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Simple Summary: The use of functional feeds in aquaculture is currently increasing. In this study, we
investigated the impact of a diet containing Chlorella fusca and ethanol-inactivated Vibrio proteolyticus
in Chelon labrosus. After 90 days of feeding, we assessed how this diet affected the fish’s gut microbiota
and gene expression related to metabolism, stress, and the immune system. We also tested the immune
response after submitting fish to challenges with Aeromonas hydrophila and polyinosinic–polycytidylic
acid (poly I:C). Results showed that the combined dietary administration influenced the microbial
community in the fish’s intestines, but it did not change the way these microorganisms functioned. In
terms of gene expression, we observed significant variations in several genes in different fish organs
from fish fed the combination of microalgae and probiotics. Notably, the combined diet seemed
to enhance the fish’s ability to regulate stress and immune-related genes, suggesting that it could
improve their resistance to stress and infections. Overall, the present study sheds light on how this
diet affects both the gut microbiota and gene expression in C. labrosus, potentially benefiting their
health and immune response.

Abstract: The use of functional feeds in aquaculture is currently increasing. This study aimed to
assess the combined impact of dietary green microalgae Chlorella fusca and ethanol-inactivated Vibrio
proteolyticus DCF12.2 (CVP diet) on thick-lipped grey mullet (Chelon labrosus) juvenile fish. The
effects on intestinal microbiota and the transcription of genes related to metabolism, stress, and the
immune system were investigated after 90 days of feeding. Additionally, the fish were challenged
with Aeromonas hydrophila and polyinosinic–polycytidylic acid (poly I:C) to evaluate the immune
response. Microbiota analysis revealed no significant differences in alpha and beta diversity between
the anterior and posterior intestinal sections of fish fed the control (CT) and CVP diets. The dominant
genera varied between the groups; Pseudomonas and Brevinema were most abundant in the CVP group,
whereas Brevinema, Cetobacterium, and Pseudomonas were predominant in the CT group. However,
microbial functionality remained unaltered. Gene expression analysis indicated notable changes in
hif3α, mhcII, abcb1, mx, and tnfα genes in different fish organs on the CVP diet. In the head kidney,
gene expression variations were observed following challenges with A. hydrophila or poly I:C, with
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higher peak values seen in fish injected with poly I:C. Moreover, c3 mRNA levels were significantly
up-regulated in the CVP group 72 h post-A. hydrophila challenge. To conclude, incorporating C. fusca
with V. proteolyticus in C. labrosus diet affected the microbial species composition in the intestine while
preserving its functionality. In terms of gene expression, the combined diet effectively regulated the
transcription of stress and immune-related genes, suggesting potential enhancement of fish resistance
against stress and infections.

Keywords: Aeromonas hydrophila; aquaculture; functional feed; immune response; microalgae;
Mugilidae; poly I:C; probiotic; stress

1. Introduction

Aquaculture, as a means of ensuring a consistent supply of fish in response to increas-
ing global demand, has turned its focus towards species diversification [1]. This shift is
driven by the fact that despite the great diversity of farmed aquatic species, only a few
of them dominate aquaculture production [2]. This trend, where a few targeted species
are responsible for the majority of production due to their high economic returns, ease of
production, and automated system, is expected to continue [3]. Within this context, the
culture of Mugilidae species, commonly known as mullets, has recently garnered significant
attention within the field of aquaculture. The interest in mullets as aquaculture species
lies in their omnivorous nature, transitioning towards herbivory as they grow, their rapid
growth rate, and their resistance to environmental variations [4–6].

Among the Mugilidae family, the thick-lipped grey mullet (Chelon labrosus) has
emerged as a promising candidate for aquaculture diversification. This species exhibits
characteristics that make them suitable for cultivation, including their sensitivity to stress,
adaptability to varying salinity levels, and omnivorous feeding habits [7–9].

In recent years, functional feeds have gained recognition for their potential to enhance
fish health and productivity. These specialized feeds, formulated with beneficial ingredients
such as microalgae and probiotics, are designed not only to provide essential nutrients
but also to actively promote various aspects of fish well-being. While microalgae offer
a rich source of proteins, essential fatty acids, vitamins, and other bioactive compounds,
probiotics contribute to improved gut health and disease resistance [10,11].

Given the potential significance of C. labrosus in aquaculture, research efforts have been
directed towards optimizing its growth and nutritional qualities [12–14]. In this sense, in a
previous study, García-Márquez et al. [15] highlighted the significant growth-enhancing
effects of the combined dietary inclusion of Chlorella fusca and ethanol-inactivated Vibrio
proteolyticus in Chelon labrosus juveniles. As reported by the authors, the diet not only
improved growth performance and feed utilization but also positively influenced lipid
quality indices and n-3 polyunsaturated fatty acid composition, potentially increasing the
nutritional value of this fish species for human consumption. The enhanced carbohydrate
metabolic activity and increased enzymatic activity observed in the plasma further sug-
gested metabolic improvements associated with the combined diet. Moreover, the diet
contributed to heightened metabolic enzyme activity and augmented intestinal absorp-
tion capacity [15]. However, while the previous study offered valuable insights into the
physiological benefits of the combined administration of C. fusca and V. proteolyticus, the
influence of this diet on the intestinal microbiota and the immune response in C. labrosus
was not assessed.

Understanding the complex interactions between diets, gut microbiota, and the
immune response is crucial for improving aquaculture production [16]. In this sense,
within the complex gut microbiota of fish, some beneficial bacteria offer immunologi-
cal advantages to their host by modulating the innate immune system. This modula-
tion includes interactions with host immune cells such as natural killer (NK) cells, neu-
trophils, and monocytes [17]. The mechanisms through which these beneficial bacteria
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influence the host fish’s immune response to pathogenic bacteria encompass nutrient
competition, stimulation of the nonspecific immune system, antagonism against exces-
sive pathogenic bacteria through antimicrobial molecule production, and competition for
adhesion sites [18–20]. Thus, this study aims to characterize the intestinal microbiota of
C. labrosus following 90 days of dietary administration of C. fusca and ethanol-inactivated
V. proteolyticus DCF12.2. Moreover, in order to evaluate if this diet induced changes in fish
gene expression, the transcription of genes related to (i) metabolism (insulin-like growth
factor 1, igf-1, and ferritin); (ii) stress (hypoxia-inducible factor-3α, hif3α, and ATP-binding
cassette B1 transporter, abcb1); and (iii) immune system (major histocompatibility complex
class II, mhcII, Mx interferon-stimulated gene, mx, tumour necrosis factor α, tnfα, and
complement 3, c3) was quantified in different tissues. Furthermore, to evaluate the immune
response, fish were inoculated with Aeromonas hydrophila, a fish pathogen, as well as with
polyinosinic–polycytidylic acid (poly I:C), a synthetic double-stranded RNA that mimics
viral infections and strongly induces the antiviral response mediated by type I interferon
(IFN I). Then, the transcription of the immune response genes was quantified at 6, 24, and
72 h post-inoculation.

2. Materials and Methods
2.1. Ethical Statements

The ethical committee of the Universidad de Málaga and the Andalusian Autonomous
Government (Ref. n-11/07/2020/082) reviewed and approved the study protocol. The
execution of the experimental protocol adhered strictly to the Guidelines of the European
Union Council (2010/63/UE) and the Spanish legislation concerning the use of laboratory
animals (RD/1201/2005 and Law 32/2007).

2.2. Microalgae and Bacteria

The microalga, Chlorella fusca (Chlorophyta), strain BEA1005B, from the Spanish Collec-
tion of Algae (BEA), was produced in pilot-scale photobioreactors (PBRs) at the SABANA
Project facilities, located at the University of Almeria, Spain. Detailed methodologies for
microalga cultivation are provided in García-Márquez et al. [15], including specifics on cul-
ture conditions and processing steps such as harvesting, cell disruption, and spray-drying.
Similarly, information on the culture and ethanol-inactivation process of the bacterium
Vibrio proteolyticus DCF12.2, isolated from healthy wedge sole (Dicologlossa cuneata), is
comprehensively documented in García-Márquez et al. [15].

2.3. Experimental Feeds and Feeding Trial

Two experimental diets were prepared at Ceimar-Universidad de Almería facilities
(Servicio de Piensos Experimentales, Almería, Spain, https://www.ual.es/universidad/
serviciosgenerales/stecnicos/perifericos-convenio/piensos-experimentales, accessed on 4
March 2023), following standard aquafeed manufacturing protocols. The formulated diet
designated as CVP included 15% (w/w) of dry C. fusca biomass and 109 cells kg−1 feed
of ethanol-inactivated and lyophilized V. proteolyticus DCF12.2. A control diet (CT), free
from microalgae and bacteria, was also prepared. Table S1 provides the ingredients and
chemical composition of the experimental diets. Further details regarding the ingredients
used and the feed manufacturing procedure can be found in the study conducted by
García-Márquez et al. [15].

Chelon labrosus specimens (n = 200) were provided by the Centro de Experimentación
de Ecología y Microbiología de Sistemas Acuáticos Controlados Grice-Hutchinson (CEM-
SAC) at the University of Malaga, Spain (Spanish Operational Code REGA ES290670002043).
Prior to the trial, an acclimatization period was provided, during which the fish were ha-
bituated to the experimental conditions and fed a commercial diet (TI-3 Tilapia, Skretting,
Spain) for two weeks. The fish, comprising six homogenous groups of 20 individuals each
(averaging 99.5 ± 0.2 g), were subsequently distributed randomly into six 1000 L tanks
integrated into a recirculating aquaculture system (RAS) equipped with both physical

https://www.ual.es/universidad/serviciosgenerales/stecnicos/perifericos-convenio/piensos-experimentales
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and biological filters. Subsequently, the experimental dietary groups (CT and CVP) were
established in triplicate. The experimental period was set to 90 days (April 2021–July 2021),
during which the fish were maintained under a natural photoperiod, within a temperature
range of 19.7–22.9 ◦C, and at 1.0–1.2‰ salinity. The dissolved oxygen levels were sustained
at 6.8 ± 0.4 mg L−1 through supplemental aeration. Regular monitoring of water quality
parameters was performed on a weekly basis to ensure the maintenance of optimal condi-
tions for the fish. Over the 90-day period, the fish were manually fed twice daily with a
feed quantity equivalent to 1.5% of their body weight. To ensure consistent feeding, rations
were adjusted based on fish growth, maintaining the initial 1.5% rate throughout the study.

2.4. Post-Feeding Trial Challenge

After 90 days of feeding trial, the fish were allocated into six 800 L fiberglass tanks,
accommodating 15 fish in each tank (three groups fed with the CT diet and three with
the CVP diet). Prior to any handling, the fish were anesthetized with 2-phenoxyethanol
(0.3 mL L−1). Subsequently, the fish were intraperitoneally injected with either 0.1 mL
of Phosphate Buffer Solution (PBS, pH 7.2), 0.1 mL of Aeromonas hydrophila Lg28/4 (at a
concentration of 106 cfu g−1), previously cultivated on Tryptic Soy Agar with 1.5% NaCl for
24 h at 22 ◦C and isolated from diseased Senegalese sole [21], or 0.1 mL of poly I:C (Sigma,
50 µg mL−1).

2.5. Fish Sampling

A day prior to the beginning of the trial (designated as day 0) and after the 90-day
feeding trial, a total of 3 fish per replicate (9 per experimental group) were chosen randomly.
These selected fish underwent a 24-h fasting period before being euthanized through the
administration of an overdose of 2-phenoxyethanol (1 mL L−1). Immediately after opening
the abdominal cavity, tissue samples were collected, and the entire viscera were obtained.
The intestines, both anterior and posterior segments, were isolated from other organs, with
all visible perivisceral fat being eliminated. Fragments of these intestines were preserved at
a temperature of−80 ◦C, intended for subsequent gene expression and intestinal microbiota
analysis. Liver and head kidney samples were also obtained from the same individuals
and preserved in TRIsure at −80 ◦C for gene expression analysis.

Following the injection with A. hydrophila, poly I:C, and PBS, five fish from each tank
were sampled for head kidney collection at 6, 24, and 72 h post-inoculation (p.i.). These
samples were then stored at −80 ◦C.

2.6. Characterization of the Intestinal Microbiota

DNA extraction from both the anterior and posterior sections of the intestines (n = 9 per
section per experimental group) was performed using a saline precipitation protocol [22],
with modifications according to Tapia-Paniagua et al. [23]. A blank control sample was in-
cluded using ddH2O. The concentration of DNA was determined fluorometrically with the
Qubit™ dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA), while its pu-
rity and integrity were assessed using a NanoDrop™ One UV-Vis Spectrophotometer WiFi
(Thermo Scientific, Wilmington, DE, USA) and 1% agarose gel electrophoresis, respectively.
The sequencing of the 16S rRNA of the samples was performed on the Illumina MiSeq
platform (Illumina, San Diego, CA, USA) with 2 × 300 bp paired-end sequencing at the Ul-
trasequencing Service of the Bioinnovation Center (University of Malaga, Spain). The sense
primers 5′-CCTACGGGNGGCWGCAG-3′ and 5′-GACTACHVGGGTATCTAATCC-3′ were
employed [24], targeting the variable regions V3–V4 of the 16S rRNA gene.

Quality assessment of Illumina reads was conducted using FastQC software (version
0.11.9) to evaluate sequence quality [25]. Subsequent data processing, including trimming
and taxonomic assignment against the SILVA database v138 [26] with a 99% 16S similarity
cutoff, was executed using a workflow based on the DADA2 software package. Data
analysis of the intestinal microbiota was carried out using the phyloseq and vegan libraries
within the R statistical package [27,28]. Alpha diversity was assessed using the Shannon
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and Simpson indices. Beta diversity was evaluated using principal coordinates analysis
(PCoA) from both weighted and unweighted UniFrac analysis. For inter-sample compar-
isons of gut microbiota composition, permutation-based multivariate analysis of variance
(PERMANOVA) of UniFrac distances (weighted and unweighted) was employed.

Amplicon sequence variants (ASVs) with an abundance of fewer than 10 reads in
at least 10% of samples were filtered out from the taxonomical results. The ASVs were
presented up to the genus level.

Functional predictions of the metagenome were conducted through PICRUSt2 analysis
using the 16S rRNA gene data. The metagenomic functional composition was inferred
from ASV abundance using PICRUSt2 version 2.5 with default parameters for phylogenetic
placement (https://github.com/picrust/picrust2/wiki). Differences in predicted pathway
counts, defined by MetaCyc identifiers, were assessed using ALDEx2 analysis tool [29],
as recommended in the PICRUSt2 website (https://github.com/picrust/picrust2/wiki/
PICRUSt2-Tutorial-(v2.4.2)). Briefly, the predicted pathway count table was divided into
pairwise groups, and the “aldex” command was executed for pairwise analysis. From
the ALDEx2 tabular output, we applied three progressively stringent significance cutoffs
(ALDEx2 "effect" parameter) of 0.5 to identify differentially abundant pathways.

2.7. Gene Expression Analysis

RNA isolation was carried out from the anterior and posterior intestine, liver, and
head kidney of 5 fish per experimental group from both day 0 and day 90 samples using the
TRIsure™ (Bioline, London, UK) kit following the manufacturer’s instructions. The same
RNA isolation procedure was applied to the head kidney samples of fish injected with
PBS, A. hydrophila, and poly I:C. The Nanodrop system (ND-1000) was used to measure the
final RNA concentration at 260 nm, and RNA quality was assessed through electrophoresis.
RNA was stored at −80 ◦C until needed. Total RNA was treated with DNase I (Roche)
according to the manufacturer’s guidelines. Reverse transcription was performed using the
qScript cDNA Kit (Quantabio, Beverly, MA, USA) with 1 µg of total RNA, and the resultant
cDNA was stored at −20 ◦C for future use.

For relative transcription quantification of genes related to metabolism, stress, and
the immune system (Table 1), specific primers were utilized. Real-time quantitative PCR
(qPCR) reactions were conducted in triplicate using a MicroAmp Optical 96-well reaction
plate (BioRad) in a 20 µL volume with 50 ng of cDNA per well. The reaction mixture
included 10 µL of SYBR Green GoTaq qPCR Master Mix (Promega, Madison, WI, USA),
0.5 µM of each primer, 6 µL of molecular-grade water, and 2 µL of cDNA template. Cycling
parameters were as follows: 95 ◦C for 10 min, followed by 35 cycles of 95 ◦C for 10 s,
58 ◦C for 10 s, and 72 ◦C for 10 s. Subsequently, melting curve analysis was conducted at
temperatures ranging from 65 to 95 ◦C with 0.5 ◦C per 10 s increments at the end of the
qPCR cycle. Fluorescence was recorded at each temperature to verify the specificity of the
reactions. Real-time qPCR assays were performed using a CFX96 Real-Time PCR System
(BioRad, Hercules, CA, USA).

Relative fold change (FC) values were determined using β-actin as the endogenous
reference gene. The BioRad CFX Manager 3.1 program (Applied Biosystems, Waltham, MA,
USA) was used with quantification cycle (Cq) values according to the 2−∆∆Ct method [30].
In the feeding trial gene expression study, day 0 data were used as the calibrator. For the
challenge assay, the data from PBS-inoculated fish at 6 h p.i. were used as the calibrator.

2.8. Statistical Analysis

Normal distribution was checked for all the data with the Shapiro–Wilk test, while
the homogeneity of the variances was obtained using the Levene test. When necessary,
an arcsine transformation was performed. Alpha and beta diversity indices, taxonomical
variations between intestinal sections, and gene expression analyses in all tissues after the
feeding trial were analyzed using Student’s t-test. In the case of the experimental challenge,
a one-way ANOVA followed by Tukey’s post hoc test was used to identify any significant

https://github.com/picrust/picrust2/wiki
https://github.com/picrust/picrust2/wiki/PICRUSt2-Tutorial-(v2.4.2)
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group differences. All data are presented as mean ± standard deviation (SD), and a
significance level of 95% (p ≤ 0.05) was considered as indicative of statistical significance.
The statistical analysis was executed using GraphPad Prism 9 software (version 9.3.0;
GraphPad Software, La Jolla, CA, USA).

Table 1. Primers used in this study.

Gene Code Genbank Primer Sequence (5′–3′) Amplicon
Length Reference

Reference gene

β-actin β-actin AY836368 FW:5′-CAGGGAGAAGATGACCCAGA-3′

RV:5′-GAGCGTAGCCCTCGTAGATG-3′ 163 bp de las
Heras et al. [8]

Metabolism

Insulin-like
growth factor 1 igf-1 JF732805.1 FW:5′-CTAAATCCGTCTCCTGTTCGC-3′

RV:5′-GAAGTCATTAAAAACGGGGAGA-3′ 128 bp de las
Heras et al. [8]

Ferritin ferritin JF732791.1 FW: 5′-AGAAGAGCGTGAACCAGTCG-3′

RV: 5′-TGATGGACTTCACCTGCTCG-3′ 117 bp This study

Stress

Hypoxia-inducible
factor-3α hif3α KM402136.1 FW: 5′-ACGTCCAGGTCCGAGTAAGA-3′

RV: 5′-GACCTGTGCAGTGGAGTACC-3′ 143 bp This study

ATP-binding
cassette B1
transporter

abcb1 HM467814.1 FW: 5′-GATAGGCATCGTGTCCCAGG-3′

RV: 5′-TGTGAATGTTGGCCGCTTTG-3′ 131 bp This study

Immune system

Major
histocompatibility

complex class II
mhcII JF732810.1 FW: 5′-GAGCCCTACGTGGTGATGAG-3′

RV: 5′-GTAGTACCAGTCCCCGTCCT-3′ 109 bp This study

Mx interferon-
stimulated

gene
mx JF732806.1 FW: 5′-GAAGGGCCAGCTGAGAACAT-3′

RV: 5′-CCTGCTGTGCCATCTTCAGA-3′ 142 bp This study

Tumour necrosis
factor α tnfα GQ465940.1 FW: 5′-GCTGGAGTGGATGAAGGACC-3′

RV: 5′-GGCCTGGCTGTAGACGAAG-3′ 111 bp This study

Complement 3 c3 GQ465938.1 FW: 5′-CCATTCTTCTACGTGGACAG-3′

RV: 5′-GCTTTGCAGTGATTGTCAGAC-3′ 118 bp This study

3. Results
3.1. Intestinal Microbiota Analysis

The results indicate the absence of statistically significant variations in both the Shan-
non and Simpson indices for both the anterior (p = 0.392 and p = 0.578, respectively) and
posterior (p = 0.888 and p = 0.700, respectively) sections among specimens subjected to the
CT and the CVP diet (Table 2).

Table 2. Alpha diversity indices (mean ± SD) of bacterial communities in anterior (IA) and posterior
(IP) intestinal sections of juvenile C. labrosus fed control (CT) and C. fusca + V. proteolyticus (CVP) diets
for 90 days.

IA IP

CT CVP p CT CVP p

Shannon 3.34 ± 0.52 2.93 ± 0.68 0.392 3.18 ± 0.42 2.76 ± 0.11 0.888
Simpson 0.89 ± 0.08 0.88 ± 0.07 0.578 0.90 ± 0.05 0.82 ± 0.11 0.700

Principal coordinates analysis (PCoA) plots were generated to visualize the data, and
they revealed that the samples from the fish did not exhibit any noticeable clustering
patterns (Figure 1). The results of the PERMANOVA analysis further confirmed that
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there were no statistically significant differences in the community composition structure
between the treatment groups. This lack of significant differences was observed both in the
weighted UniFrac PCoA (Figure 1A for the anterior section, p = 0.545, and Figure 1B for
the posterior section, p = 0.697) and in the unweighted UniFrac PCoA (Figure 1C for the
anterior section, p = 0.447; and Figure 1D for the posterior section, p = 0.843).
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shown samples from juvenile C. labrosus fed control (CT) and C. fusca + V. proteolyticus (CVP) diets for
90 days, respectively: (A) IA PCoA weighted Unifrac; (B) IP PCoA weighted Unifrac; (C) IA PCoA
unweighted Unifrac; (D) IP PCoA unweighted Unifrac.

The relative abundance of the predominant gut microbes at the genus level is illus-
trated in Figure 2. In the CT specimens, Brevinema, Cetobacterium, and Pseudomonas were
the dominant genera in both sections of the intestine. On the other hand, the CVP group
exhibited a slightly different composition, with Pseudomonas, Brevinema, Enterobacter, My-
coplasma, and Cetobacterium being the most prevalent genera. Notably, a significant decrease
in the abundance of Cetobacterium and Aurantimicrobium was observed in the anterior and
posterior intestine of fish on the CVP diet, respectively. Conversely, the Cutibacterium and
Shewanella genera showed a statistically significant increase in the posterior intestine of fish
fed the CVP diet.
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Figure 2. Relative abundance (%) of dominant bacteria at the genus level in the anterior (IA) and
posterior (IP) intestinal sections of juvenile C. labrosus fed control (CT) and C. fusca + V. proteolyticus
(CVP) diets for 90 days. “NA” denotes not assigned taxa. The asterisks denote statistically significant
differences in the relative abundance of dominant bacteria between the experimental groups within
each intestinal section (* p < 0.05; *** p < 0.001).

The functionality of the bacterial microbiota was predicted using PICRUSt2 analysis, as
visualized in Figure 3. Despite differences in the composition of abundant genera (Figure 2),
there were no differences in microbial functions found in either the anterior (Figure 3A) or
posterior (Figure 3B) sections of fish fed the experimental diets.

3.2. Gene Expression Evaluation

To assess changes in fish metabolism, the transcription levels of igf-1 and ferritin were
quantified in liver samples (Figure 4A). There were no significant differences observed in
the transcription levels of those genes between fish fed the CT and CVP diets for 90 days.
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Figure 3. Effect size and volcano plots of Amplicon sequence variants (ASVs) in the (A) anterior and
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significance threshold of p = 0.05.

Stress response was assessed by quantifying hif3α and abcb1 transcription in the four
analyzed tissues (Figure 4A–D). Notably, the CVP group exhibited a significant increase
in hif3α transcription compared to the CT group in the liver, posterior intestine, and head
kidney. In the liver and posterior intestine, the CVP group showed similar levels of abcb1
transcription (Figure 4A,C). Conversely, while abcb1 transcription was significantly lower in
the anterior intestine of fish fed the CVP diet (Figure 4B), the levels of abcb1 were statistically
higher in the head kidney of the CVP fish (Figure 4D).

Regarding genes associated with the immune system (mx, tnfα, mhcII, and c3), the
mx gene exhibited significantly higher expression in both the anterior intestine and head
kidney of fish fed the CVP diet (Figure 4B,D). Additionally, the transcription levels of tnfα
were significantly higher in the CVP group, especially in the posterior intestine and head
kidney, when compared to the control fish (Figure 4C,D). Interestingly, mhcII transcription
was significantly higher in all three tissues of the CVP-fed fish compared to the control
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group (Figure 4B–D). No significant changes were observed in the transcription levels of c3
in any of the tissues evaluated (Figure 4B–D).
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Figure 4. Relative quantification of selected genes transcription in (A) liver; (B) anterior
and (C) posterior intestine; and (D) head kidney of juvenile C. labrosus fed control (CT) and
C. fusca + V. proteolyticus (CVP) diets for 90 days. Data from day 0 samples were used to calibrate fold
change values. Data are presented as mean ± SD of five fish. Asterisks indicate significant differences
between experimental groups (* p < 0.05; ** p < 0.01; **** p < 0.0001).

3.3. Immune Response Evaluation after Challenge

To assess the effect of the experimental diet on the immune response of C. labrosus to
infections, fish were subjected to either A. hydrophila or poly I:C inoculation. Mortality was
recorded only in A. hydrophila-inoculated fish. Actually, due to this unexpected mortality
and the resulting unavailability of fish samples, we were unable to assess the gene expres-
sion profiles at the 72-h time point. Interestingly, mortality in the CVP group was lower
than in the control (CT) group, obtaining a relative survival percentage (RPS) of 39.9% at
24 h p.i. The RPS was calculated according to Amend [31].

Regarding the transcription of the immune response genes, the results revealed that
there was no induction of mx and tnfα in fish that were fed with either of the diets (CT
and CVP) and subsequently inoculated with A. hydrophila, compared to the control mock
infected group (PBS) (Figure 5). In contrast, the transcription level of c3 was significantly
higher at 6 h and 24 h p.i. in both the CT and CVP groups that were injected with A.
hydrophila, in comparison with the PBS group. The CT group showed a more intense
upregulation at 6 h p.i., but both groups reached a similar level of transcription at 24 h p.i.
Finally, in the case of mhcII, only a slight induction, similar in CT and CVP groups, was
detected at 6 h p.i.
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Figure 5. Relative quantification of mx, c3, mhcII, and tnfα transcription in head kidney of juvenile
C. labrosus fed control (CT) and C. fusca + V. proteolyticus (CVP) diets for 90 days and inoculated either
with PBS, A. hydrophila, or poly I:C. Data from the CT PBS 6 h p.i. were used to calibrate fold change
values. Data are presented as mean ± SD of five fish. Different letters indicate significant differences
among groups (p < 0.05). The 72-h data for fish inoculated with A. hydrophila could not be obtained
due to mortality after infection.

In the case of fish inoculated with poly I:C, the transcription of c3 did not exhibit
significant changes in the CT and CVP groups at 6 h p.i., relative to the mock-infected
group. However, a significant induction in c3 transcription was observed at 24 and 72 h
p.i. in both groups. Regarding mx, both the fish fed with the CT and CVP diets showed
a significant induction at 6 and 24 h p.i., with similar maximum induction levels in both
groups, although the induction peaked earlier in the CT group (6 h p.i.). For mhcII, no
differences were recorded between the CT and CVP groups. Nevertheless, in the CT group,
there was a significantly higher transcription at 6 h p.i. compared to the PBS group. Finally,
tnfα transcription was induced at 24 h p.i. in both the CT and CVP groups, compared to the
mock-infected fish.

4. Discussion

In a previous work, García-Márquez et al. [15] highlighted the beneficial effects of
combining C. fusca and ethanol-inactivated V. proteolyticus into the diet of juvenile C.
labrosus. This diet enhanced growth performance, nutrient utilization, fish quality, and
some physiological parameters. However, the influence of this combined diet on the
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intestinal microbiota and the immune response of C. labrosus were not assessed. Thus, our
study aimed to address this gap in knowledge.

Cetobacterium, Brevinema, and Pseudomonas were the predominant genera observed in
both the CT and CVP groups. Cetobacterium have the ability to synthesize vitamin B12, as
reported by Finegold et al. [32] and Tsuchiya et al. [33]. The synthesis of vitamin B12 by
these bacteria is not only essential for the health of the fish but also holds significance for
human dietary needs [34]. Its presence has been reported in various fish species [35–38].
Brevinema has been consistently found in the intestinal tracts of different farmed fish
species [39–41]. Furthermore, Gupta et al. [42] reported that certain strains of Brevinema
in Atlantic salmon produce butyrate, which has the potential to enhance intestinal barrier
function and mucosal immunity, as suggested by Liu et al. [43]. Pseudomonas possesses a
wide range of metabolic capabilities [44]. In our investigation, Pseudomonas was notably
abundant in the anterior and posterior intestinal sections of both the CT and the CVP
groups. This observation is in line with the presence of Pseudomonas in the intestines of wild
C. labrosus [45]. Pseudomonas strains are recognized for their capacity to produce digestive
enzymes such as protease and lipase, as well as their role as probiotics in aquaculture,
enhancing host defenses against pathogens [46,47]. Nevertheless, it is essential to consider
that the pathogenicity of various Pseudomonas species in fish can vary based on the host’s
physiological condition and environmental factors [48–50].

In our study, we observed a significant increase in the relative abundance of the
Cutibacterium and Shewanella genera in the posterior intestines of fish fed the CVP diet.
Cutibacterium has been reported in various fish species [51–54], with specific species within
this genus known to produce vitamins from the B group, including B12 and short-chain
fatty acids [55,56]. These short-chain fatty acids play critical roles in maintaining intestinal
balance, acting as energy sources, anti-inflammatory agents, and growth promoters [57,58].
Shewanella, on the other hand, is known for its versatile metabolic capabilities and potential
benefits within microbial communities [59,60]. Several studies have demonstrated the
positive effects of dietary Shewanella species on overall fish health [60–62].

Furthermore, we observed a significant decrease in the microbial composition of fish
fed the CVP diet with respect to the control group. In the anterior intestine, the Cetobacterium
genus exhibited a significantly lower abundance, while in the posterior intestine, there
was a notable decrease in the Aurantimicrobium genus. Limited literature exists regarding
the presence of Aurantimicrobium species within fish microbiota and their specific roles
within this ecosystem. However, recent reports have highlighted their presence within the
intestinal microbiota of various fish species [63–66].

Interestingly, despite these observed differences in microbial communities, functional
modifications within the gut microbiota were not detected. This highlights the adaptability
of the gut microbiota in C. labrosus in maintaining its core functional attributes despite
changes in community structure induced by dietary modifications. Further investigations
into the metabolic roles of specific microbial taxa within the fish intestines could provide
deeper insights into the mechanisms behind this functional resilience and its impact on the
health of C. labrosus.

A gene expression study was conducted to further characterize the influence of the C.
fusca and V. proteolyticus combined diet. In relation to genes associated with metabolism,
while igf-1 is a key regulator of growth and development [67], ferritin plays a crucial role
in iron homeostasis [68,69]. García-Márquez et al. [15] found that animals fed with the
combined diet (C. fusca and V. proteolyticus) exhibited higher final growth and growth rate
compared to the control group. Remarkably, despite these growth differences, igf-1 and
ferritin expression remained similar between the two groups. The absence of transcriptional
differences between the diets aligns with earlier research findings, such as a similar hepatic
igf-1 transcription reported in a study examining starvation and re-feeding in C. labrosus [70].

Regarding the stress response, we quantified the transcription levels of hif3α and
abcb1 in four different tissues. The CVP group exhibited a significant increase in hif3α
transcription in the liver, posterior intestine, and head kidney compared to the CT group.
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Hif3α, a hypoxia-inducible factor, is a key regulator of oxygen homeostasis [71]. Under
hypoxic conditions, hif3α transcription is activated, exerting a crucial role in orchestrating
the transcriptional response to hypoxia by binding to target gene promoters and stimu-
lating their expression [72,73]. Previous research by Ma et al. [74] demonstrated that a
high-carbohydrate diet could enhance resistance to hypoxia, including increased hif3α
transcription levels, by activating glycolysis in zebrafish, thereby efficiently providing
energy. In line with this, our combined diet has been shown to elevate metabolic enzyme
levels related to glycogenolysis, glycolysis, gluconeogenesis, and lipid metabolism in the
liver [15]. This increase in metabolic enzyme activity contributes to heightened metabolite
levels for energy reserves, found in plasma, muscle, and liver. This observation, coupled
with our prior report [75] indicating that a diet containing C. fusca enhances glycogen
deposition in normoxic conditions, increasing glucose availability for energy use, suggests
that the CVP diet may enhance the hypoxia resistance of C. labrosus. This hypothesis
also aligns with findings in Sparus aurata, where individuals fed with Arthrospira platensis
exhibited an improved hypoxia stress response [76]. Further assays would be necessary in
order to confirm this hypothesis and to investigate the molecular mechanisms underlying
these observations.

Abcb1, known for its role in detoxification, can be upregulated in response to stressors,
including exposure to toxins [77]. Different patterns of abcb1 transcription were observed
among the tissues: in both the liver and posterior intestine, the CT and CVP groups showed
similar levels of abcb1 transcription; in contrast, while abcb1 transcription was significantly
lower in the anterior intestine of fish fed the CVP diet, the levels of abcb1 were statistically
higher in the head kidney of the CVP fish. Consequently, our findings suggest that the
protective function of abcb1 in fish fed the CVP diet may hold particular significance in the
head kidney compared to other tissues, an observation consistent with previous reports in
rainbow trout [78].

To investigate the immune response of C. labrosus, we assessed the transcription
levels of key genes associated with the immune system, including mx, tnfα, mhcII, and
c3, in various tissues. The mhcII, an essential gene for antigen presentation and immune
recognition [79], had a statistically higher transcription level across all three tissues in
CVP-fed fish, in contrast to the control group. This observation suggests an augmented
capacity for antigen presentation and immune recognition in response to the CVP diet. In
this context, Medina et al. [80] highlighted the capacity of Vibrio proteolyticus to generate
antigens common with certain pathogens, thereby stimulating the production of specific
antibodies. These antibodies have the potential to cross-react with pathogens, protecting
the host defense against pathogenic infections.

The transcriptional levels of c3, a critical component of the complement system, re-
mained unaltered in all of the tissues examined. The complement system plays a fun-
damental role in the innate immune response, aiding in the recognition and elimination
of pathogens [81]. The absence of transcriptional differences in c3 suggests that the CVP
diet did not induce substantial changes in the complement-mediated immune response,
thus supporting the healthy status of fish under the feeding trial. A stable c3 transcrip-
tion level was also reported in other fish species fed diets supplemented with microalgae
and probiotics [82–85].

We observed that the transcription levels of tnfα, a proinflammatory cytokine crucial
for host defense [86], were significantly higher in the CVP group compared to the control
fish, particularly in the posterior intestine and head kidney. This finding indicates an
elevated proinflammatory response in these tissues among fish fed the CVP diet. Our
results align with similar findings in other fish species that have been fed diets enriched
with microalgae and probiotics [87–92]. However, the downregulation of tnfα has also
been reported [85]. Furthermore, the mx gene, recognized for its involvement in antiviral
defense mechanisms [93], exhibited statistically higher expression levels in the anterior
intestine and head kidney of fish fed the CVP diet. This suggests an enhancement of the
antiviral interferon (IFN) response in these fish. The upregulation of the mx gene as a result
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of dietary administration of the CVP diet is particularly interesting, given that mullets,
including C. labrosus, are known to be susceptible to a variety of viral diseases [94–98].

To validate the positive impact of the CVP diet on the immune response of C. labrosus
juveniles, we assessed the head kidney transcription levels of mx, c3, mhcII, and tnfα in
response to bacterial infection (A. hydrophila) and poly I:C (mimicking viral infection).
Following A. hydrophila challenge, there was no induction of mx and tnfα in both the CT and
CVP groups. However, both experimental groups exhibited a significant upregulation of c3
and mhcII at 6 h p.i. compared to the mock-infected group (PBS). Additionally, a similar
induction of c3 was observed in fish fed the CVP diet 24 h after the poly I:C inoculation.
These results suggest that the combined diet may enhance the activation of the complement
system in response to both bacterial and viral challenges. This finding aligns with previous
studies that have shown an increased induction of c3 following challenges with poly I:C
or bacterial pathogens [99–102]. Further research is needed in order to investigate the
mechanisms underlying the dietary effect on the complement activation cascade.

Regarding the mRNA levels of mx and tnfα in fish inoculated with poly I:C, induction
was generally higher in fish fed the CVP diet, suggesting a positive effect of the CVP diet
on the antiviral response of C. labrosus. Notably, mx induction persisted longer in the
CVP group, with statistically higher transcription at 24 h p.i. These findings highlight
the immunomodulatory potential of the CVP diet and its role in enhancing the immune
response against both bacterial and viral pathogens. The immunomodulatory effects of diets
containing microalgae and probiotics have been recently reviewed [103,104]. Our study
contributes further evidence to this field, highlighting the immunostimulatory activity of
C. fusca and V. proteolyticus as dietary supplements, particularly relevant for C. labrosus,
a fish species known for its sensitivity to the immunostimulatory effects of microalgae
and probiotics.

5. Conclusions

In conclusion, the inclusion of C. fusca and V. proteolyticus in the fish diet modifies the
composition of microbial species in the intestine but does not seem to affect its functionality.
Regarding the influence on gene expression, the experimental diet effectively modulates
the transcription of stress and immune-related genes in C. labrosus specimens, which may
potentially enhance their resistance to stress and infections. Further studies are needed
in order to elucidate the underlying mechanisms of the observed effects and to assess the
long-term impact of the CVP diet on the overall growth, health, stress tolerance, and disease
resistance of C. labrosus.
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