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Simple Summary: The aquaculture industry is constantly growing and contributes to the food
demand of the world’s population, which is already more than 8 billion people. In aquaculture,
antibiotics are commonly used to mitigate the appearance of bacterial diseases that cause considerable
damage to production. However, this activity induces antibiotic resistance, which risks the health
of cultured organisms and consumers. Therefore, alternative supplements such as prebiotics have
been emphasized, with their management and due to their multiple beneficial effects, as viable to
improve the conditions of production and health of aquatic animals. In developed countries, these
supplements are widespread in culture-producing commercial fish, representing a rich protein source
worldwide. However, in developing countries such as Mexico, this technology is rare in commercial
fish and practically non-existent in endemic fish species. The importance of such supplements for use
in the small- and large-scale aquaculture of fish in developing countries should be underscored as
relevant for their application in both commercial and endemic fish cultivated in developing countries.

Abstract: Continued human population growth has resulted in increased demand for products,
including those derived from aquaculture. The main challenge in aquaculture is producing more every
year. In recent years, environmentally friendly supplements that provide the necessary pathways for
optimal production have been emphasized. One of them is prebiotics, selectively utilized substrates
by host microorganisms conferring a health benefit. Interest in applying prebiotics in global fish
farming has increased in recent years as it has been shown to improve growth, boost the immune
system, resist stress conditions, and cause the modulation of digestive enzymes. These effects reflect
reduced production and disease costs. However, in Latin American countries such as Mexico, large-
scale use of these food supplements is needed as a sustainable alternative to improve fish production.
This paper gives a review of the current advances obtained with the application of prebiotics in
commercially farmed fish worldwide, mentions the prebiotics to use in the aquaculture industry, and
updates the status of studies about the used prebiotics in global commercial fish cultivated in Mexico,
as well as freshwater and marine endemic fish in this country. Also, the limitations of prebiotics
application in terms of their use and legislation are analyzed.
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1. Introduction

Aquaculture activity is considered the fastest-growing industry in terms of food
production worldwide. Compared to fishing, it has had an upward growth since the 1980s,
and in 2020, represented the world production record with 122.6 million tons, of which
57.5 million tons belonged to fish aquaculture [1].

Since its inception, the main objective of aquaculture has been to increase production
and improve profitability [2]. To this end, a high-density culture is often chosen. However,
this practice, in addition to causing damage to the environment, contributes to an increase
in the stress conditions of the cultivated aquatic organisms, which leads to the appearance
and spread of diseases, resulting in massive mortalities with effects directly related to
severe economic losses [3,4]. Traditionally, antibiotics have been widely applied for disease
control and growth promoters in aquatic organisms [5]. Because of their beneficial effects,
some antibiotics are approved for use in aquaculture production [6]. In recent years, it has
been suggested that their use be more strictly controlled, and some antibiotics have even
been banned, as their indiscriminate use can lead to the spread of antimicrobial residues
in aquatic environments, increasing antibiotic resistance rates in aquatic bacteria and
impacting public health because antimicrobial resistance can be transferred to pathogens
and could damage human consumers [7]. Therefore, other sustainable alternatives should
be investigated, such as administering prebiotic, probiotic, and synbiotic supplements [8].

Prebiotics are foods that cannot be digested or assimilated directly by the host organ-
ism [9] or by probiotics, which the FAO and WHO have defined as live microorganisms
that, in adequate doses (106–107 CFU/g), have beneficial effects on organisms that consume
them [10].

In developed countries, applying prebiotic supplements is common in farmed fish of
global commercial importance, contributing to about 20 kg of the world’s average annual
per capita consumption of aquatic food [1]. However, this consumption in Latin America
and the Caribbean is only 9.9 kg per person per year [1].

Fish aquaculture in Mexico continuously grows due to the demand for nutrient-rich
products (high in protein and other nutrients such as vitamins, minerals, and beneficial
fats such as omega 3 and 6). However, prebiotic supplements in the Mexican aquaculture
industry must be applied to high-scale production. In addition, the sources and types of
prebiotics potentially usable in Mexico’s productive sector need to be discovered. Therefore,
this document defines the types of prebiotics most used in global fish aquaculture and
analyzes the current use of prebiotics in fish farming in Mexico. The different limitations of
prebiotics application in terms of their use and legislation are analyzed. Furthermore, it is
necessary to mention the new potential prebiotics that could be applied to fish species that
represent world production and to the freshwater and marine endemic fish in Mexico that
have aquaculture potential.

2. Importance and Types of Prebiotics

Although the host hardly assimilates prebiotics, they are the basis of a highly beneficial
metabolic cascade for the host since they serve as a fundamental substrate to be fermented
by bacteria with beneficial characteristics such as Bifidobacterium and Lactobacillus, bacteria
genera found in the digestive system of the host organisms. These genera have been found
to have metabolic faculties related to forming short-chain fatty acids (acetic, propionic, and
butyric acids), decreasing the gastrointestinal pH [11–15].

This type of metabolites can be absorbed and used as a source of energy. In addition,
in the host organism, they generate various benefits such as the reduction or inhibition
of pathogenic bacteria by modulating the microbiota [12,13,16], increased health of the
digestive tract and the whole organism [9,17], along with the increased availability of
micronutrients such as calcium, magnesium, iron, and sodium [13,18,19].

Prebiotics can be found in many foods such as tomatoes, bananas, apples, oranges,
grapefruit, papaya, mango, garlic, onion, broccoli, corn, potato, peas, lentils, beans, chick-
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peas, oat, barley, among others [20]. Hendry [21] indicated that about 36,000 plant species
store carbohydrate fractions as the prebiotics inulin or fructooligosaccharides.

Over the years, prebiotics have been classified from non-digestible carbohydrates, which
include arabinoxylan-oligosaccharides (AXOS), β-glucans, stachyose, fructo-oligosaccharides
(FOS), galacto-oligosaccharides (GOS), inulin, isomaltooligosaccharides (IMO), lactylol, lacto-
sucrose, lactulose, mannan-oligosaccharides (MOS), oligofructose, transgalactooligosaccha-
rides, and xylooligosaccharides (XOS) [12,22]. However, prebiotics differ from carbohydrates,
peptides, proteins, and lipids [20,23]. This list of prebiotic supplements is continuously
growing due to the diversity of organisms that can be used to obtain them.

3. Feasibility and Future Demand for Prebiotics in the Global Industry

From the efficiency point of view in terms of time and maintenance expense, the
addition of prebiotics does not require remarkable production technologies (e.g., viability
testing during processing and storage as applied in probiotic use), as these ingredients are
not altered by environmental conditions such as air and heat [24].

The demand for prebiotic supplements has continually increased worldwide over the
years [25]. The demand for prebiotics is expected to reach 1.35 million tons by 2024 [26].
In terms of the price of this supplement on the global market, the Market Analysis Report
indicates that by 2021, the market for prebiotics was valued at over $6 billion and is expected
to grow by 14.9% annually from 2022 to 2030 [25].

From the classification of different types of prebiotics, inulin dominated the global
market in 2021 and accounted for 37% of prebiotic production, and a growing demand for
this supplement as part of beverages and baked goods is presumed. In addition, it has been
defined that the global demand for GOS will grow significantly in the next seven years [25].

In Mexico, there needs to be more information about reliable price numbers and the
costs of commercial use of these supplements. Therefore, a thorough analysis of their
commercial uses and prices is required.

4. Characteristics of Prebiotics

In the area of human nutrition, for a prebiotic to be considered as such, it must meet the
following characteristics described by Gibson et al. [27]: (1) resist gastric acidity, hydrolysis
(mammalian enzymes), and absorption in the anterior digestive system, (2) be fermented
by the intestinal microbiota, and (3) selectively stimulate the growth of intestinal bacteria
related to the health of the host organism. Among these three points, the third is the most
difficult to achieve and, therefore, the most important because determining it requires
anaerobic sampling and viability testing of various bacterial species [27].

4.1. Obligatory Characteristics of Prebiotics in Aquaculture

The characteristics of prebiotics used in human nutrition are different from aquaculture.
According to Lauzon et al. [13], the classification characteristics that prebiotics have in
human nutrition are not sufficient for aquaculture since, through this activity, species of
organisms of various taxonomic groups (e.g., algae, mollusks, crustaceans, fish) are used,
as it is evident that they have different energetic requirements and capacity to consume
these supplements. For example, the structure of the gastrointestinal tract of fish shows
significant variation between species [13], as there are more than 25,000 fish species [28].
Fish with different feeding habits (carnivorous, herbivorous, and omnivorous) are cultured,
and there are fish with and without stomachs, making it more complicated to define the
role of prebiotics. Given these variations in aquatic animals, Lauzon et al. [13] suggest that
prebiotics should: (1) resist hydrolysis by the host organism enzymes and resist absorption
by the gastrointestinal tract, (2) improve the microbial balance of the intestinal tract, and
(3) be beneficial to the host (e.g., improved disease resistance, increased survival, and non-
specific immunity, modulation of the intestinal morphology, as well as increased nutrient
digestibility and growth). The third point on this list is focused on the beneficial results of
studies where different prebiotic types have been applied to various fish species, where
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these supplements influence various mechanisms directly related to improving growing
conditions (Figure 1). However, prebiotics previously applied with favorable results in
some species, when added to other species by changing the dose and application times,
obtained negative results or were without effects on some fundamental mechanisms that
are attributed to improve aquaculture production (Table 1).
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Table 1. Summary of worldwide research on the effects of prebiotics supplements in fish aquaculture.

Prebiotics Fish Species
Country

(Experiment
Conducted)

Dosage/
Application

Time
Prebiotics Sources Effects References

Arabinoxylan-
oligosaccharides-

3-0.25,
Arabinoxylan-

oligosaccharides-
32-0.30

Acipenser
baerii Belgium 2%/84 days

Wheat bran
via extraction with

endoxylanases

↑ Survival and phagocytic
activity

→ Lysozyme activity
↑ Lactic acid bacteria and

Clostridium sp.
Arabinoxylan-

oligosaccharides-32-0.30 ↑
growth

Arabinoxylan-
oligosaccharide-32-0.30 ↑

short-chain fatty acids
(acetate and butyrate)

[29]

β-glucan Labeo
rohita India 0.01, 0.025,

0.05%/56 days S. cerevisiae

↑ Growth, phagocytosis,
lysozyme, haemolytic

complement, bactericidal
activity

[30]

β-glucan Pseudosciaena
crocea China 0.5 y

1%/56 days S. cerevisiae
↑ Growth, lysozyme,

phagocytosis, protection
against Vibrio harveyi

[31]
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Table 1. Cont.

Prebiotics Fish Species
Country

(Experiment
Conducted)

Dosage/
Application

Time
Prebiotics Sources Effects References

β-glucan Oncorhynchus
mykiss Iran 0.1 and

0.2%/60 days S. cerevisiae ↑ Growth and lysozyme [32]

β-glucan Oreochromis
niloticus Thailand 0.1%/56 days S. cerevisiae

↓ Bacteria Aeromonas
hydrophila and

Flavobacterium columnare
[33]

β-glucan
Carassius

auratus var.
Pengze

China 0.1%/70 days S. cerevisiae → Growth, ↑ immune
system, and microvilli size [34]

β-glucan Trachinotus
ovatus Vietnam 0.1, 0.2% and

0.4%/56 days S. cerevisiae ↑ Growth in 0.1% [35]

β-glucan Rutilus rutilus Poland 1%/14 days S. cerevisiae → Growth
↑ Immune system [36]

β-glucan Hyphessobrycon
eques Brazil 0.05, 0.1 and

0.2%/42 days S. cerevisiae ↑ Immune system in 0.2% [37]

Cell wall
(β-glucan and

MOS)
Sparus aurata Spain 0.1, 0.5 and

1%/28 days S. cerevisiae
0.5 and 1% ↑ phagocytic

activity
0.1% ↑ cytotoxic activity

[38]

Cell wall
(β-glucan and

MOS)

Labeo
rohita India 0.5%/15 days S. cerevisiae ↑Phagocytic activity [39]

Cell wall
(β-glucan and

MOS)
O. niloticus Egypt 0.1 and

0.2%/60 days S. cerevisiae

↑ Growth, white blood
cell count

↑ Phagocytic activity and
gene expression related to
immune system in 0.2%

[40]

FOS Salmo salar L. Norway 0.1%/70 days Biomar AS, Brande,
Denmark → Growth [41]

FOS, chitosan,
MOS, β-glucan,

XOS

Hybrid
Epinephelus
lanceolatus x
Epinephelus

fuscoguttatus

China 0.2, 0.5, 0.2, 0.1,
0.05%/28 days

Shandong Shengyuan
Biotechnology Co., Ltd.,

Qingdao, China

MOS and XOS ↑ growth,
survival of

XOS ↑ protein in muscle
[42]

GOS Cyprinus
carpio Poland 2%/50 days

Bi2tos®, Clasado
Biosciences Ltd., Jersey,

UK
↑ Immune system [43]

Immunogen®

provided by
Soroush Radian
Co., Ltd., Tehran,

Iran

C. carpio Iran
0.05, 0.1, 0.15,

and
0.25%/56 days

Immunogen® provided by
Soroush Radian

Co., Ltd., Tehran, Iran

→ Growth Immunogen®

0.15 y 0.25%, ↑ leucocytes
[44]

IMO Clarias
gariepinus Malaysia 0.5%/56 days

Composed by
combination of

isomaltose, isomaltotriose,
maltose, panose,

maltotriose, glucose and
others (24.5, 12.0, 6.1, 1.6,

1.5, 0.3, and 43.7%)

→ Growth [45]

Inulin Salvelinus
alpinus Norway 15%/28 days Not available ↓ Enterocytes of hindgut [46]

Inulin,
Oligofructose
(type of FOS),
Lactosucrose

Psetta maxima France 2%/26 days

Inulin obtained from
chicory Cichorium intybus.
Oligofructose produced

via partial enzymatic
hydrolysis of chicory
Inulin. Lactosucrose

obtained from the
Ensuiko Sugar Refining

Co. (Yokohama,
Japan)

→ Survival of
oligofructose, ↑ growth of
inulin and lactosucrose, ↑

gut microbiota

[47]
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Table 1. Cont.

Prebiotics Fish Species
Country

(Experiment
Conducted)

Dosage/
Application

Time
Prebiotics Sources Effects References

Inulin Huso huso Iran 1, 2 and
3%/56 days Chicory Cichorium intybus

↓ Growth and survival,
↓ Total bacteria, ↑ lactic

acid bacteria
[48]

Inulin O. niloticus Egypt 0.5%/60 days Chicory Cichorium intybus ↑ Growth and survival [49]

Inulin, FOS O. mykiss Spain 0.5 and
1%/49 days

Inulin obtained from
chicory Cichorium intybus

roots (PREBIOFEED
88; Qualivet, Las Rozas,

Spain).
Fructooligosaccharides

obtained
viq partial enzymatic
hydrolysis of inulin

(Oligofructose from Beneo
P95; Beneo-Orafti España

SL, Barcelona, Spain)

↑ Growth,
→ gut bacteria (Aeromonas

spp., Pseudomonas spp.
and Gram-positive

bacteria)

[50]

Inulin C. carpio Iran 0.5 and
1%/49 days

Provided by Orafti
(Raffinerie Tirlemontoise,

Tienen, Belgium)

→ Growth and enzymatic
activity (lipase, protease,

and amylase)
↑ Survival

[51]

Inulin, MOS Ctenopharyngodon
idella China 0.2 and

2%/56 days

Inulin from chicory
Cichorium intybus (Sigma,
Saint Louis, MO, USA).

MOS from yeast
Saccharomyces cerevisiae

(Fubon, Yichang,
China)

Inulin and MOS 2% ↑
growth and bactericidal

activity
[52]

Inulin O. niloticus Thailand
0.25 and 0.5%,

0.5 and
1%/56 days

Inulin from chicory
Cichorium intybus
(PREBIOFEED 88;

Warcoing, Belgium)

↑ Growth, blood cell
number, and lysozyme

activity
→ Survival

[53]

Inulin O. mykiss Turkey 1 and
2%/56 days

Chicory roots Cichorium
intybus

↑ Growth and survival in
1%,

↑ Digestive enzyme
activities in 1%

[54]

Inulin O. niloticus Egypt 0.25, 0.5 and
1%/90 days

Chicory roots Cichorium
intybus ↑ Growth in 0.25% [55]

Inulin Pseudoplatystoma
reticulatum Brazil 0.7%/12 days Chicory roots Cichorium

intybus
→ Growthand ↓
microvilli size [56]

Inulin O. mykiss Iran 1, 2 and
3%/60 days

Inulin Orafti® GR (Beneo
Company, Tienen,

Belgium)

↑ Growth and lysozyme
activity [57]

Inulin Pelteobagrus
fulvidraco China 0.4%/70 days

Inulin Orafti® GR (Beneo
Company, Tienen,

Belgium)
↑ Growth and butyric acid [58]

MOS Dicentrarchus
labrax Spain 0.2 and

0.4%/63 days S. cerevisiae ↑ Growth [59]

MOS O. mykiss Turkey 0.15, 0.3 and
0.45%/90 days

MOS were derived from
the outer cell wall of
the yeast S. cerevisiae

↑ Growth in MOS 0.15%
↑Microvilli length in
MOS 0.15 and 0.3%

[60]

MOS,
FOS, GOS S. salar Norway 1%/120 days

MOS (Bio-Mos, Alltech
Inc., Nicholasville, KY,
USA), FOS from inulin
(Encore Technologies,
Plymouth, MN, USA),
GOS (Friesland Foods

Domo, Zwolle, The
Netherland)

→ Growth and survival
MOS 1% ↓ Lysozyme

activity
[61]
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Table 1. Cont.

Prebiotics Fish Species
Country

(Experiment
Conducted)

Dosage/
Application

Time
Prebiotics Sources Effects References

MOS O. mykiss United
Kingdom 0.2%/58 days

MOS (Bio-Mos, Alltech
Inc., Lexington,

KY, USA)were derived
from the outer cell wall of

the yeast
S. cerevisiae strain 1026

↑Microvilli length and
density

↓ Gut bacteria Aeromonas
spp. and Vibrio spp.

[62]

MOS D. labrax Egypt
0.1, 0.2, 0.3

and
0.4%/75 days

S. cerevisiae ↑ Growth y microvilli size
↑ Survival (0.1%) [63]

MOS
Pangasianodon

hypophthal-
mus

Malaysia
0.2, 0.4, 0.6

and
0.8%/84 days

S. cerevisiae
↑ Survival and lysozyme
activity against pathogen

A. hydrophila
[64]

MOS

Hybrid
E. lanceolatus

♂and
E. fuscogutta-

tus
♀

China
0.3, 0.6, 1.0

and
2.0%/63 days

S. cerevisiae ↑ Lysozyme activity and
microvilli length [65]

Oligofructose Oreochromis
spp. Thailand 0.5,

1.0%/28 days
Jerusalem Artichoke
Helianthus tuberosus

↑ Growth, immune
system [66]

XOS D. labrax Tunisia 0.5 and
1%/84 days Corncob Zea mays

↑ Growth (0.5%) and
survival against pathogen

A. hydrophila (1%)
[67]

XOS O. mykiss China
0.25, 0.5, 0.75

and
1.0%/56 days

Henan Hebi Taixin
Technology Co., Ltd.,

Zibo, China

↑ Growth (1%)
↑Microvilli height
↑ Lipase and amylase

activity

[68]

Symbols represent increase (↑), no effect (→), or decrease (↓) in the response parameter of the prebiotics relative
to the control. ♂(male); ♀(female).

4.2. Mechanisms of Prebiotics

It has been defined in multiple studies that prebiotic supplements, when added mainly
to the diet of fish in juvenile stages and controlled cultivation, interact with different
mechanisms, which are directly related to the improvement of growing conditions in terms
of the growth, health, and survival of organisms (Table 1).

The mechanisms influenced by prebiotics are an increased production of digestive
enzyme and short-chain fatty acids, number of enterocytes, and size of intestinal microvilli;
improvement of the immune system with increased blood cells and gene expression;
modulation of the presence of intestinal microorganisms increasing beneficial bacteria such
as lactic acid bacteria and reduction in pathogenic bacteria; and, in addition, reduction in
the presence of cortisol and triglycerides (Figure 1).

5. Use of Prebiotics in Global Fish Aquaculture

In recent years, there has been a growing interest in determining the effects produced
by prebiotic supplements in global fish aquaculture. The main prebiotics used include in-
ulin [47,49–53,56–58,61], β-glucans [30–32,34,36,37,40,69], FOS [50,61,70], MOS [52,61,65,69,70],
GOS [43,61,69–71], XOS [68,70], AXOS [29], IMO [45], and GroBiotic®-A (International Ingredi-
ent Corporation, Lake City, MN, USA) [69] (Table 1).

Studies have defined the different effects caused by the application of prebiotics in fish
culture of economic and commercial interest, such as catfish, carp, salmonids, and tilapia,
the organisms that have represented the highest percentages of world production in inland,
coastal, and marine aquaculture for the last 20 years [1]. These fish belong to the families
Cichlidae, Clariidae, Cyprinidae, Pangasiidae, and Salmonidae (Table 2).
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Table 2. Global inland, coastal, and marine aquaculture production of the major fish families and
species in 2022. Modified of FAO (2022).

Family Common Name, Species Production (Million Tons) Percentage

Inland aquaculture

Centrarchidae Largemouth black bass, Micropterus
salmoides 0.62 1.3

Cichlidae Nile tilapia, O. niloticus
Tilapias nei, Oreochromis spp.

4.41
1.07

9
2.2

Clariidae Clarias catfishes, Clarias spp. 1.25 2.5

Cyprinidae Grass carp, Ctenopharyngodon idellus 5.79 11.8
Silver carp, Hypophthalmichthys molitrix 4.9 10

Common carp, C. carpio 4.24 8.6
Catla, Catla catla 3.54 7.2

Bighead carp, Hypophthalmichthys
nobilis 3.19 6.5

Carassius spp. 2.74 5.6
Roho labeo, L. rohita 2.48 5.1

Wuchang bream, Megalobrama
amblycephala 0.78 1.6

Black carp, Mylopharyngodon piceus 0.7 1.4

Pangasiidae Striped catfish, P. hypophthalmus 2.52 5.1

Salmonidae Rainbow trout, O. mykiss 0.74 1.5

Subtotal of 15 major species 38.97 79.3

Subtotal other species 10.15 20.7

Total 49.12 100

Coastal and marine aquaculture

Carangidae Pompano, T. ovatus 0.16 1.9
Japanese amberjack, Seriola

quinqueradiata 0.14 1.6

Chanidae Milkfish, Chanos chanos 1.17 14

Cichlidae Nile tilapia, O. niloticus 0.11 1.3

Lateolabracidae Japanese seabass, Lateolabrax japonicus 0.2 2.4

Latidae Barramundi(=Giant seaperch), Lates
calcarifer 0.11 1.3

Moronidae European seabass, D. labrax 0.24 2.9

Mugilidae Mullets nei, Mugilidae 0.29 3.5

Salmonidae Atlantic salmon, S. salar 2.72 32.6
Coho(=Silver) salmon, Oncorhynchus

kisutch 0.22 2.7

Rainbow trout, O. mykiss 0.22 2.6

Sciaenidae Red drum, Sciaenops ocellatus 0.08 1
Large yellow croaker, Larimichthys

croceus 0.25 3

Serranidae Groupers nei, Epinephelus spp. 0.23 2.7

Sparidae Gilthead seabream, S. aurata 0.28 3.4

Subtotal of 15 major species 6.42 77

Subtotal other species 1.92 23

Total 8.34 100
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As for the types of prebiotics added to fish diets, trends regarding their multiple effects
are identified.

I. In studies where β-glucan is added to different fish species, the results are mainly in
improving growth and immune-related mechanisms such as phagocytosis, lysozyme,
haemolytic complement, and bactericidal activity (Table 1).

II. Regarding the application of inulin, in different studies, the effects are presented in an
increase in the production of digestive enzymes, and short-chain fatty acids, as well as
improvement of the immune system and growth. In contrast, in other studies, there
are negative and null results in growth, survival, and the intestinal cells (Table 1).

III. MOS has been found to have multiple beneficial effects such as improved growth,
survival, immune system, length and density of microvilli of intestinal cells, as well
as a reduction in potential intestinal pathogenic bacteria such as Aeromonas spp. and
Vibrio spp. Similar results are found with the cell wall application of Saccharomyces
cerevisiae, which is composed of β-glucan and MOS (Table 1).

IV. Works where AXOS, GOS, oligofructose, and XOS are applied are less abundant
compared to works studying β-glucan, inulin, and MOS. Despite this, the results have
been beneficial for growth, survival, and the immune system, as well as an increased
activity of the digestive enzymes (lipase and amylase) and microvilli length of the
intestinal cells (Table 1).

Based on the analysis of the effects of prebiotics on fish species, the importance of their
application in improving aquaculture conditions is emphasized.

Research worldwide shows that the benefits of prebiotics supplements include an improved
immune response and nutrient absorption (increased enterocyte number and microvilli size),
as well as increased growth and survival rates (Table 1) [30–32,35,40,42,44,49,51–55,59,60,64,65].
Mo et al. [52] studied in the grass carp C. carpio the effect of inulin and mannan-oligosaccharides
at concentrations of 0.2 and 2% in the administered diet. After 56 days of feeding, both prebiotics
increased growth. In another work, Abu-Elala et al. [40] found that applying S. cerevisiae cell walls
composed of β-glucans and mannan-oligosaccharides at 0.1 and 0.2% in the tilapia O. niloticus
for nine weeks improved growth and the immune system. In another study, Ren et al. [65]
applied MOS at different concentrations (0.3, 0.6, 1.0, and 2.0%) in the grouper Epinephelus after
9 weeks and found that they had an increase in lysozyme activity related to the increase of the
immune system, as well as an increase in the size of the microvilli. Zhu et al. [42] found in
hybrid grouper Epinephelus that MOS and XOS improved growth and survival by 28 days at
concentrations of 0.2 and 0.05%, respectively.

Not all specific factors involved in the effectiveness of prebiotics in fish are known with
certainty. Some model studies have tried to explain extensively the mechanisms related
to the effects of prebiotics on fish, principally in the gut microbiota and their relationship
to factors that benefit production, such as growth and survival. For example, in the work
reported by Geraylou et al. [29], applying 2% arabinoxylanoligosaccharide to the diet of the
Siberian sturgeon A. baerii for 12 weeks increased the number of lactic acid bacteria such
as Lactobacillus, Lactococcus, and Clostridium, as well as the presence of short-chain fatty
acids, which are considered precursors of growth-related pathways, so it was concluded
that via these pathways and with the presence of prebiotic AXOS, there was a significant
improvement in growth. Tiengtam et al. [53], when adding inulin as a supplement to
O. niloticus, found that there was an increase in the number of enterocytes as well as an
increase in the size of the microvilli of these cells. With these characteristics, this species
can assimilate more nutrients and thus improve their growth. While Akter et al. [64], by
applying mannanoligosaccharide to the catfish P. hypophthalmus at different concentrations
(0.2, 0.4, 0.6, and 0.8%) for 12 weeks, increased survival by decreasing the pathogenic
bacterium A. hydrophila., the better survival of which may reflect a higher production
capacity of aquaculture activity.

However, in a few studies, adverse effects resulting from the application of prebiotics
in fish have also been seen, ranging from decreased growth performance [22] and enzyme
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activity in the immune system [61] to gut-related problems such as decreased numbers of
enterocytes [46], decreased villi heights [72], and intestinal inflammation [73] (Table 1).

6. Limitations of Use of Prebiotics in Fish Aquaculture

The results concerning the effects caused by the application of prebiotics in fish
aquaculture have been very variable in different studies in recent years. These results vary
according to the fish species to which these supplements are added, the age of organisms,
their diet (carnivore, herbivore, omnivore), the environment where they develop (cold,
warm, freshwater, marine), the type or types of prebiotics applied, doses and period of
application, as well as the environmental conditions (physical/chemical factors) where the
experiments are carried out. In addition, it is crucial to know the nutritional requirements of
each fish species to which prebiotics are added since an inadequate dose can be potentially
dangerous or have no effect on the organisms (Table 1). Therefore, before applying any
prebiotic to aquaculture production, it is necessary to evaluate dose/time tests with model
organisms, to define their behavior, if a specific prebiotic has not been previously applied
to them. Also, the use of prebiotics in species with physiological characteristics like those
that have previously had favorable results can be considered.

Another limitation to be considered when applying prebiotics is the regulations. There
are no regulations for including prebiotics in aquaculture feed, or the existing ones are
minimal. The only one that exists is for application in humans, which is different among the
countries that use it [74,75]. The scientific evidence on the effectiveness of these ingredients
is agreed upon by Japan, the European Union, the United States of America, Argentina,
and Brazil; likewise, these nations add prebiotics and probiotics similarly as if they were
the same [75]. Although both are closely related regarding their benefits they can have on
the organism that consumes them, they have essential differences. Probiotics must be live
microorganisms that are applied in specific amounts (between 106 and 109 CFU/g, 10) and
this quantity must be carefully established before their application as a probiotic. At the
same time, prebiotics are non-living ingredients and the care in applying them is not as
critical as with probiotics. Concerning these characteristics that differentiate prebiotics and
probiotics, it is appropriate to apply specific legislation to each supplement for its handling
and application to the diets of humans and aquatic organisms separately to gain control
over its use and its effects. In addition, these laws must be homogeneous for developed
and developing countries due to the globalization of product markets, thus contributing to
more efficient resource management.

Furthermore, it is noteworthy that in different studies, high-tech tools have already
been applied both for the analysis of metabolites modulated by prebiotics [29,76] and
for gene analysis (DNA and RNA) on the influence of these supplements [40,43,66,77].
However, it would be interesting to conduct studies using other “omic” technologies
simultaneously to obtain broader schemes of the effects of these supplements that can serve
as a guide to be applied in improving aquaculture production levels.

7. Potential New Prebiotics in the Fish Aquaculture Industry

Despite the limitations of the use of prebiotics, there is continuous research on the
analysis of potential new prebiotics. For this purpose, organisms of various taxa such as
algae, fungi, invertebrates such as crustaceans and insects, as well as fish rich in these
supplements are used. One of them is chitosan, found in fungal cell walls, annelid chitin,
some crustacean exoskeletons [78], and fish scales [79]. The latter is quite interesting
regarding the raw material quantity used for this supplement. For example, the global
tilapia production for 2020 represented 11.2 percent of the total for inland aquaculture
(Table 2).

Chitosan is a potential prebiotic due to its non-toxic, antimicrobial, antioxidant, bio-
compatible, and biodegradable properties. Due to its diverse properties, it has been used in
seafood preservation [80], fruits, and minimally processed vegetables [81,82]. This potential
prebiotic has also been used in some works related to fish aquaculture and has been found
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to have different beneficial effects, such as those established in the required characteristics
of prebiotics [13]. Despite the characteristics in terms of the effects on the improvement of
the cultivation conditions found with chitosan, it is necessary to check its beneficial effects
in more experiments carried out in different species of fish to have more certainty about its
application.

Geng et al. [83] noted increased growth and immunity against the pathogenic bac-
terium V. harveyi by adding doses of 0.3 and 0.6% chitosan to the diet of the cobia fish
Rachycentron canadum. The review by Ahmed et al. [84] indicated that chitosan added
to diets significantly improves growth and survival in both freshwater (C. carpio, Caras-
sius gibelio, Cirrhinus mrigala, and O. mykiss) and marine (Epinephelus bruneus, L. calcarifer,
Paralichthys olivaceus, and Scophthalmus maximus) fish. Meanwhile, Yildirim-Aksoy and
Beck [85] indicate that chitosan significantly reduces the presence of highly pathogenic
bacteria (A. hydrophila, Edwardsiella ictaluri, and F. columnare) from warm water finfish
(catfish, carp, and tilapia).

Other potential prebiotics are laminarian and fucoidan, which are extracted from the
brown alga Sargassum [86], which has wreaked havoc in recent years on Mexican Caribbean
beaches. El-Boshy et al. [87], when applying laminarian in the tilapia Oreochromis niloti-
cus, found increased bactericidal activity (lysozyme) and survival against the pathogenic
bacterium A. hydrophila. In another study, Immanuel et al. [88], when applying fucoidan
in Penaeus monodon shrimp, found that it increased innate immunity and survival against
the white spot syndrome virus, which has caused multi-million-dollar losses in the shrimp
industry since it appeared in early 1990. In a review by Raposo et al. [89], they analyzed
different prebiotics, such as alginate, laminarian, and fucoidan, extracted from macro and
microalgae (genera Ascophyllum, Fucus, Laminaria, Sargassum, and Undaria), and found that
most of these ingredients have effects in an increase in beneficial bacteria (Bifidobacterium,
Lactobacillus), an increase in short-chain fatty acids, and a reduction in pH in mammals
such as mice, pigs, and humans. Additionally, Allsopp et al. [90] conducted an in vitro
investigation on the potential of the xylan prebiotic extracted from the red alga Palmaria
palmata and found that this ingredient increased the production of short-chain fatty acids ac-
etate, propionate, and butyrate. The authors proposed further investigating these prebiotics
added to human diets based on this result. As for applying this diversity of prebiotics found
in the algae mentioned, it is necessary to design experiments where they add prebiotics
together (consortium) isolated from these organisms to define their potentially synergistic
effects on the growing conditions of aquatic organisms. The use of algae as supplements in
developing countries is undervalued due to ignorance about their potential applications.

Given the cited works in this section, it is evident that there is still much to be tested
in the research on prebiotics being applied in fish aquaculture. In addition, it is necessary
to inform and convince the people within the aquaculture sector of the benefits of these
potential prebiotics to apply them since they are in the habit of continuously applying what
works, and are not updated on the application of new technologies that could improve
their productive activity.

8. Current Status and Potential Use of Prebiotics in Mexican Fish Aquaculture
8.1. Fish Production in Mexico

In Mexico, fish production represents second place in terms of cultivated aquatic
organisms, followed by crustacean farming [91]. Fish aquaculture in Mexico has fluctuated
with an increasing trend in recent years [91]. However, with the COVID-19 pandemic,
this trend was interrupted by a significant reduction in the production of fish (Figure 2).
The pandemic of COVID-19 has caused since, the first months of the year 2020, various
damages to health, society, and economies, as well as fishing and aquaculture activity,
in many countries of the world. Fishing and aquaculture were affected by a reduction
in the growth trend over the last two decades [1]. In addition, the confinement and
closure of markets caused by this disease in 2020 affected international trade in fishery
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and aquaculture products, generating 151 billion USD, compared to the 165 billion USD
recorded in 2018 [1].

Figure 2. Aquaculture production (live weight in tons) of the main fish species cultivated in Mexico
(2011–2020). (CONAPESCA 2021).

In terms of the production quantity presented in Mexico, the main fish species farmed
are the tilapia Oreochromis niloticus, two species of carp (the common carp C. carpio and grass
carp C. idella), the rainbow trout O. mykiss, and the channel catfish Ictalurus punctatus [91]
(Figure 2).

8.2. Use of Prebiotics in Mexican Fish Aquaculture Experiments

Although there have been numerous studies worldwide where prebiotics have been
applied to the commercial fish species that are among the most cultivated in Mexico, it
is appropriate to mention some of those carried out in this country since the climatic
conditions may be different in other countries, which may cause changes in the effects
previously established, even for the same species. For example, when applying FOS to
rainbow trout with a concentration of 0.5% for 70 days, Cid-García et al. [92] found no
effect on growth. In contrast, there was a significant increase in lipid and protein content in
the muscle and the immune system (Table 3). In another study using the same fish species,
Segura-Campos et al. [93] found no growth changes for both prebiotics when adding FOS
and MOS to 3% of their diet for 60 days. However, MOS increased the lipid content in the
muscle (Table 3).

In the Nile tilapia O. niloticus, Flores-Méndez et al. [94] applied the experimental
prebiotic agavina derived from A. tequilana in concentrations of 2% and 4% for 80 days in
normal conditions and 30 days in crowded conditions, where at 80 days, there was no effect
on growth. While under space stress conditions, they found an improvement in growth
and a significant reduction in cortisol stress hormone and triglyceride levels (Table 3).

In addition to these studies, in recent years, different prebiotics have already been
applied in freshwater and marine endemic fish from Mexico and neighboring countries
(e.g., channel catfish, Pacific red snapper, tropical gar, leopard grouper, and totoaba), where
the effects vary by species, the dose, time of application, and the type of these supplements.

In the freshwater fish channel catfish Ictalurus punctatus, Sánchez-Martínez et al. [95]
noted that a concentration of β-glucan of 0.05% for 28 days increased the immune system.
In contrast, Guzmán-Villanueva et al. [96] added the same prebiotic with concentrations
of 0.1 and 0.2% to the marine fish Pacific red snapper L. peru for 42 days and found that it
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had significant effects on improvement in growth and the activity of the digestive enzymes
trypsin and chymotrypsin.

In the freshwater fish tropical gar A. tropicus, prebiotics have been applied where the
results are variables with positive, negative, and null effects in the analysis of growth and
activity of digestive enzymes (Table 3). Nieves-Rodríguez et al. [97] and Cigarroa-Ruiz
et al. [98], when adding β-glucan in doses of 0.2–2.0%, by 62 and 21 days, respectively,
saw no effects on growth. In contrast, the effects on digestive enzymes were different
between these studies. In the first study, the effects were null, and in the second, there was
a significant increase in trypsin and lipase activities.

In studies using FOS in concentrations of 0.5–2.0%, Sepúlveda-Quiroz et al. [99] noted
increased growth and a significant reduction in protease, trypsin, and lipase activities.
While Pérez-Jiménez et al. [100] found significant increases in protease and amylase ac-
tivities. Regarding the use of inulin, De La Cruz-Marín et al. [101] defined an increase in
survival at a concentration of 2.5% after 45 days of the experiment. However, they found
a negative effect on growth at 1.0 and 1.5% concentrations. In another study, Maytorena-
Verdugo et al. [102], when adding MOS in different concentrations (0.2, 0.4, and 0.6%)
for 20 days, found a significant increase in growth and digestive enzymes trypsin, lipase,
and amylase.

Table 3. Summary of research in Mexico on the effects of prebiotics supplements in fish aquaculture.

Prebiotics Fish Species
Dosage/

Application
Time

Prebiotics Sources Effects References

Agavin Totoaba macdonaldi 2%/44 days Agave tequilana → Growth [101]

Agavin O. niloticus 2, 4%/80 and
110 days A. tequilana

80 days→ growth
110 days ↑ growth, ↓ cortisol

and triglycerides level
[91]

Agavin T. macdonaldi 1%/56 days A. tequilana → Growth, trypsin and
protease activity [102]

β-glucan Lutjanus peru 0.1,
0.2%/42 days S. cerevisiae ↑ Growth, trypsin, and

chymotrypsin activity [93]

β-glucan I. punctatus 0.05, 0.1,
0.5%/28 days S. cerevisiae 0.05% ↑ immune system [92]

β-glucan Atractosteus
tropicus

0.5, 1.0, 1.5,
2.0%/62 days S. cerevisiae

→ Growthand protease,
trypsin,

and amylase activity
[94]

β-glucan A. tropicus 0.2, 0.4, 0.6,
0.8%%/21 days S. cerevisiae

→ Growth
0.6 and 0.8% ↑ trypsin and

lipase activity
[95]

β-glucan,
chitosan and

inulin
T. macdonaldi 0.1, 0.5,

1.0%/60 days

β-glucan from
S. cerevisiae

Chitosan from shrimp
shells

Inulin from Agave sp.

β-glucan ↑ gene immune
system

Chitosan ↑ respiratory burst
↓ Lipase activity

Inulin ↑ trypsin and lipase
activity

[103]

FOS O. mykiss 0.5%/70 days Saccharum officinarum
→ Growth

↑ Immune system and lipid
and protein in muscle

[89]

FOS A. tropicus 0.5, 1.0, 1.5,
2.0%/45 days A. tequilana

↑ Growth
↓ Protease, trypsin, and

lipase activity
[96]



Animals 2023, 13, 3607 14 of 21

Table 3. Cont.

Prebiotics Fish Species
Dosage/

Application
Time

Prebiotics Sources Effects References

FOS A. tropicus 0.5,
0.75%/15 days A. tequilana

0.5% ↑ protease and
amylase activity

0.75% ↑ growth, survival
[97]

FOS y MOS O. mykiss 3.0%/60 days

FOS from
S. officinarum

MOS from
S. cerevisiae

→ Growth, protein in muscle
MOS ↑ lipid in muscle [90]

Inulin Mycteroperca
rosacea 1%/56 days A. tequilana → Growth and lisozyme

activity [100]

Inulin A. tropicus 0.5, 1.0, 1.5, 2.0,
2.5%/45 days A. tequilana 1.0 and 1.5% ↓ growth

2.5% ↑ survival [98]

MOS A. tropicus 0.2, 0.4 and
0.6%/20 days S. cerevisiae ↑ Growth and trypsin, lipase,

and amylase activity [99]

Symbols represent increase (↑), no effect (→), or decrease (↓) in the response parameter of the prebiotics relative
to the control.

In another work, Reyes-Becerril et al. [103], when adding inulin at 1% in the leopard
grouper M. rosacea for 56 days, there were no changes in growth and lysozyme activity.
The same result was obtained in the Totoaba T. macdonaldi using the experimental prebiotic
agavin in concentrations of 1 and 2% [104,105]. In the same species, the effects of β-glucan
and inulin were noted with increased genes in the immune system and digestive enzyme
activities, respectively [106].

The good results obtained in research conducted in different parts of the world regard-
ing the application of prebiotics in farming fish species including tilapia, carp, rainbow
trout, and different catfish species, as well as the variable results of species studied in
Mexico, should be considered in order to evaluate the effects of different prebiotics, with
variations in doses and application times, in endemic fish with great aquaculture potential
in Mexico, such as those belonging to the families Atherinopsidae, Cichlidae, Cyprinidae,
Ictaluridae, Lepisosteidae, Lutjanidae, Salmonidae, and Sciaenidae. It should be noted that
the application of prebiotics in experiments conducted in Mexico has increased in recent
years. However, it is necessary to share the knowledge generated with small and large
aquaculture producers, who, with an adequate application of these supplements in the
diet of the organisms used, can contribute to an increase in fish aquaculture in Mexico,
generating more economic profit and necessary jobs throughout the process of production
and sale of products in this activity.

In addition, in studies analyzing the effects of prebiotics on fish, a continuous applica-
tion of high-tech tools related to omic sciences is necessary, which can help us understand
and develop a better explanation of what happens in aquatic organisms to which these
food supplements are applied.

9. Challenges and Opportunities

Research shows that prebiotics have multiple beneficial effects in improving fish
farming conditions, reflecting increased growth, health, and survival. Despite this, different
aspects limit their optimal use in productive activity in developing countries. So, there are
some challenges and opportunities, which include:

I. The basis of known and applied prebiotics with beneficial effects in fish aquaculture
with global commercial importance results in an opportunity to advise small, medium,
and large producers in developing countries on their application and improvement of
their activity.
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II. To make known the alternatives of new potential prebiotics to experiment and test
the effects on commercially known and endemic fish that can be used for production.

III. To consider the opportunity of taking advantage of undervalued natural sources of
prebiotics, such as the large amount of Sargassum reaching the coasts of Mexico and
the waste of organisms, such as crustaceans, potential sources of chitosan, to isolate
these supplements and design experiments to determine their effects on the global
and endemic commercial fish used in aquaculture from developing countries such as
Mexico.

IV. To experiment with the addition of prebiotics and consortia of prebiotics by varying
their concentrations, time, and dose of application to determine whether there is
synergy in the benefits.

V. Make more timely legislation in developing countries on the use of prebiotics in
the aquaculture sector, considering the laws applied in developed countries in this
productive activity.

10. Conclusions

Prebiotics stand out for positively modifying the presence of beneficial microbiota,
whose function is the modulation of different metabolic pathways for the adequate mainte-
nance of the organisms that consume these food supplements, and their results are reflected
in the improvement of the culture conditions in terms of the growth, modulation of diges-
tive enzymes, and health (improve the immune system) of aquatic organisms. However,
multidisciplinary studies such as molecular analysis using different tools (e.g., DNA and
RNA sequencing, and metabolites analysis) are needed to explain these supplements’
effects better.

In aquaculture, despite positive results with the application of prebiotics, there are
variations in the effects in the species to which they are added, age, dosage, period of
application, and environmental conditions. Extensive studies are needed to consider the
nutritional requirements of each species and in different culture conditions, which can be
influenced by physical/chemical factors (e.g., temperature, pH, dissolved oxygen, nitrogen)
or stressors such as overcrowding. Also, it is desirable to examine in more detail the
potential prebiotics that can be used in the aquaculture sector and that are already applied
in other areas, such as human and veterinary medicine for terrestrial mammals. However,
before achieving this, the respective studies should be carried out by applying the selection
criteria of prebiotics in aquatic organisms and analyzing the results with caution before
applying them intensively and commercially.

Continued research will contribute to generating more options for prebiotic substances
that can be applied to different areas, including aquaculture. However, it is vital to develop
legislation that is as homogeneous as possible at the global level or in multinational regions,
like the European Union’s on the application of prebiotics in aquaculture, which is known
to have worked, to be able to apply them correctly and share knowledge among different
research groups.

Global aquaculture has a growing demand that goes hand in hand with rapid pop-
ulation growth, so it would be interesting to consider the application of prebiotics, both
those successfully tested and those potentially usable (e.g., agavin, chitosan, laminarian,
and fucoidan), in species of fish with high global production and specific to each region
with culture potential, in order to obtain more substantial production and higher quality of
sustainable aquaculture products.

In Mexico, although studies have been carried out in recent years where prebiotics
have been applied to fish of global importance, as well as in endemic fish, these and new
prebiotics have yet to be tested with different doses and times of application; therefore, it is
necessary to correctly define the optimal requirements to support the production of more
profitable aquaculture.
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