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Simple Summary: Bats play a significant role in public health and animal welfare as these animals
are hosts for emerging pathogens. Urbanization has resulted in the acquisition of these animals’
synanthropic behavior. Urban infrastructure suits bats as their hibernacula more than their natural
sites due to the absence of predators, relatively high temperatures, and the close location of potential
roost sites. However, the microbiota of hibernating bats is little studied, leaving some degree of
uncertainty on how the abundance and diversity of gut bacteria are affected by low body temperature
and food deprivation. In this study, we investigated the composition of cultivable gut microbiota
before, during, and after hibernation of bats in the rehabilitation center. As a result, we observed
a high abundance of opportunistic pathogens in the gut microbiota of active bats that had just
arrived at the rehabilitation center that they had probably received from the environment. During the
hibernation of bats, the abundance of these bacteria was significantly decreased, while the abundance
of some other commensals was increased with an overall decrease in microbial diversity. This study
shows how hibernation affects bat gut microbiota, pointing to the necessity of investigation of the
bat–microbiota relationship during hibernation to prevent emerging diseases.

Abstract: The role of bats in the global microbial ecology no doubt is significant due to their unique
immune responses, ability to fly, and long lifespan, all contributing to pathogen spread. Some of
these animals hibernate during winter, which results in the altering of their physiology. However,
gut microbiota shifts during hibernation is little studied. In this research, we studied cultivable
gut microbiota composition and diversity of Nyctalus noctula before, during, and after hibernation
in a bat rehabilitation center. Gut microorganisms were isolated on a broad spectrum of culture
media, counted, and identified with mass spectrometry. Linear modeling was used to investigate
associations between microorganism abundance and N. noctula physiological status, and alpha- and
beta-diversity indexes were used to explore diversity changes. As a result, most notable changes were
observed in Serratia liquefaciens, Hafnia alvei, Staphylococcus sciuri, and Staphylococcus xylosus, which
were significantly more highly abundant in hibernating bats, while Citrobacter freundii, Klebsiella
oxytoca, Providencia rettgeri, Citrobacter braakii, and Pedicoccus pentosaceus were more abundant in
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active bats before hibernation. The alpha-diversity was the lowest in hibernating bats, while the beta-
diversity differed significantly among all studied periods. Overall, this study shows that hibernation
contributes to changes in bat cultivable gut microbiota composition and diversity.

Keywords: bats; gut microbiota; hibernation; microbial diversity

1. Introduction

Bats play a significant role in global microbial ecology as their ability to fly and their
long lifespan in comparison with other mammals of the same size contribute to a wider
spread of emerging pathogens [1]. The evolutionary acquisition of the ability to fly has
resulted in boosting energy expenditure and metabolism rates in bats, which in turn has
resulted in obtaining unique immune system features, such as a limited inflammatory
response against pathogens [2]. Also, recent comparative genomic studies have shown
that unique immune system features could be associated with the loss of some genes that
are responsible for regulating immune responses in mammals [3,4]. All of these features
contribute to distinctive host–microbiome interactions, which in turn make bats “living
bioreactors” for emerging diseases as they can asymptomatically carry pathogens for a
long time [5–7].

Some bats, insectivorous ones in particular, hibernate during winter [8]. Hibernation
is an adaptational process for seasonal cycles of feeding and fasting and is intended to
maintain the integrity of organ systems when dietary nutrients are lacking [9]. Food depri-
vation and a decrease in body temperature directly affect the host’s microbiota composition
as the conditions for microbial fermentation become less favorable [10]. As a result, the
microbiota during the hibernation of animals is less diverse in comparison with their active
state [11–13].

Urbanization has significantly contributed to the changing ecology of bats, as the
expansion of urban and agricultural infrastructure forces bats to syntropy as their nat-
ural sites for roosting are shrinking [14,15]. As a result, a lot of bat colonies are often
found in households as there are few places in cities where bats can safely roost and hi-
bernate [15–17]. Knowing that, during winter, bats are in direct or indirect contact with
humans and domestic animals and that hibernation could alter the microbiota composition
and diversity, it is important to study the bat microbiota during their life cycle to predict
possible interspecies transmissions of microbes.

There are few studies published on gut microbiota composition and diversity of bats
during their hibernation. Recent studies are dedicated to Rhinolophus ferrumequinum and
Rhinolophus pusillus from Jiyuan City, China [18,19]. In this study, we provide data on
the cultivable gut microbiota composition and diversity shifts before, during, and after
Nyctalus noctula hibernation in a bat rehabilitation center in Rostov-on-Don, Russia.

2. Materials and Methods
2.1. Sampling

The N. noctula colony used was seized by Don State Technical University bat reha-
bilitation center volunteers in November 2022 from a household at the request of the
owners. Then, the colony was transferred to the rehabilitation center, and, after veterinary
examination, 13 clinically healthy bats were selected for separate keeping. The bats were
kept collectively in one box to ensure socialization during hibernation; their diet while
in the rehabilitation center consisted of superworms and mealworms. Bats were put into
hibernation in late November 2022 at a constant temperature of 10 ◦C and brought out in
early April 2023. To assess bat gut microbiota community change before, during, and after
hibernation, a minimum of 0.5 g of pooled fecal samples (n) was taken from bats in their
active state in November 2022 (n = 13), during their hibernation in March 2023 (n = 19),
and in their active state two weeks after awakening from hibernation in April 2023 before
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the release of these animals to wildlife (n = 13). Samples were placed in sterile tubes and
immediately transported to the laboratory at 7 ◦C.

2.2. Gut Bacteria Isolation, Counting, and Identification

Samples were aseptically removed from tubes for subsequent isolation by vortex-
ing for 1 min with sterile glass beads in sterile phosphate-buffered saline (pH 7.4) at
a ratio of 1:10. Then, the suspensions were 10-fold serially diluted and studied by a
qualitative–quantitative method using the following differential diagnostic solid nutrient
media: blood agar for hemolytic bacteria isolation; yolk–salt agar for staphylococci isolation,
Sabouraud agar with antibiotics for the Candida isolation; Endo agar, Bismuth sulfite agar,
and Ploskirev agar for enterobacteria isolation; Schaedler agar for the anaerobic bacteria
isolation, including coryneform bacteria; Uriselect 4 agar for the ESCAPE bacteria isolation
and differentiation; MRS agar for lactic acid bacteria isolation; Wilson Blair agar for the
clostridia isolation; and semi-liquid Bifidum medium for bifidobacterial isolation. The
cultures were incubated in a microaerophilic chamber at 37 ◦C for 24–48 h. The selection of
colonies for further studies was carried out based on colony morphology and microscopy
with Gram staining. The number of colony forming units per gram of fecal sample (CFU/g)
was counted from the dilution of 30–300 colonies, multiplied by the respective dilution.

Microflex benchtop mass spectrometer with a MALDI Biotyper database and Flex-
Control software (https://www.bruker.com/en.html, Leipzig, Germany) was used for
the identification of bacterial species. To obtain pure bacterial cultures from diagnostic
media for mass spectrometric identification, we used the Givental–Vedmina agar (GVA)
medium. Sample preparation for the study of pure cultures of strains was carried out
according to the manufacturer’s protocol. Briefly, daily pure cultures of bacteria in the form
of single colonies were applied in a thin layer directly to the target point, starting from the
middle. Target dots coated with biomaterial were coated with 1 µL of HCCA (α-cyano-4-
hydroxycinnamic acid) matrix solution and allowed to dry completely at room temperature.
After drying, the target with cultures was placed into a mass spectrometer. The level of
identification of bacteria was interpreted according to the score criteria specified in the in-
structions: 2.300–3.000 meant a high probability of species identification; 2.000–2.299 meant
reliable genus identification and probable species identification; 1700–1999 meant probable
genus identification; 0.00–1.699 meant unreliable identification. As a result, we obtained a
database with identified isolates and their abundance in the form of colony-forming units
per gram (CFU/g), which we used for further statistical analyses.

2.3. Statistical Analyses

The programming language R v4.2.3 (R Foundation for Statistical Computing, Vienna,
Austria) was used for statistical analyses. The “vegan” package was used for the calculation
of alpha- and beta-diversity indexes [20]. For the comparison of the alpha-diversity of
cultivable gut microbiota of studied bats, we used the Shannon index to assess the entropy
of bacterial communities, the Chao1 index to assess the richness of bacterial species based
on their abundance, and the Pielou index to assess the evenness of studied microbial
community. For the beta-diversity, we used the Bray–Curtis index to analyze dissimilarity in
bacterial species abundance in bat fecal samples before, during, and after their hibernation.
The Kruskal–Wallis test was performed to determine differences in the alpha-diversity
indexes, and pairwise multiple comparisons were performed with the Mann–Whitney test.
PERMANOVA with the adonis function from the vegan package was used to determine
differences in beta diversity distances (the number of permutations was set to 1000). The
second version of the “Microbiome Multivariable Association with Linear Models” package
(MaAsLin2) was used for differential abundance analysis based on CFU/g count data [21].
Before differential abundance analysis, we performed total sum scaling normalization of
the count data. Microbial composition during hibernation was used as a reference for the
linear model analysis. All multiple comparison results were adjusted with the Benjamini–

https://www.bruker.com/en.html
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Hochberg false discovery rate. Adjusted p-values (q-values) were considered significant at
q < 0.05. Results were visualized with the “ggplot2” package [22].

3. Results
3.1. Cultivable Gut Microbiota Diversity

Alpha-diversity indexes of gut microbial communities differed significantly among
bats with different physiological statuses. The Shannon index was significantly higher in
the gut microbiota of bats after waking up from hibernation in comparison with bats before
and during hibernation. The Chao1 index was significantly decreased in hibernating bats
compared with bats before hibernation. On the contrary, the lowest values in Pielou’s index
were observed in samples acquired from bats before hibernation; yet, the evenness of gut
microbiota in bats during hibernation was significantly lower in comparison with bats after
waking up (Figure 1A–C).
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Figure 1. Alpha- and beta-diversity metrics in fecal samples obtained before, during, and after
hibernation of Nyctalus noctula. Jitter plots show differences in alpha-diversity based on (A) Shan-
non index, (B) Chao1 index, and (C) Pielou’s evenness. Principal coordinate analysis (PCoA) plot
(D) illustrates differences in beta-diversity based on the Bray–Curtis distance matrix. Q-values for
alpha-diversity indexes were calculated with the Benjamini–Hochberg adjustment for the Kruskal–
Wallis overall comparison and for the Mann–Whitney test for pairwise comparisons. Q-values for
beta-diversity differences were calculated with the PERMANOVA test following the Benjamini–
Hochberg adjustment for pairwise comparisons; the number of permutations was set to 1000.

The beta-diversity of cultivable gut microbiota communities based on the Bray–Curtis
dissimilarity index also differed significantly in bats before, during, and after their hiber-
nation (q < 0.001). Values from bats that woke up from hibernation took an intermediate
position between the values from bats before and during their hibernation in the calculated
beta-diversity matrix, as seen in the principal coordinate analysis plot (Figure 1D).

3.2. Cultivable Gut Microbiota Composition

The most abundant bacterial species in the gut microbiota of bats before hiberna-
tion were Lactococcus lactis (21.6%), Proteus mirabilis (19.4%), and Citrobacter freundii (18%).
Escherichia coli (17.8%), Enterococcus faecalis (17.4%), Serratia liquefaciens (14.3%), and Lac-
tobacillus delbrueckii (11.1%) were among the most abundant bacteria observed in the gut
microbiota of hibernating bats. The most abundant bacterial species in the gut microbiota
of bats after hibernation was Enterococcus faecalis (17.5%), while the abundance of other
bacteria did not exceed 10%, which indicates higher evenness of bacterial abundance related
to bats of other physiological states, which was also observed in the difference in Pielou’s
index. The gut microbiota composition of bats with different physiological statuses related
to hibernation is shown in Figures 2 and S1.
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Figure 2. Stacked bar charts representing cultivable gut microbiota composition (as relative abun-
dance (RA) of bacterial species) in fecal samples obtained before, during, and after the hibernation of
Nyctalus noctula. Taxa in the legends are ordered from the most abundant to the least among all three
studied groups. The category “other” contains species that mean RA among all groups less than 2%.

After performing differential abundance analysis, we found that an abundance of
nine species was significantly different among studied physiological statuses relative
to hibernation. These bacteria were Serratia liquefaciens (q-value = 0.001), Hafnia alvei
(q-value = 0.006), Staphylococcus sciuri (q-value = 0.004), and Staphylococcus xylosus
(q-value = 0.044), which were significantly more highly abundant in hibernating bats,
while Citrobacter freundii (q-value = 0.00002), Klebsiella oxytoca (q-value = 0.00002), Providen-
cia rettgeri (q-value = 0.003), Citrobacter braakii (q-value = 0.044), and Pedicoccus pentosaceus
(q-value = 0.044) were significantly more abundant in active bats before the hibernation
(Figures 3 and 4). The results of differential abundance analysis on the genus, family,
and order levels are shown in Supplementary Figures S2, S3, S6, and S7. There were no
significant differences in the class and phylum levels.
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Figure 3. Volcano plot illustrating the results of the differential abundance analysis of bacterial
species isolated from fecal samples of Nyctalus noctula before, during, and after hibernation. Microbial
composition during hibernation was used as a reference for the linear model analysis. Blue, yellow,
and red dots on the plot show bacteria, the abundance of which had significant associations with
studied physiological statuses related to hibernation. Blue dots represent bacteria whose abundance
was significantly lower in bats before hibernation in comparison with the reference. Yellow dots
represent bacteria whose abundance was significantly lower in bats after hibernation in comparison
with the reference. Red dots represent bacteria whose abundance was significantly higher in bats
before hibernation in comparison with the reference.
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Figure 4. Box plots illustrating the abundance of identified species in the form of colony-forming units
per gram (CFU/g) that differ significantly in active bats before and after hibernation in comparison
with hibernating bats: (A) Serratia liquefaciens, (B) Hafnia alvei, (C) Staphylococcus sciuri, (D) Staphylo-
coccus xylosus, (E) Citrobacter braakii, (F) Klebsiella oxytoca, (G) Providencia rettgeri, (H) Citrobacter braakii,
and (I) Pedicoccus pentosaceus. Q-values were calculated with MaAsLin2 linear model (LM) analysis
following Benjamini–Hochberg false discovery rate correction.

4. Discussion

In this study, we investigated the cultivable gut microbiota composition and al-
pha/beta diversity of N. noctula bats before, during, and after their hibernation in the
bat rehabilitation center in Rostov-on-Don and made a statistical comparison of these
features. Currently, N. noctula is one of the most common bat species in the Rostov region
according to the observations of the DSTU bat rehabilitation center. This species is prone to
synanthropy. Their body size and ability to fly allow them to roost in city/town buildings
in places difficult for humans to reach [23,24]. However, bats living as close neighbors
within urban areas may be unwanted for citizens, which is why a lot of people tend to
destroy whole bat colonies when they find them in households, which poses a great risk
for these animals. That is why there are several bat rehabilitation centers around the world,
whose primary aim is to save bat populations during winter [25,26]. At the same time,
bat rehabilitation centers provide a unique opportunity to study pathogen surveillance
in these animals [27,28]. This opportunity is especially important for detecting potential
progenitors of emerging viruses as bats are recognized as natural hosts for many viral
human pathogens [29–33]. However, it is worth noting that the viral microbiota of bats is
significantly more studied than the bacterial microbiota. Because bats are in close contact
with humans and the immune system of bats allows them to co-exist with pathogens due to
the inhibition of inflammatory responses, we strongly believe that the bacterial microbiota
of bats should also be studied as it could be the missing link in emerging diseases that
originate from bats [5,34]. Especially, it is important to study the bats’ hibernative bacterial
microbiota, as the alterations in bacterial composition shifts related to hibernation are
less studied, and, during this time, bats could be in the closest contact with humans and
domestic animals.
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There are few studies published on microbiota alterations during the hibernation of
bats. One of the major topics of scientific interest is studying the fungal microbiota of
bats, as fungi, Pseudogymnoascus destructans in particular, are microorganisms that pose
the greatest danger to bats due to the lack of adaptational immune responses against
them during hibernation. The white-nose syndrome (WNS), caused by P. destructans,
results in a dramatic decrease in bat populations [35–37]. Interestingly, the microbiota of
hibernating bats could protect their hosts from fungal infections. Lemieux-Labonté et al.
studied skin microbiota composition and diversity of hibernating WNS-positive and WNS-
negative bats and found that the alpha-diversity of WNS-positive bats was significantly
lower than in WNS-negative bats, which was caused by the significant enrichment of
Janthinobacterium, Micrococcaceae, Pseudomonas, Ralstonia, and Rhodococcus abundance. These
bacteria, Rhodococcus and Pseudomonas in particular, can contribute to the resistance of
bats to P. destructans. They could inhibit other taxa to increase their own abundance in
skin microbiota, resulting in an alpha-diversity decrease [38]. Later, Lemieux-Labonté
et al. conducted controlled experiments of WNS modeling in bats in lab conditions and
found a significant increase in the relative abundance of Rhodococcus and Pseudomonas in
WNS-positive bats [39].

Apart from skin microbiota, gut microbiota alterations during the hibernation of bats
have also been studied. Xiao et al. studied gut microbiota composition and diversity of
Rhinolophus ferrumequinum in different seasonal periods (early spring, early summer, and
late summer), and found that the alpha-diversity in hibernating bats was significantly
decreased in comparison with bats before their hibernation. Also, the relative abundance
of Pseudomonas was significantly higher in hibernating bats in comparison with bats before
hibernation, while the relative abundance of Enterococcus was significantly lower. On the
phylum level, the relative abundance of Firmicutes was significantly lower in bats during
hibernation in comparison with before hibernation. It should be noted that, in this study,
the microbial composition of bats after waking up from hibernation (early spring) had less
significant differences to bats during their hibernation than in bats before the hibernation,
which points to the fact that the gut microbiota of bats could slowly restore from the
hibernation of their host and this process could be related to the abundance of available
food in the environment [18]. In another study, Liu et al. examined the gut microbiota
composition of the same bat species in their active state in summer and in winter during
their hibernation, but at two different locations with different temperatures during winter:
11.6 ◦C to 16.8 ◦C in a canal tunnel and 17.1 ◦C to 18.0 ◦C in a mine tunnel. As a result, they
not only found that there were significant differences in microbiota composition between the
hibernating and active bats but also between bats with two different hibernacula sites. The
alpha-diversity of gut microbiota in bats hibernating in the mine tunnel was significantly
lower than in bats hibernating in the canal tunnel, where the temperature was lower. Also,
the differences in ambient temperature in hibernacula resulted in marked site-specific
differences in the relative abundances of Firmicutes, Actinobacteria, and Tenericutes [19].
It should also be noted that, in the two above-mentioned studies, authors conducted a
differential abundance analysis of predicted functional microbiota pathways based on 16S
rRNA metagenomic sequencing data and determined that the gut microbiota metabolism
could be converted from carbohydrate-related to lipid-related in hibernating bats [18,19].

Our study was conducted in the conditions of a rehabilitation center, which could
have influenced the microbiota of bats. However, we observed a decrease in the alpha-
diversity of bat gut microbiota communities, which corresponded to the results of the
above-discussed reports. We also observed significant differences in beta-diversity, where
the most prominent distances were between the gut microbiota communities of bats before
and during hibernation, while the beta-diversity values of the intestinal microbiota of bats
after waking up from hibernation had intermediate positions in a distance matrix between
the two other studied physiological statuses. In addition to this, the differences in the
abundance of bacterial species were also the most evident between the gut microbiota of bats
before and during hibernation, while differences in bats after waking up from hibernation
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were less prominent, although, as observed by Xiao et al. [18], there was a tendency to
return to the before-hibernation composition. We speculate that the gut microbiota in
bats after hibernation had not yet fully returned to the state before the hibernation as the
time of sampling was only two weeks after their waking up. Nevertheless, the alpha-
diversity indexes were significantly higher in bats after waking up in comparison with
their hibernating state. This can be explained by the fact that all the bats included in the
study were fattened before the final sampling, which is essential before the release of the
animals to the wildlife after rehabilitation, while, in other studies, free-roaming bats on
food self-sufficiency were studied [18,19]. In our study, the abundance of S. liquefaciens
and H. alvei was significantly higher in hibernating bats compared with bats in active
states. These bacteria are recognized as opportunistic pathogens in humans and animals
and previously have been observed in the gut microbiota of Myotis myotis and Rhinolophus
hipposideros in Slovakia [40–42]. S. sciuri and S. xylosus, which are also significantly more
abundant in hibernating bats, are commensal animal-associated bacteria that could be
involved in the spreading of antibiotic-resistance and virulence genes among domestic
and farm animal microbiota according to recent reports [43–45]. In the gut microbiota
of active bats before their hibernation, C. freundii, K. oxytoca, P. rettgeri, C. braakii, and P.
pentosaceus were significantly more abundant in comparison with hibernating bats. Most of
them, except P. pentosaceus, are opportunistic pathogens, which cause nosocomial infections
in humans [46–49]. Fecal samples from bats before their hibernation were acquired right
after their arrival at the rehabilitation center, which indicated that bats could acquire these
bacteria from the environment. C. freundii, K. oxytoca, P. rettgeri, and C. braakii are commonly
found in water, soil, and food [50–53]. It is a well-known fact that the gut microbiota
of bats strongly depends on the environment, as their gastrointestinal tract is relatively
shorter than in animals of the same size, which is the result of their evolutionary adaptation
for flight [54–56]. So, our study provides additional evidence for the dependence of bat
microbiota on the environmental microbiome, although the fundamental mechanisms of
host–microbiota interactions that allow bats to co-exist with opportunistic pathogens should
be discovered. There was P. pentosaceus among the bacterial species, with a high abundance
in active bats before hibernation. P. pentosaceus is a lactic acid bacterium that is gradually
attracting attention as a potential probiotic [57]. In one of our previous studies, we searched
for probiotics in N. noctula gut microbiota, but most of the studied strains occurred to
be pro-mutagenic, making them unsafe candidates [5]. However, it does not mean that
the microbiota of bats could not be the site for the isolation of new probiotics. Unique
microbiota features of bats could provide new solutions against emerging pathogens. For
example, the above-discussed studies by Lemieux-Labonté et al. could be the basis for
searching for new probiotics with strong antifungal effects [38,39,58].

In this study, we investigated the gut microbiota composition and diversity of N.
noctula by isolating microorganisms on the broad spectrum of microbiological media
combined with taxonomical identification with mass-spectrometry. Nevertheless, we
should mention that non-culture methods, such as high-throughput sequencing of 16S
rRNA amplicons or the whole metagenomic DNA, could have provided more detailed data,
as this method allows the investigation of uncultivable microbiota resulting in a broader
range of identified taxa for following composition and diversity analysis [59]. However, in
our study, isolation and culturing of gut bacteria on the broad spectrum of microbiological
media allowed us to conduct a comprehensive diversity analysis, the results of which
correspond to other studies, and, most importantly, the counting of bacterial composition
in the form of CFU/g allowed us to perform statistical analysis of absolute abundance
data, while statistical analysis of metagenomic sequencing requires other approaches to
proceed relative abundance data, which could result in false positives and irreproducibility
of results among different reports [60,61].
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5. Conclusions

This study shows the first data on cultivable gut microbiota composition and diversity
of N. noctula before, during, and after their hibernation in the bat rehabilitation center in
Rostov-on-Don. The diversity of cultivable gut microbiota of the studied bats in hibernation
was significantly lower in comparison with bats in their active state. Hibernation resulted in
shifts in the abundance of some bacteria, which are recognized as opportunistic pathogens
for humans and domestic animals, indicating the importance of studying the bacterial
microbiota of bats to prevent emerging infections.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ani13233658/s1, Figure S1. Stacked bar charts representing cultivable gut
microbiota composition (as relative abundance (RA) of bacterial taxa) in fecal samples obtained
before, during, and after the hibernation of Nyctalus noctula. RA at (A) phylum, (B) class, and
(C) order levels. Taxa in the legends are ordered from the most abundant to the least among all
three studied groups. Figure S2. Volcano plot illustrating the results of the differential abundance
analysis of bacterial families isolated from fecal samples of Nyctalus noctula before, during, and
after hibernation. Microbial composition during hibernation was used as a reference for the linear
model analysis. Blue, yellow, and red dots on the plot show bacteria, the abundance of which had
significant associations with studied physiological statuses related to hibernation. Blue dots represent
bacteria whose abundance was significantly lower in bats before hibernation in comparison with
the reference. Yellow dots represent bacteria whose abundance was significantly lower in bats after
hibernation in comparison with the reference. Red dots represent bacteria whose abundance was
significantly higher in bats before hibernation in comparison with the reference. Figure S3. Volcano
plot illustrating the results of the differential abundance analysis of bacterial orders isolated from
fecal samples of Nyctalus noctula before, during, and after hibernation. Microbial composition during
hibernation was used as a reference for the linear model analysis. Blue and red dots on the plot show
bacteria, the abundance of which had significant associations with studied physiological statuses
related to hibernation. Blue dots represent bacteria whose abundance was significantly lower in bats
before hibernation in comparison with the reference. Red dots represent bacteria whose abundance
was significantly higher in bats before hibernation in comparison with the reference. Figure S4.
Box plots illustrating the abundance of identified species in the form of colony-forming units per
gram (CFU/g) that differ significantly in active bats before and after hibernation in comparison with
hibernating bats: (A) Serratia liquefaciens, (B) Hafnia alvei, (C) Staphylococcus sciuri, (D) Staphylococcus
xylosus, (E) Citrobacter braakii, (F) Klebsiella oxytoca, (G) Providencia rettgeri, (H) Citrobacter braakii, and (I)
Pedicoccus pentosaceus. Q-values were calculated with MaAsLin2 linear model (LM) analysis following
Benjamini–Hochberg false discovery rate correction. Figure S5. Box plots illustrating the abundance
of identified genera in the form of colony-forming units per gram (CFU/g) that differ significantly
in active bats before and after hibernation in comparison with hibernating bats: (A) Staphylococcus,
(B) Serratia, (C) Hafnia, (D) Citrobacter, (E) Klebsiella, (F) Proteus, (G) Providencia, (H) Pediococcus, (I)
Pseudomonas, and (J) Weisella. Q-values were calculated with MaAsLin2 linear model (LM) analysis
following Benjamini–Hochberg false discovery rate correction. Figure S6. Box plots illustrating
the abundance of identified families in the form of colony-forming units per gram (CFU/g) that
differ significantly in active bats before and after hibernation in comparison with hibernating bats:
(A) Staphylococcaceae, (B) Yersiniaceae, (C) Hafniaceae, (D) Enterobacteriaceae, (E) Lactobacillaceae, and
(F) Morganellaceae. Q-values were calculated with MaAsLin2 linear model (LM) analysis following
Benjamini–Hochberg false discovery rate correction. Figure S7. Box plots illustrating the abundance
of identified orders in the form of colony-forming units per gram (CFU/g) that differ significantly
in active bats before and after hibernation in comparison with hibernating bats: (A) Bacilales, (B)
Enterobacterales, and (C) Lactobacillales. Q-values were calculated with MaAsLin2 linear model
(LM) analysis following Benjamini–Hochberg false discovery rate correction.

https://www.mdpi.com/article/10.3390/ani13233658/s1
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