2 or stage 3 clutches. Using this criterion, stage
3 clutches were observed from mid-June to late July, for a mean stage duration estimated
conservatively at 13 ± 6 days (range among females: 6–28 days) and more liberally at
30 ± 12 days (range: 13–55 days) (Figure 2). On average, embryos in stage 3 clutches
developed at a rate of 6.9 ± 1.9 µm day−1 (range: 2.5–10.5 µm day−1). i.e., approximately
20 times faster than during stage 2.

Stage 4 clutches, which are indicative of hatching, were observed from early July to
late August for a mean stage duration estimated conservatively at 9 ± 2 days (range among
females: 2–12 days) and more liberally at 11 ± 3 days (range: 5–19 days) (Figure 2). On
average, embryos in stage 4 clutches developed at a rate of 2.9 ± 2.2 µm day−1 (range
among females: −0.6–8.8 µm day−1) and hence at less than half the rate of embryos in the
previous stage. This apparent slowing of embryonic development during hatching might
in part be related to a “development hiatus” associated with the embryo’s last molt prior to
hatch [34], but is also likely at least partly the result of an increasing number of the faster-
developing/most developed embryos being “lost” over the course of the hatching period,
leaving the slower/less-developed embryos from which to estimate mean development
within the clutch as the hatch progresses.

The differences in the duration of clutch stages 2–4 were highly significant
(F2,18 = 861.20, p < 0.0001 and F2,18 = 408.22, p < 0.0001, the most conservative and lib-
eral estimates, respectively), as were those concerning their rate of embryonic development
(F = 22.99, p < 0.0001), and neither of these varied significantly among females (stage
duration more conservative: F9,18 = 0.46, p = 0.88; stage duration most liberal: F9,18 = 1.66,
p = 0.17; embryonic development rate: F9,18 = 0.92, p = 0.53) (Figure 2).

The clutches of embryos experienced marked increases in temperature over the course
of their development (Figure 2), and these increases were likely responsible for most of the
changes we observed in embryo development rates and in our qualitative assessments of
clutch stages. These increases in temperature likely contributed, in particular, to the most
pronounced change we observed, i.e., the resumption of rapid embryonic development by
stage 3 clutches following the “dormancy” of stage 2 clutches in the winter–spring, leading
to hatching in late spring–summer. For example, the mean temperature at which a stage 2
clutch was observed varied from 3 to 5 ◦C among the 10 females, with a total range of 1.4 to
11.6 ◦C, in comparison to 10–12 ◦C and 10–13.3 ◦C for the stage 3 clutches. Similarly, both
Perkins [8] and Gendron and Ouellet [11] observed very little to no development of embryos
at temperatures below ca. 6–7 ◦C during winter and spring months. Nevertheless, the
transition between stage 2 and 3 clutches was not entirely explained by water temperature
as the maximum temperature at which a stage 2 clutch was observed varied between 6
and 12 ◦C among our 10 study females, which contributed to the initial detection of stage 3
clutches varying by as many as 29 days among these females.
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Similarly, same-stage duration varied among females, even though these were held
at the same temperature (Figure 2). This non-perfect relation between water temperature
and development is also evident at the level of individual embryos from the same clutch,
as the PEI of such embryos varied markedly at any one point in time (Figure 2), and for
all females, despite the fact that these embryos were all likely spawned within fewer than
approximately three to five hours of one another [9,36]. Perkins [8] similarly noted that
embryonic development is not strictly tied to temperature as older embryos developed
more slowly than younger embryos, even though the females were held in the same tank
(spawning dates up to 7 weeks apart, but a range in total time from spawn to hatch of
only 4.5 weeks), and Gendron and Ouellet [11] also observed later-spawning clutches
continuing very slow development through the winter dormancy period to partially “catch
up” to those spawned earlier. It should be noted that wild ovigerous females can undertake
seasonal depth migrations that influence the temperature experienced by their embryos
during winter [37,38], unlike the lobsters we held in the lab, which could impact the exact
timing of the stages. Whereas such movements may affect the relative duration of the
different clutch stages, these effects are likely relatively minor given the marked differences
in stage duration noted in this study. But more importantly, such movements are unlikely
to affect the visual appearance of the different clutch stages, which was our primary focus.

We propose three ways the qualitative staging scheme can be improved (Figure 1).
Firstly, we recommend making the presence of pre-zoeae (newly hatched pre-larvae not
yet moulted to stage I larvae [39]) the key defining criterion of stage 4 clutches (Figure 1)
to increase the positive identification of stage 4 clutches in the early stages of hatching
and to decrease the false identification of hatching soon after a clutch is fully spawned.
Currently, the main criterion distinguishing stage 3 and 4 clutches is the absence/presence
of “moss” (i.e., empty egg casings and adhesive material). However, in this study, we
observed “mossy” clutches only after these had been hatching for many days, as evidenced
by the presence of larvae in the female holding baskets. Pre-zoeae, on the other hand,
were visible within a female’s clutch during the entire hatching period, including at the
very beginning of hatch. Therefore, if the presence of “moss” is a necessary criterion for
stage 4, clutches in the early stages of releasing larvae are likely to be misclassified as
stage 3. Pre-zoeae are readily identified by their oval shape compared to eggs (Figure 3),
because they have broken from the egg membrane, and including their presence as a
criterion for stage 4 should increase the accuracy of clutch staging. We also recommend that
“mossy” clutches in which no pre-zoeae or eggs are present not be classified as ovigerous
as hatching is complete at this stage (alternately, this can be recorded as stage 5).

Secondly, we recommend the addition of criteria relating to the yolk content of indi-
vidual eggs in each stage (Figure 1) to reduce the potential for observer bias. Yolk content
relates to clutch colour, as this lightens with decreasing yolk remaining in the eggs. Stage 1
eggs contain so much yolk that they appear almost uniform in colour and mask embryo
eye spots even after these are evident under a dissecting scope. Stage 2 eggs are clearly
two-toned, with a light and a dark half, as yolk comprises roughly two-thirds to one-third
of the eggs. Stage 3 and 4 eggs contain relatively little or no yolk (i.e., only a small darker
patch visible constituting no more than one-third of the egg). Noting yolk content as
discernable by the naked eye can aid decision making when stage classification may be
ambiguous as clutches transition between stages. Clutches drastically change colour from
stage 3 to early stage 4, becoming markedly darker because individual eggs turn variable
dark colours, typically greens and blues, immediately before hatching [39]. In the early
stages of hatching, before a clutch becomes “mossy”, this could therefore lead observers
(particularly inexperienced ones) to erroneously classify early stage 4 clutches as stage
2 clutches, as the previously light-coloured orange or tan stage 3 clutch is now darker
and may superficially resemble the darker brown appearance of a stage 2 clutch. Noting
the yolk content of the eggs, however, would eliminate this potential error. While some
embryos do hatch before depleting their yolk reserves [40], the difference between some
to no yolk present is readily distinguishable from the clearly two-toned eggs of a stage 2
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clutch, where approximately half the egg constitutes yolk. Noting yolk content also allows
for correct stage classification in the event of clutch colour abnormalities, which can occur
(M.L. Haarr, personal observation). Yolk classification is furthermore a very straightforward
additional step during classification. One needs simply to inspect the clutch at close range
and note how large a portion of the egg is dark (yolk) vs. light (see Figure 1), during which
one can also readily check for pre-zoaea (first recommendation).
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emerged from both the outer and inner egg envelopes, such that the telson is visible. Note again the 
bulging eyes. (c) A pre-zoea in the process of emerging from outer egg envelope, which is visible as 
a crinkled “skin”. See Helluy and Beltz (1991) [34] for detailed descriptions and photographs of pre-
zoeae. 
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inclusion of clutches that have only recently started rapid development following win-
ter/spring dormancy which, based on the current scheme, can be classified as stage 2, as 
the distinction between stages 2 and 3 is mainly based on color (Figure 1). There is a period 
in early summer when the embryos have started developing rapidly following dormancy, 
but the overall appearance of the clutch is more similar to stage 2 (shades of brown) than 
to stage 3 (tan or orange) because the eggs still contain a fair amount of yolk (up to one-
third of the egg). As the presence of yolk darkens the overall colour of the clutch, these 
clutches are less orange in appearance at this stage than more advanced stage 3 clutches, 
although they are still a somewhat paler brown than stage 2 clutches, the eggs of which 
are approximately half filled with yolk. The embryonic development rate during this early 
stage 3 (light brown clutch; yolk up to one-third of the egg) was rapid (mean increase in 
PEI of 7.7 µm day−1; range 3–15 µm day−1) and much more comparable to “mature” stage 
3 clutches (x̅ = 11 µm day−1; range 6–24 µm day−1) than to stage 2 clutches (x̅ = 0.4 µm 
day−1). The current “cut-off” for how orange a clutch must be to be considered stage 3 is 

Figure 3. Photographs showing pre-zoeae in situ. With just a little experience so one knows what to
look for, these are easy to spot in a clutch when present and can be used to reduce errors around the
positive identification of stage 4 (hatching) clutches. (a) Note the slightly elongated and more oval
shape of the pre-zoea relative to the embryos and the more pronounced bulging of the eyes, both
occurring because the pre-zoea is no longer covered by the egg envelope. (b) A pre-zoea that has
emerged from both the outer and inner egg envelopes, such that the telson is visible. Note again the
bulging eyes. (c) A pre-zoea in the process of emerging from outer egg envelope, which is visible
as a crinkled “skin”. See Helluy and Beltz (1991) [34] for detailed descriptions and photographs of
pre-zoeae.

Thirdly, we recommend that the description of stage 3 be amended to ensure the
inclusion of clutches that have only recently started rapid development following win-
ter/spring dormancy which, based on the current scheme, can be classified as stage 2, as
the distinction between stages 2 and 3 is mainly based on color (Figure 1). There is a period
in early summer when the embryos have started developing rapidly following dormancy,
but the overall appearance of the clutch is more similar to stage 2 (shades of brown) than to
stage 3 (tan or orange) because the eggs still contain a fair amount of yolk (up to one-third
of the egg). As the presence of yolk darkens the overall colour of the clutch, these clutches
are less orange in appearance at this stage than more advanced stage 3 clutches, although
they are still a somewhat paler brown than stage 2 clutches, the eggs of which are approx-
imately half filled with yolk. The embryonic development rate during this early stage 3
(light brown clutch; yolk up to one-third of the egg) was rapid (mean increase in PEI of
7.7 µm day−1; range 3–15 µm day−1) and much more comparable to “mature” stage 3
clutches (x = 11 µm day−1; range 6–24 µm day−1) than to stage 2 clutches (x = 0.4 µm day−1).
The current “cut-off” for how orange a clutch must be to be considered stage 3 is somewhat
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observer-dependent, although historically in the southern Gulf of St. Lawrence monitor-
ing program, only the most orange clutches have typically been classified as stage 3 (M.
Comeau, Fisheries and Oceans Canada, pers. Comm.), suggesting the exclusion of some
clutches with embryos that have begun developing rapidly following winter dormancy.
Broadening the definition of stage 3 clutches to include all those that are lighter brown
as well as orange in colour, and with eggs comprising less than one-third yolk, would be
biologically relevant as it would capture the entire period of rapid embryonic develop-
ment preceding hatch. The previous recommendation of including egg yolk content in
the stage criteria also enables this biologically relevant distinction of eggs in dormancy
(stage 2, ≈1/2 yolk) and in rapid development (stage 3, ≤1/3 yolk).

4. Conclusions

This study demonstrates clear differences in duration and embryo development rates
among stages of a non-invasive visual clutch-staging scheme commonly used to monitor
the development and hatching of American lobster embryos, confirming the biological
relevance of this scheme. To maximise the biological information conveyed and reduce
potential classification errors, we recommend three easy-to-implement improvements to
the scheme: (1) adding criteria related to the amount of yolk present in individual eggs
rather than overall clutch appearance and colour alone, (2) redefining stage 3 to ensure
it encompasses the beginning of rapid embryonic development following winter dor-
mancy by including all paler (lighter brown/tan to orange) clutches with eggs containing
≤1/3 yolk, and (3) adding the presence of pre-zoeae as the key indicator of hatching
(stage 4). Future research can utilise this scheme to rapidly and non-invasively elucidate
spatial and inter-annual variability in larval release patterns in the lobster.
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