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Simple Summary: For this paper, we investigated the differences in adipose tissue deposition
between sheep breeds with fat and thin tails, relying on advanced techniques like meta-analyses
and machine learning to analyze gene expression data. Our findings revealed key genes associated
with fat metabolism, shedding light on the genetic factors influencing tail fat in sheep. Notably, three
specific genes (POSTN, K35, and SETD4) were identified as significant biosignatures related to fat
deposition. This innovative approach (combining data analysis and machine learning) enhances our
understanding of how to optimize fat deposition in sheep breeds, which holds potential for more
efficient animal breeding strategies and carcass fat reduction.

Abstract: It has been shown that tail fat content varies significantly among sheep breeds and plays
a significant role in meat quality. Recently, significant efforts have been made to understand the
physiological, biochemical, and genomic regulation of fat deposition in sheep tails in order to unravel
the mechanisms underlying energy storage and adipose tissue lipid metabolism. RNA-seq has
enabled us to provide a high-resolution snapshot of differential gene expression between fat- and
thin-tailed sheep breeds. Therefore, three RNA-seq datasets were meta-analyzed for the current work
to elucidate the transcriptome profile differences between them. Specifically, we identified hub genes,
performed gene ontology (GO) analysis, carried out enrichment analyses of the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways, and validated hub genes using machine learning algorithms.
This approach revealed a total of 136 meta-genes, 39 of which were not significant in any of the
individual studies, indicating the higher statistical power of the meta-analysis. Furthermore, the
results derived from the use of machine learning revealed POSTN, K35, SETD4, USP29, ANKRD37,
RTN2, PRG4, and LRRC4C as substantial genes that were assigned a higher weight (0.7) than other
meta-genes. Among the decision tree models, the Random Forest ones surpassed the others in
adipose tissue predictive power fat deposition in fat- and thin-tailed breeds (accuracy > 0.85%). In
this regard, combining meta-analyses and machine learning approaches allowed for the identification
of three important genes (POSTN, K35, SETD4) related to lipid metabolism, and our findings could
help animal breeding strategies optimize fat-tailed breeds’ tail sizes.

Keywords: fat deposition; fat-tailed sheep; machine learning; RNA-seq

1. Introduction

Sheep are the leading meat and wool producers [1,2], with 20–25% of their world
population being fat-tailed [3,4]. These sheep were first recorded on an Uruk III stone
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vessel about 5000 years ago [5]. These breeds are used in the different lamb production
systems that are currently adopted around the world, reflecting different breeders’ economic
conditions, consumers’ preferences, resources, and production aims. However, traditionally,
sheep breeding is chiefly based on dairy breeds for both milk and meat production [2], with
lamb being considered a high-quality product and even a delicacy in many countries [6].

In several breeds, artificial and natural selection have indirectly led to the development
of adaptation to varying environmental conditions in different geographic regions. Within
this spectrum, fat-tailed sheep are a noteworthy category of the world sheep population [7].
These sheep are primarily found in the Middle East, North and East Africa, and Central
Asia. As highlighted by Xu et al. [8], fat tails serve as vital energy reserves that are crucial
for survival in the wake of challenging conditions like droughts and food scarcity. This
notion was further affirmed by Mwacharo et al. [9], who underscored that fat-tailed sheep
predominate in the deserts and highlands of northern Africa, as well as in the semi-arid
and arid regions of eastern and southern Africa.

The level of lipid storage in the carcass influences meat quality [10,11]. Moreover, fat
affects many physical and chemical properties (e.g., color, water holding capacity) that are
fundamental in the purchasing decision process [12–15]. Also, considering the increase
in human living standards, people prefer tasty and healthy meat. Hence, increasing at-
tention has been paid to provide leaner meat and to produce meat with intermuscular fat
characterized by a lower saturation and higher unsaturation of fatty acids [16]. Adipose
tissue is an important storage location for excess energy [10], with tail and subcutaneous fat
being domestic animals’ major fat storage sites [11]. The number of sheep breeds that have
evolved worldwide is very high, with many being found specifically in northern Africa, the
Middle East, Central Asia, and Western China [17]. It is assumed that the first home sheep
were thin, but over time, due to the need to store energy for harsh environmental conditions,
fat-tailed breeds gradually appeared [18]. However, in modern sheep industry systems,
thin-tailed breeds are more desirable, while tail tissue has lost its importance in fat-tailed
sheep. There are several logical reasons behind this trend: 1. in modern sheep breeding
systems, there is no need for energy from tail tissue because intensive or semi-intensive
feeding systems are preferred; 2. feed efficiency is decreased due to the higher energy
requirement of fat anabolism as compared to the generation of protein or other molecules
3. today, the health of consumers is threatened by the consumption of high-fat foods;
4. a large tail can cause problems for mating and animal welfare. Therefore, raising thin-
tailed sheep is cost-effective for both producers and consumers, and one of the sheep
industry’s primary goals is to study lean meat. In this context, disentangling the molec-
ular mechanism of fat accumulation is critical to reduce its content in the carcass, as the
manipulation of fat deposition is crucial to produce lean meat.

To date, various genomic- [19–25] and transcriptomic-based studies [26–30] have
aimed to pinpoint the wide range of genes responsible for fat deposition. Most studies have
addressed the mechanism of fat deposition in the tail of fat-tailed sheep breeds [3,24,31–34],
with the majority of them focusing on one gene, especially Leptin (LEP) [35–37], Fatty Acid
Banding Protein4 (FABP4) [38–40], Adiponectin, C1Q And Collagen Domain Containing
(ADIPOQ) [11,30], and Stearoyl-CoA Desaturase (SCD) [41,42]. Nowadays, instead of ex-
amining single genes, the whole genome of animals can be examined using next-generation
sequencing (NGS) technologies. Using this approach, the whole transcriptomes of single
cells can be examined using RNA sequencing (RNA-Seq). This method makes it possible to
measure the expression of countless genes simultaneously and gives us a lot of information
about the genome, even if there is little consensus on the obtained results, with the differen-
tially expressed genes (DEGs) of one study not being supported by the results of another.
The observed differences in the identified DEGs among studies requires a meta-analysis
to uncover the genes that are responsible for fat deposition. Indeed, this method, through
the use of rigorous statistical tests, can disclose patterns hidden in individual studies and
allows one to draw conclusions with a high degree of reliability. For this study, by em-
ploying meta-analysis and machine learning approaches, we re-analyzed data from three
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recently conducted whole transcriptome RNA-seq studies of Guangling Large-Tailed and
Small-Tailed Han sheep [11], Lori-Bakhtiari (fat-tailed) and Zel (thin-tailed) sheep [43], and
Ghezel (fat-tailed) and Zel (thin-tailed) sheep [29]. The primary purpose of the current
study was to identify differential meta-genes in male individuals of fat- and thin-tailed
sheep breeds as transcriptomic signatures of fat deposition.

2. Materials and Methods

An overview of the process followed in this study is shown in Figure 1.

Figure 1. Flowchart of meta-analysis of the present study.

2.1. Dataset Collection

The keywords that were used were “Ovis aries”, “Fat-tailed”, “Thin-tailed”, “Fat
deposition” and “Lipid metabolism”. We used PubMed Central (https://www.ncbi.nlm.
nih.gov/pubmed accessed on 11 June 2021) and Google Scholar (https://scholar.google.
com accessed on 11 June 2021). After identifying suitable RNA-seq studies of tail-fat
deposition in the relevant fat- and thin-tailed sheep breeds, the related data were retrieved
from either EMBL_EBI (https://www.ebi.ac.uk/arrayexpress accessed on 11 June 2021) or
Gene Expression Omnibus (GEO) of NCBI (https://www.ncbi.nlm.nih.gov/gds accessed
on 11 June 2021) databases. Two studies were excluded from our studies because the type
of tissue examined or the type of RNA examined, or the sex of the samples were different.
Finally, a set of sequencing data were collected from the fat tail tissue of male individuals
from different sheep breeds.

2.2. Quality Control, Mapping, and Differential Gene Expression Analysis

Raw sequencing reads were subjected to quality control using FastQC (v0.11.5) [44]
and trimmed using Trimmomatic software (v0.35); raw reads with adapter contamination

https://www.ncbi.nlm.nih.gov/pubmed
https://www.ncbi.nlm.nih.gov/pubmed
https://scholar.google.com
https://scholar.google.com
https://www.ebi.ac.uk/arrayexpress
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and more than 10% of unknown bases, as well as with more than 50% of low-quality bases
were trimmed out. Moreover, undesirable reads after trimming were filtered out [45]. The
clean reads were mapped to the sheep reference genome v4.0 (ftp://ftp.ncbi.nlm.nih.gov/
genomes/Ovis_aries/ accessed on 11 June 2021) using TopHat (v2.1.1) [46]. Sorted Binary
Alignment Map (BAM) files were converted to Sequence Alignment Map (SAM) files, and
count matrices were generated using htseq-count [47]. Then, the expression of the genes
was normalized for library size and gene length to determine gene abundances using
Fragment Per Kilo bases per Million (FPKM) [48], and the differentially expressed genes
between the fat- and thin-tailed samples were identified using the DEseq2 package of R
software [49]. For every dataset, each of these steps was carried out separately.

2.3. Meta-Analysis

The results of multiple scientific studies can be combined via a meta-analysis [50].
In addition to providing estimates of unknown effect sizes, meta-analyses can identify
interesting and otherwise undetected relationships based on these results [51]. A set of
p-values was computed for all three individual study datasets and later combined using
the Fisher method of the meta RNAseq package [52]. Significance was set at p < 0.05. We
named the final set of DEGs identified via our meta-analysis meta-genes.

2.4. GO Classification and KEGG Pathway Analysis

Gene ontology analysis is used to describe the function of genes in organisms. The
Database for Annotation, Visualization, and Integrated Discovery (DAVID) (https://david.
ncifcrf.gov/ accessed on 11 June 2021) was utilized to identify the category of meta-genes in
the Gene Ontology (GO) based on Biological Processes (BP), Cellular Components (CC), and
Molecular Functions (MF). Furthermore, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis tool (http://www.genome.jp/kegg/ accessed on 11 June 2021)
was used to detect the metabolic pathways that are enriched by the meta-genes. For the
enrichment analysis, terms with p < 0.05 generated using the modified Fisher Exact test
were set as the cutoff thresholds.

2.5. Protein–Protein Network and Module Analysis

Protein functional interactions and their systematic properties help to provide context
in molecular biology systems. The STRING database (http://string-db.org accessed on 11
June 2021) integrates protein–protein interactions that include direct (physical) and indirect
(functional) interactions [53]. To predict protein–protein interactions, the identified meta-
genes were imported into the STRING database (v11.0) [54]. The functional modules were
detected via clustering using the K-means algorithm. Also, the Cytoscape plugin cytoHubba
(v3.7.2) was utilized to identify hub genes using the Maximal Clique Centrality (MCC)
method [55]. The PPI networks were constructed based on co-expression, neighborhood
interactions, text mining, gene fusion, and databases as interaction sources. Functional
modules were defined in the constructed networks by clustering the K-means algorithm
into three modules [56].

2.6. Validation of Hub Genes Using Machine Learning Algorithms

Machine learning (ML) is a subset of artificial intelligence (AI) that uses algorithms
to automatically learn insights and identify patterns from data to make better decisions.
Decision Tree (DT) is one of the simplest and best models in machine learning, the main
purpose of which is to predict the value of the target variable by using learning simple
decision rules deduced from data features [57]. To assess the effectiveness of hub genes in
distinguishing between fat-tailed and thin-tailed sheep, meta-genes and their correspond-
ing expression values were identified and subjected to gene selection using seven different
weighting algorithms. Normalized data were used for the attribute weighting algorithms
(AWs). A range between 0 and 1 was considered for all weights, with values closer to 1
indicating important attributes for one meta-gene. These algorithms include Uncertainty,

ftp://ftp.ncbi.nlm.nih.gov/genomes/Ovis_aries/
ftp://ftp.ncbi.nlm.nih.gov/genomes/Ovis_aries/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://www.genome.jp/kegg/
http://string-db.org


Animals 2023, 13, 3475 5 of 15

Relief, Gain Ratio, Information Gain, Gini Index, Chi-square, and Rule [58]. Only meta-
genes with a weighting value greater than 0.7 were selected for DT construction using
four criteria—Information Gain, Information Gain ratio, Gini index, and Accuracy—along
with the leave-one-out cross-validation (LOOCV) method. During this process, the initial
dataset was divided into training and testing sets. One sample at a time was removed from
the initial dataset and added to the testing set, while all the others remained in the training
set [59].

3. Results
3.1. Sequencing Data Collection

For this study, a total of approximately 200 Giga bases of RNA-seq from three datasets
were utilized, comprising 19 samples in total. Each of the three datasets was sequenced
using the Illumina HiSeq 2000 platform, and information pertaining to the three datasets is
listed in Table 1.

Table 1. Summary information of three RNA-seq datasets sourced from sheep tail fat tissue.

GEO Accession
Number

Number of Samples Tissue
Sample

Age of Slaughter
(Month) Read Length Reference

Thin-Tailed Fat-Tailed

PRJNA432669 3 3 Tail 6 150 bp [11]

PRJNA508203 3 3 Tail 6 150 bp [43]

PRJNA598581 4 3 Tail 6 150 bp [29]

3.2. Meta-Analysis of RNA-Seq Data

A total of 136 meta-genes were identified. Fisher’s method of differential analysis
identified 20 meta-genes in PRJNA432669, 2 in PRJNA598581, and 75 in PRJA508203, along
with 39 that had not been previously identified in the individual analyses.

3.3. Functional Enrichment Analysis of Meta-Genes

The top 10 BP terms are shown in Table 2.

Table 2. Top 10 Biological Process terms enriched by meta-genes.

Biological Process Terms Adjusted p-Value

Positive regulation of T cell cytokine production 0.002

Extracellular matrix organization 0.004

Stress-activated MAPK cascade 0.008

ERK1 and ERK2 cascade 0.008

Positive regulation of interleukin-10 production 0.009

Positive regulation of interleukin-1 secretion 0.016

Positive regulation of interleukin-6 production 0.034

Positive regulation of interleukin-8 production 0.036

Positive regulation of interferon-gamma (IFN)secretion 0.04

Positive regulation of tumor necrosis factor (TNF) production 0.04

The CC terms of “lipid droplet”, “Golgi lumen”, “endoplasmic reticulum lumen”, and
MF terms of “lipoprotein lipase activity”, “dipeptidyl-peptidase activity”, “phospholipase
activity”, “interleukin-17 receptor activity”, and “cAMP response element binding” were
significantly enriched (p < 0.05). Several BP terms related to lipolysis, such as the “positive
regulation of interleukin-1 beta secretion”, “positive regulation of interleukin-6 production”,
“positive regulation of interleukin-8 production, “positive regulation of interleukin-10
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production”, “regulation of interleukin-12 secretion”, “regulation of interleukin-13 secre-
tion”, “positive regulation of interferon-gamma secretion”, and “positive regulation of
tumor necrosis factor production” were enriched by meta-genes. The meta-genes were
also mapped onto the KEGG pathway database to identify the pathways related to fat
deposition (Figure 2).

Figure 2. Top ten Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched by
meta-genes.

3.4. Protein–Protein Interaction (PPI) Network and Module Analysis

The PPI network of meta-genes revealed that 88% of the identified meta-genes had
considerable interaction with the primary functional modules based on the confidence
score of the interaction (confidence score < 0.7). In contrast, other disconnected nodes had
no interaction in PPI networks (Figure 3). Also, TNF Receptor Associated Factor 6 (TRAF6)
and Collagen, type I, Alpha 1 (COL1A1) meta-genes were identified as hub genes in PPI
networks’ green and red modules, respectively.

3.5. Feature Selection for Machine Learning

The meta-analysis resulted in the identification of 136 differentially expressed genes
between the fat- and thin-tailed sheep breeds. Ten meta-genes, including Periostin (POSTN),
Keratin 35 (K35), SET Domain Containing 4 (SETD4), Ubiquitin Specific Peptidase 29 (USP29),
Ankyrin Repeat Domain 37 (ANKRD37), ENSOARG00000001454, Reticulon (RTN2), Pro-
teoglycan (PRG4), and Leucine Rich Repeat Containing 4C (LRRC4C), were detected by
the majority of the attribute weighting algorithms (with weight above 0.7) as the most
informative genes. The top ten meta-genes in the discrimination of fat- and thin-tailed
samples, confirmed by the majority of AWs (with an average weight above 0.7), are reported
in Table 3. These meta-genes gained higher importance than the remaining meta-genes and
were believed to be more effective in distinguishing the two breeds. According to Figure 4,
a mean expression comparison between two types of breeds was carried out using a two-
sample t-test. The expression of POSTN, K35, and SETD4 meta-genes showed significant
differences between the two sheep breeds.
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Figure 3. Protein–protein interaction (PPI) network and functional module analysis of meta-genes.

Table 3. Top 10 out of the 136 meta-genes according to seven attribute weighting algorithms (AWs).

Attribute Weight_Info
Gain Ratio

Weight_
Rule

Weight_Chi
Squared

Weight_Gini
Index

Weight_
Uncertainty

Weight_
Relief

Weight_Info
Gain

Average_
Weight

POSTN 1 1 0.5 0.8 0.6 0.6 0.8 0.8

K35 0.8 0.9 0.6 0.6 0.7 1 0.6 0.8

SETD4 0.8 1.0 0.7 0.7 0.6 0.9 0.6 0.8

USP29 0.7 0.8 0.8 0.5 0.7 1.0 0.5 0.7

ANKRD37 0.7 0.9 0.8 0.5 0.7 0.9 0.5 0.7

ENSOARG
00000001454 0.8 1 0.5 0.6 0.4 0.7 0.6 0.7

RTN2 0.7 1 0.6 0.5 0.6 0.8 0.5 0.7

PRG4 0.8 1 0.3 0.6 0.4 0.9 0.6 0.7

LRRC4C 0.7 0.8 0.6 0.5 0.5 1 0.5 0.7
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Figure 4. Three meta-genes with attribute weighting above 0.8. A two-sample t-test was used for the
mean comparisons.

The performances of the eight decision tree models are presented in Table 4. According
to Table 4, among the decision tree models, the Random Forest with accuracy criterion and
the Random Forest with gain_ratio criterion models surpassed the others in predicting fat
deposition in both fat- and thin-tailed sheep breeds. These models had higher accuracy
(above 0.85%).

Table 4. Performances of machine learning models in the distinction of fat- and thin-tailed sheep
breeds via ten-fold cross validation.

Model Accuracy

Random Forest with accuracy criterion 90% +/− 22.36%

Random Forest with gain_ratio criterion 85% +/− 13.69%

Decision Tree with gain_ratio criterion 58.33% +/− 37.27%

Decision Tree with accuracy criterion 75% +/− 35.36%

Deep Learning with Tanh parameter 85% +/− 22.36%

Deep Learning with Rectifier parameter 75% +/− 25.00%

Deep Learning with Maxout parameter 56.67% +/− 18.07%

Naïve Bayes 78.33% +/− 21.73%

Also, the machine learning results show that the two meta-genes with the highest
weight (K35 and SETD4) were down-regulated, and POSTN was up-regulated in the
thin-tailed sheep breeds compared to the fat-tailed sheep breeds (Figure 5).
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Figure 5. Decision tree induced by the Random Forest algorithm with gain_ratio criterion and
accuracy criterion in distinguishing the fat-tailed sheep breeds from the thin-tailed sheep breeds in
three meta-genes with attribute weighting above 0.8.

4. Discussion

The current study identified genes that are informative in terms of the tail fat deposi-
tion of fat-tailed sheep breeds through using, for the first time in the literature, a machine
learning approach. “ERK1 and ERK2 cascade” and “stress-activated MAPK cascade” terms
are related to lipid metabolism. The two extracellular signal-regulated kinases (ERKs),
ERK1 and ERK2, are members of the mitogen-activated protein kinase (MAPK) pathway
and participate in both cell differentiation and proliferation, as well as the regulation of
lipolysis [60]. ERK activation leads to the fast stimulation of hormone-sensitive lipase
(HSL) activity and contributes to increased lipolysis. Documented pieces of evidence show
that, as a stimulator of lipolysis, catecholamines cannot only activate cAMP-dependent
protein kinase (PKA) but also activate ERKs of the MAPK pathway [61]. Five genes were
enriched in the “ERK1 and ERK2 cascade”, including Kinase Insert Domain Receptor
(KDR) or Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), Galectin-9 (LGALS9),
TRAF6, Nucleotide Binding Oligomerization Domain Containing 2 (NOD2), and Vascular
Endothelial Growth Factor Receptor 3 (VEGFR3). Three of them (i.e., KDR, NOD2, and
LGALS9) are closely related to lipid metabolism. A recent study showed that the KDR
gene protects mice from obesity via fat burning and progressing lipolysis and enhancing
basal metabolic rate [62]. In addition, it has been shown that galectin-9 enhances the pro-
duction of microglial Tumor Necrosis Factor (TNF), which is the main lipolytic factor [63].
NOD2 has also been shown to protect mice against diet-induced obesity and metabolic
dysfunction, with obese mice lacking the NOD2 gene suffering from metabolic dysfunction,
including blood lipids, hyperglycemia, and steatosis, and the mass of adipose tissue and
large fat droplets in liver cells increases [64]. These results were consistent with those of a
recent study on the difference in adipose tissue metabolic pathways in fat- and thin-tailed
sheep breeds [34].

There is a direct connection between lipid metabolism and terms such as Interleukin-1
(IL-1) [65], Interleukin-6 (IL-6) [29], Interleukin-8 (IL-8) [66], Interleukin-10 (IL-10) [67],
Interleukin-12 (IL-12) [68]. The “positive regulation of tumor necrosis” factor production is
also one of the BP terms closely related to lipolysis. It has been reported that, in human
adipocytes, TNF-α stimulates lipolysis via the elevation of intracellular cAMP, MAPK, and
extracellular signal-related kinase (ERK) [69,70]. All the inflammatory pathways and the
lipolytic ERK/MAPK/TNF pathways enhance lipolysis. In other words, these pathways
improve pro-inflammatory cytokine expression and increase lipolytic activity. Finally, these
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results suggest that some essential lipolytic pathways (e.g., “MAPK signaling pathway”
and “TNF signaling pathway”) and inflammatory pathways (e.g., “positive regulation
of IL-1 secretion”, “positive regulation of IL-6 production”, “positive regulation of IL-8
production”, and “positive regulation of IL-10 production”) are active in thin-tailed sheep
breeds. There have been reports that IL-1 and interferon-gamma (IFN) stimulate lipolysis
in cultured adipocytes [71]. In addition, inflammatory cytokine IL-6 and IL-8 mRNA
expressions are involved in lipopolysaccharide-induced lipolysis in human adipocytes [67].
Another study introduced IL-6 as a hub gene in the fat lipolysis of thin-tailed sheep
breeds [29]. This gene is well known to be a lipolytic factor that stimulates fat lipolysis
and fatty acid oxidation in humans [72,73], dairy cows [74], rats [75], mice [76,77], and
sheep [29]. Thus, the up-regulation of the aforementioned genes in thin-tailed sheep might
be closely related to lipolysis.

Our KEGG pathway analysis of the meta-genes revealed significant pathways (ad-
justed p-value < 0.05). Recent findings show that a set of pathways, such as lipid metabolism,
extracellular matrix (ECM) remodeling, molecular transport, and inflammatory response,
are enriched by a set of functional genes that maintain lipid homeostasis in response to
extreme environments in tailed animals [34]. In the present study, some pathways, includ-
ing “fatty acid degradation”, “NF-kappa B signaling pathway”, “NOD-like receptors”, and
“Toll-like receptors”, were all related to fat metabolism as an inflammatory response. One
of the significant terms in thin-tailed sheep breeds compared with fat-tailed sheep breeds is
the “fatty acid degradation” pathway, the pathway known for the lipolysis of adipocytes.
Another considerable term is “NF-kappa B signaling pathway”. NF-κB is important for
TNF-α-induced lipolysis of adipose tissue. Tumor necrosis factor-α (TNF-α) increases
lipolysis in adipose tissue via the MAPK pathway. Several meta-genes, including Myeloid
Differentiation Primary Response 88 (MYD88), TGF-Beta Activated Kinase 1 (MAP3K7)
Binding Protein 2 (TAB2), Interleukin-1 Receptor-associated Kinase 1 (IRAK1), Phospho-
lipase C Gamma 2 (PLCG2), and TRAF6, were found to be enriched in the “NF-kappa B
signaling pathway”, which is closely related to lipid metabolism.

“ECM-receptor interaction” is another significant pathway that is central to adipogen-
esis and fat tissue architecture [78]. Fat accumulation is an inflammatory condition related
to increased extracellular matrix gene expression [34,79]. However, a direct connection be-
tween ECM gene expression and fat tissue inflammation has not been reported. In a recent
study, transcriptome analysis of two broiler chickens showed that the extracellular matrix
receptor interaction signaling pathway is crucial to chicken meat quality. This pathway
might change intramuscular fat content, affecting broiler meat flavor [80]. In another study,
comparative transcriptome analysis of three adipose tissues (i.e., subcutaneous, intramus-
cular, and omental adipose tissue) showed that the interactions between transmembrane
receptors of fat cells and ECM components depend on depot-specific adipogenesis [81].
Cell adhesion receptors and ECM components interact with each other, creating a complex
network. According to one study, cell surface receptors receive signals from the ECM that
influence growth, survival, migration, differentiation, and proliferation in maintaining cell
homeostasis [82]. All enriched meta-genes in this pathway are up-regulated in thin-tailed
sheep breeds, possibly due to the interaction between ECM components. This result is
in accordance with a recent study that showed that fat-tailed sheep are less responsive to
seasonal changes in inflammation and fat cell size, ECM regeneration, and lipid metabolism,
which indicates the improvement of homeostasis [34].

“NOD-like receptors” (NLR) and “Toll-like receptors” (TLR) are two pattern recogni-
tion receptors that have severe roles in the inflammation of adipocytes and the immune
response [83]. Both of the mentioned KEGG pathways were significantly enriched in the
current study. The activation of a sub-family of these receptors [84–86] has been shown
to stimulate lipolysis from adipose tissue or adipocytes. Therefore, all these pathways
maintain fat homeostasis in response to extreme environments in sheep breeds.

The meta-analysis results revealed 39 meta-genes that were insignificant in each of
the individual studies, indicating the higher statistical power of the meta-analysis in the
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discovery of biosignatures. In addition, the results derived from using machine learning
showed that three significant genes (POSTN, K35, and SETD4) gained higher weights (>0.8)
than others, according to the AW algorithms. Interestingly, these meta-genes, along with
other genes with a weight >0.8, are associated with lipid metabolism. The decision tree
induced by the Random Forest Model shows that POSTN, K35, and SETD4 meta-genes
directly affect lipid metabolism. Interestingly, the SETD4 gene is one of the 39 meta-genes
that were insignificant in the individual studies. Currently, the role of the K35 gene in fat
metabolism has not been identified, but two other genes have been shown to be related to
fat metabolism. There have been reports that the SETD4 gene has considerable potential for
tumorigenesis. It is thought that the SETD4 gene has proliferation potential in fat cells [87].
Thus, lipogenesis might be associated with the up-regulation of the SETD4 gene in fat-tailed
sheep. Moreover, the loss of POSTN attenuates lipid metabolism in adipose tissue [88].
Among the decision tree models, both the Random Forest with accuracy criterion and the
Random Forest with gain_ratio criterion models outperformed others in the prediction of
fat deposition in sheep breeds. These high-performance models enabled us to detect the
POSTN, K35, and SETD4 meta-genes as biosignatures or biomarkers for fat metabolism.
Therefore, the combination of meta-analysis and machine learning approaches employed
in the current study improved the power of discovering informative genes that may aid
the progress of animal breeding strategies to optimize tail fat in fat-tailed breeds.

5. Conclusions

Fat deposition is a complex trait that requires comprehensive research to be elucidated.
However, the integration of machine learning and meta-analyses approaches, as carried out
for the current work, may help to better understand the most critical causal genes that can
be exploited as strong biomarkers of fat deposition; in our study, three meta-genes, namely,
POSTN, K35, and SETD4, were identified as strong biosignatures of fat deposition. Our
findings may provide a base for strategies to optimize fat deposition in the tail of fat-tailed
breeds, thus decreasing the fat content of carcasses.
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