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Simple Summary: Ovarian follicular cysts are one of the most common reproductive disturbances in
dairy cows. However, the exact mechanism underlying this disorder is not clear enough and remains
difficult to identify. Here, we found that there was a disrupted secretion of hormone and abnormal
mRNA expression of corresponding receptors in bovine cystic follicles compared with control follicles.
Further KEGG enrichment analyses of transcriptome indicated that the differential expressed genes
were significantly enriched in the ovarian steroidogenesis pathway. Based on the findings of the
study, metabolic and endocrine disorders were associated with bovine ovarian follicular cysts.

Abstract: After estrus, when mature follicles fail to ovulate, they may further develop to form
follicular cysts, affecting the normal function of ovaries, reducing the reproductive efficiency of dairy
cows and causing economic losses to cattle farms. However, the key points of ovarian follicular
cysts pathogenesis remain largely unclear. The purpose of the current research was to analyze
the formation mechanism of ovarian follicular cysts from hormone and gene expression profiles.
The concentrations of progesterone (P4), estradiol (E2), insulin, insulin-like growth factor 1 (IGF1),
leptin, adrenocorticotropic hormone (ACTH) and ghrelin in follicle fluid from bovine follicular cysts
and normal follicles were examined using enzyme-linked immunosorbent assay (ELISA) or 125I-
labeled radioimmunoassay (RIA); the corresponding receptors’ expression of theca interna cells was
tested via quantitative reverse transcription polymerase chain reaction (RT-qPCR), and the mRNA
expression profiling was analyzed via RNA sequencing (RNA-seq). The results showed that the
follicular cysts were characterized by significant lower E2, insulin, IGF1 and leptin levels but elevated
ACTH and ghrelin levels compared with normal follicles (p < 0.05). The mRNA expressions of
corresponding receptors, PGR, ESR1, ESR2, IGF1R, LEPR, IGFBP6 and GHSR, were similarly altered
significantly (p < 0.05). RNA-seq identified 2514 differential expressed genes between normal follicles
and follicular cysts. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis linked the
ovarian steroidogenesis pathway, especially the STAR, 3β-HSD, CYP11A1 and CYP17A1 genes, to the
formation of follicular cysts (p < 0.01). These results indicated that hormone metabolic disorders and
abnormal expression levels of hormone synthesis pathway genes are associated with the formation of
bovine ovarian follicular cysts.

Keywords: metabolic disorder; RNA sequencing; ovarian steroidogenesis pathway; follicular cysts;
bovine

1. Introduction

Ovarian cysts are the most common reproductive dysfunction in high-producing dairy
cows, generating significant economic loss to the dairy industry by reducing conception rate,
lengthening nonproduction days and raising the replacement rate owing to infertility [1–3].
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The definition of ovarian cysts in dairy cows has always been controversial in different
research projects. Previously, cattle ovarian cysts were defined as follicular-like structures,
generally with a diameter of at least 25 mm present on one or both ovaries and a duration
of more than 10 days [4]. Most recently, ovarian follicular cysts or luteal cysts were defined
as anovulatory structures on the ovary, with a follicle cavity more than 20 mm in diameter
and with an absence of corpus luteum [5]. Ovarian cysts can be classified functionally as
follicular or luteal, and their difference is the thickness of the follicular wall. Follicular cysts
have a relatively thin wall (≤3 mm), while luteal cysts have thicker walls (>3 mm) [5–7].

The prevalence of ovarian cysts in dairy cows may range from 2.7% to 30%, and a
greater proportion of follicular cysts has been observed [8,9]. The exact mechanism re-
garding follicular cysts in dairy cows has not yet been completely explicit. Studies over
many years have shown that the formation of ovarian follicular cysts is mainly the result of
endocrine disturbance within the hypothalamic–pituitary–gonadal axis (HPGA) caused
by endogenous and/or exogenous factors [4,10,11]. The most widely accepted hypothesis
is that luteinizing hormone (LH) release from the hypothalamus–pituitary is changed
and the preovulatory LH surge is either missing, is deficient in magnitude or happens
at the incorrect time during the maturation of the dominant follicle [11–14]. Meanwhile,
progesterone (P4) is involved in the formation of ovarian cysts, and there is a strong associ-
ation between intermediate concentrations of P4 in peripheral blood and the occurrence
of ovarian follicular cysts [4]. Most cysts are accompanied by a decrease in P4, which
promotes the development of the cyst [15]. Molecular analysis of bovine follicular cyst dis-
ease pathogenesis has revealed that ovarian cysts exhibit partial disrupted steroid receptor
patterns related to follicle-stimulating hormone receptor (FSHR), progesterone receptor
(PGR), LH/choriogonadotropin receptor (LHCGR) and estrogen receptor (ESR) [1,16,17].

Reproductive success is a key component of lifetime efficiency, and negative energy
balance (NEB) in cattle is considered an important contributor to reproductive disorders in
dairy cows [18]. NEB can also lead to the formation of ovarian follicular cysts [11]. Imbal-
ance between energy acquisition through feed intake and energy consumption through high
milk production during early postpartum lactation results in NEB, which is often accom-
panied by hormonal and metabolic alterations that affect ovarian normal function [19,20].
During NEB, the concentrations of insulin-like growth factor 1 (IGF1), insulin [19] and lep-
tin [21,22] in serum are decreased. Zulu et al. [23] found that low systemic concentrations of
IGF-1 in early postpartum may lead to ovulation failure and the subsequent development
of cystic follicles, while Vanholder et al. [24] discovered that reduced serum insulin content
in early postpartum may play a part in ovarian function disturbance (i.e., cyst formation).
Spicer [25] thought that above a certain threshold level, leptin can act as a trigger for initiat-
ing hypothalamo–pituitary gonadotropin secretion. In a moderate to high level of leptin
circumstances, just as in obesity, leptin regulates ovarian steroidogenesis [25]. Previous
studies indicate that the molecular mechanism of the formation of ovarian follicular cysts
in dairy cows is complicated. However, hormone metabolic profiles and RNA-seq have not
yet been widely employed for the determination of large-scale gene expression patterns to
explain the molecular mechanism of ovarian follicular cyst formation.

Therefore, the present study aimed to investigate the formation mechanism of ovar-
ian follicular cysts from hormonal and gene expression patterns via deep sequencing of
the transcriptome to identify differential expressed genes and their associated biological
pathways that were important in ovarian follicular cysts in cattle. These findings set the
foundation for further insight into the formation mechanisms, the prevention and treatment
of cattle ovarian follicular cysts.

2. Materials and Methods
2.1. Collection of Ovaries

The ovaries with follicular cysts (n = 30) and control follicles (n = 19) of cows were
collected from a Beijing local abattoir and transported to our laboratory within 2 h in the
37 ◦C prewarmed phosphate-buffered saline (PBS) with Penicillin-Streptomycin buffer
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(Biological Industries, Beit HaEmek, Israel). In the absence of active luteal tissue, a fluid-
filled follicle structure, diameter >25 mm, with smooth thin and translucent walls (≤3 mm)
was defined as a follicular cyst. Normal follicles (15 mm in diameter) with no gross
morphological abnormalities were assigned to the control group.

2.2. Collection of Follicular Fluid and Theca Interna

Individual follicles were carefully dissected from the ovarian stroma with scissors and
forceps after three-times PBS washing in 100 mm dishes. And the collection of follicular
fluid and theca interna was according to the method published previously [26]. The
collected follicular fluid was then centrifuged at 2000× g for 10 min and stored at −80 ◦C
for further hormone detection; the theca interna was then frozen in liquid nitrogen and
stored at −80 ◦C for subsequent RNA extraction and mRNA expression analysis.

2.3. Measurement of Hormone Concentration

The concentrations of estradiol (E2, B05PZB), progesterone (P4, P08PZB), insulin
(F01PZB) and adrenocorticotropic hormone (ACTH, D14B) were measured using 125I-
labeled radioimmunoassay kits (Beijing North Biotechnology Institute, Beijing, China)
according to the operating instructions of the manufacturer. For the assays, the sensitivities
of E2, P4, insulin and ACTH were 2 pg/mL, 2 ng/mL, 2 µIU/mL and 3 pg/mL, respectively,
and the intra- and interassay coefficients of variation were 10.0% and 15.0%. ELISA was
used to measure the concentrations of insulin-like growth factor 1 (IGF-1, DY291, R&D,
Minneapolis, MN, USA), leptin (DLP00, R&D) and ghrelin (Jiancheng Bioengineering
Institute, Nanjing, China) levels in follicular fluids, and assays were performed according to
the operating instructions of the manufacturer. Briefly, 50 µL of standards or samples were
added to the appropriate well of the microtiter plate precoated with antibody, gently mixed
and incubated for 60 min at 37 ◦C. After washing, biotinylated anti-IgG and streptavidin–
horseradish peroxidase (HRP) were added along with chromogen solutions A and B.
Finally, the optical density (OD) at 450 nm was recorded using a Multiskan MK3 automatic
microplate spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). Hormone
concentrations were calculated according to standard curves, and each experiment was
performed, repeated independently at least three times.

2.4. Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR)

RNAzol reagent (RNAzol RT reagent, rn190; Molecular Research Center, Cincinnati,
OH, USA) was applied to isolate the total RNAs. A NanoDrop 2000c spectrophotometer
(Thermo Fisher Scientific) was used for qualitative analysis. Total RNA (0.5 µg) was used
to perform first-strand cDNA synthesis via an Evo M-MLV RT kit (Accurate Biotechnology
(Hunan) Co. Ltd., Changsha, China) according to the manufacturer’s instructions. All
primers were designed on the basis of their gene sequences (Table 1). cDNA was then
quantified with RT-qPCR using a CFX Connect Real-Time PCR System (Bio-Rad, Hercules,
CA, USA). The qPCR was carried out in a 20 µL reaction volume with an iTaq™ universal
SYBR® Green super mix reagent kit (Bio-Rad Laboratories, Inc., Hercules, CA, USA) as
follows: 95 ◦C for 5 min, followed by 40 cycles of 95 ◦C for 5 s, 60 ◦C for 15 s and 72 ◦C
for 15 s. Bovine GAPDH was selected as an internal control. Three technical replicates
were performed on each cDNA, and average Ct value was used for further analysis.
Amplification efficiencies were close to 100%. Relative expression values were calculated
using the 2−∆∆Ct method.
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Table 1. Primers for PCR amplification.

Genes Primer Sequence Accession Numbers Product Length (bp)

ESR1 F: AGGGAAGCTCCTATTTGCTCC
R: CGGTGGATGTGGTCCTTCTCT AY538775 234

ESR2 F: AACCTGCTGATGCTCCTGTC
R: CAAAGACTTGTTGCCGCGAA NM_174051.3 150

PGR F: GAGATCTTATAAGCATGTCAGTGG
R: TCATGCAAGTTATCAAGAAGTTTT NM_001205356.1 360

INSR F: CGTGACAGACTATTACGTGCC
R: CCCAATTCTCGCAGGAGTGT XM_005208815.3 258

IGF1R F: CCTCATCAGCTTCACCGTCTACT
R: GCGTCCTGCCCGTCATACT XM_606794.3 72

IGFBP6 F: ACACTGAGATGGGTCCCTGC
R: AGAAGCCCCTTTGGTCACAA NM_001040495.2 117

LEPR F: CTGCTCCCCCAGAAAHACAG
R: GCTGAGCTGACATTGGAGGT XM_010803431 172

GHSR F: CTCGTCATCCTGGTCATCTGGG
R: AACTCGGTCGCTCGGCACTC NM_001143736.2 125

STAR F: GGAGGAGATGGCTGGAAGAAGGT
R: TGCTGTAGCACTGGAATGGAAACA NM_174189 174

3β-HSD F: ACCTGGGAGTGACAATGATGGGAA
R: TCTGGTGGCGGAAGGCAGATAGTA NM_174343 161

CYP11A1 F: CTACCAGGACCTGAGACGGA
R: CCTGCCAGCATCTCCGTAAT NM_176644.2 123

CYP17A1 F: TCCTGGCTGTCTTTCTGCTCA
R: GTGTCCAATCATCACAGTCGT BOVCYP17A 224

GAPDH R: GTCATTGATGGCGACGATGT
R: CTAACCTCGGGGAGAGCTTG NM_001034034.2 100

2.5. RNA Extraction, Library Preparation, Sequencing and Bioinformatics Analysis

Total RNA was extracted from the theca interna of spontaneous follicular cysts (n = 5)
and control follicles (n = 4) of cows using TRIzol reagent (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s instructions, and RNA was purified using an miRNeasy
kit (Qiagen, Hilden, Germany). Sequencing and bioinformatics analysis were conducted by
Beijing Genomics Institute (BGI; Beijing, China). Detailed procedures had been published
previously [27,28]. Raw reads had been deposited in the National Center for Biotechnology
Information (NCBI) Sequence Read Archive database (https://www.ncbi.nlm.nih.gov/sra,
accessed on 19 January 2020) under accession number PRJNA602176. Raw RNA-seq data
were filtered into clean reads, followed by mapping against the Bos taurus reference genome
(mm10) using HISAT. Gene expression levels were quantified using the RSEM software
package [29]. Differential expressed genes (DEGs) between the control and follicular cyst
group were identified using fold change ≥2 and false discovery rate (FDR) ≤ 0.001 as
criteria. Gene Ontology (GO) annotation was used to map all DEGs to GO terms in the
database (http://www.geneontology.org/, accessed on 24 March 2020), and GO terms with
Q-values (corrected p-value) ≤ 0.05 defined DEGs as significantly enriched. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) database was used to perform pathway
enrichment analysis of DEGs, and pathway terms with Q-values ≤ 0.05 were defined as
significantly enriched [30].

2.6. Statistical Analysis

Two-tailed Student’s t tests with IBM SPSS Statistics for Windows version 20.0 were
used to analyze the data from the control and follicular cyst groups (IBM Corp., Armonk,
NY, USA), and the results were presented as mean percentages ± standard error of the
mean (SEM). Statistical significance was defined at p < 0.05.

https://www.ncbi.nlm.nih.gov/sra
http://www.geneontology.org/
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3. Results
3.1. Hormonal and Metabolic Profile of Follicular Fluid

Concentrations of hormones in the follicular fluids of follicular cysts (n = 30) and
control follicles (n = 19) were assayed, and the hormonal profiles are shown in Figure 1.
Firstly, follicular cyst follicles had extremely significant lower E2, insulin, IGF1 and leptin
levels compared with normal follicles (p < 0.01). Secondly, follicular cyst follicles had
extremely significant higher ghrelin and ACTH levels compared with normal follicles
(p < 0.01). There was no significant difference in P4 between follicular cyst follicles and
normal follicles.
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Figure 1. Concentrations of estradiol (E2), progesterone (P4), insulin, insulin-like growth factor 1
(IGF1), leptin, ghrelin and adrenocorticotropic hormone (ACTH) in the follicular fluid of follicular
cyst and control follicles. ** Indicates statistically extremely significant (p < 0.01).

3.2. Relative mRNA Levels of Corresponding Hormone Receptors

The relative mRNA expression levels of corresponding hormone receptors were tested
via qRT-PCR, and the results are shown in Figure 2. The transcription levels of ESR1,
IGFBP6 and GHSR were significantly higher in cystic follicles than in control follicles
(p < 0.05). The transcription levels of ESR2 and PGR were significantly lower in cystic
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follicles than in control follicles (p < 0.05). The transcription levels of IGF1R and LEPR were
extremely significantly lower in cystic follicles than in control follicles (p < 0.01). There was
no significant difference in INSR between cystic follicles and control follicles (p > 0.05).
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Figure 2. The relative mRNA expression of ESR1, ESR2, PGR, INSR, IGF1R, IGFBP6, LEPR and
GHSR genes in follicular cyst and control follicles. * Indicates statistically significant (p < 0.05) and
** indicates statistically extremely significant (p < 0.01).

3.3. Transcriptome Analysis of Ovarian Follicular Cysts

In this study, nine RNA samples from the theca interna of follicular cysts and controls
were subjected to deep sequencing using an Illumina HiSeq1500 platform (Illumina, San
Diego, CA, USA). A total of 2514 genes displayed differential expression between the
follicular cyst and control groups, among which 2077 and 437 DEGs were up- and down-
regulated, respectively (Figure 3).
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A (log2-transformed mean expression level). Y axis represents value M (−log10-transformed fold
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3.4. Clustering Analysis of DEGs

In order to identify the functions of DEGs in the follicular cyst vs. control groups,
GO analysis was performed based on three functional categories, biological process (BP),
cellular component (CC) and molecular function (MF), and the results are shown in Figure 4.
The GO enrichment analysis revealed that many DEGs were implicated in the regulation
of the response to stress, cell proliferation, ovulation cycle process, hormone metabolic
process and regulation of the reproductive process.
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Figure 4. Gene Ontology (GO) enrichment analysis of DEGs for biological processes (BPs), cellular
components (CCs) and molecular functions (MFs).

3.5. Pathway Enrichment Analysis of DEGs

Genes usually interact with each other to play roles in specific biological functions.
Thus, the pathway enrichment analysis of DEGs was performed based on the KEGG
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database, and the DEGs detected in the comparisons of the follicular cyst group vs. control
were mapped to KEGG metabolic and regulatory pathways with a correct p-value cutoff of
p < 0.05. The related KEGG enrichment results are shown in Figure 5. From the pathway
analysis, the ovarian steroidogenesis pathway, cAMP signaling pathway, cytokine–cytokine
receptor interaction, cell cycle and PI3K-Akt signaling pathway took part in the formation
of follicular cysts.
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3.6. Functions of DEGs via Pathways Analysis

Pathway analysis showed that the ovarian steroidogenesis pathway was associated
with the formation of follicular cysts. Thus, the expression of key genes involved in
this signaling pathway was further analyzed (Table 2). The results showed that steroido-
genic acute regulatory protein (STAR), hydroxy-delta-5-steroid dehydrogenase, 3-beta- and
steroid delta-isomerase 1 (3β-HSD), cytochrome P450, family 11, subfamily A, polypeptide
1 (CYP11A1), cytochrome P450, family 17, subfamily A and polypeptide 1 (CYP17A1) were
up-regulated significantly (p < 0.05). And the results were also further verified using
RT-qPCR, and the same trends were acquired, as seen in Figure 6.

Table 2. Expression of key DEGs associated with the formation of ovarian follicular cysts.

Gene Gene ID Control (FPKM) Follicular Cysts (FPKM)

STAR 281507 3.9 20.1
3β-HSD 281824 16.74 90.54

CYP11A1 338048 11.03 66.07
CYP17A1 281739 0.92 80.42

Note: FPKM means fragments per kilobase per million.
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4. Discussion

In the current study, we performed hormonal and transcriptome profiles to analyze
the mechanism of cattle ovarian follicular cysts formation. The high prevalence of ovarian
cysts in high-yield dairy cows has negative effects on the reproductive performance and
economic income of dairy farms.

It is well known that dominant follicle selection is followed by ovulation [31]. Steroid
hormones play a crucial role in ovarian development, differentiation and folliculogenesis.
Antral follicle growth is induced by follicle-stimulating hormone (FSH) and associated
with elevated E2 production; high E2 levels enhance hypothalamic gonadotropin-releasing
hormone (GnRH) pulses, triggering the coming of LH surge [32]. However, reduced E2
levels and an absent preovulatory LH surge at the appropriate time during the maturation
of the dominant follicle results in the formation of ovarian follicular cysts in cattle [1,33]. In
our study, the hormonal profiles of follicular fluids showed that compared with control
follicles, follicular cyst follicles had lower E2 and almost equal P4. The ratios of E2 to P4 (E/P)
in the follicular fluids of ovarian cysts decreased significantly. Braw-Tal et al. [34] reported
that preovulatory follicles were characterized by high E2 and low P4 concentrations, and
the E/P ratio in these follicles was 42, but this ratio dropped sharply to a low level in
follicular cysts. Follicular cysts could contain significantly lower P4 [17] or greater P4 [35]
but significantly lower E2 levels [17,35], or they could tend to decrease in follicular fluids
compared to preovulatory follicles [36]. An imbalance between E2 and P4 in intrafollicular
fluids leads to the formation of ovarian cysts.

The function of hypothalamic–pituitary and the growth and development of ovarian
follicles may be influenced by NEB through metabolic and/or hormonal alteration. Insulin
and IGF-1 are both considered as key mediators between bovine nutritional status and
ovarian physiology function [37–39]. NEB and reduced IGF1 are associated with reduced
fertility. In vitro and in vivo studies on cows show that insulin and IGF-1 stimulate syn-
thesis and secretion of both E2 in granulosa cells and androgen in theca cells [40,41]. Our
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data indicated that the average insulin and IGF-1 concentrations in the follicular fluids of
follicular cyst follicles were significantly lower than in control follicles. Therefore, reduced
insulin and IGF-1 levels may have an influence on the follicular responsiveness to LH
stimulation and then result in ovulation failure and further cyst formation. Ghrelin, the
endogenous ligand of the growth hormone secretagogue receptor (GHS-R1a), plays an
important role in the hypothalamo–pituitary–gonadal axis, and it inhibits the secretion
of gonadotropin-releasing hormone (GnRH) in the hypothalamuses of rats [42,43]. Some
studies evaluate the relationship between metabolic status and follicular cysts but seldom
include ghrelin. This aspect would be interesting because ghrelin is related to NEB [44]. We
found that the concentration of ghrelin was significantly higher in the follicular fluids of
follicular cysts than in control follicles. Metabolic hormones such as positive signals (IGF1,
leptin) and negative signals (ghrelin) serve as signaling molecules that regulate the activity
of GnRH neurons in the hypothalamus and the function of the reproductive endocrine
system [45]. ACTH could be referred to as the regulatory mechanisms associated with ovar-
ian function, such as ovulation, ovarian steroidogenesis and luteal function [46]. Herein,
ACTH was significantly higher in the follicular fluids of follicular cysts than in control
follicles. It is reported that exogenous ACTH treatment can promote endogenous cortisol
synthesis and secretion, thus leading to follicular cysts in cattle [47]. So, the disruption of
metabolic homeostasis leads to the failure of ovulation and the formation of follicular cysts.

Steroid hormones act through specific receptors which directly control the expression
levels of specific gene complexes regulating the growth, development and differentiation
of reproductive tissues and cells, as well as other metabolic processes [48]. Steroidogenesis,
which is essential to maintaining normal ovarian physiology functions, involves compli-
cated enzymatic pathways regulated by insulin and other key proteins [49]. Abnormal
secretion of steroid hormones and metabolic factors can explain the formation of ovarian
cysts, but the specific molecular mechanism remains unknown. Our data also showed that
the mRNA expressions of ESR1, ESR2, PGR, IGF1Rs and GHSR were changed in follicular
cysts. It has been previously demonstrated that the tiny imbalance in the expression of the
two subtypes of ESR could be involved in the pathogenesis of follicular cysts in cattle [50].
Some researchers reported that follicular cysts appear to be associated with changes in
the transcription of IRs, IGFRs [24], PAPP-A [51] and HSD3B1 and LH receptor genes [52],
as well as a decreased expression level of estrogen receptor β protein and a promoted
expression level of estrogen receptor α protein [53]. The changes in the expression of ER-β
may destroy the partial intraovarian paracrine/autocrine system, resulting in changed
follicular development and steroidogenesis and finally the formation of follicular cysts [54].
The steroid receptor is associated with follicular health and the stage of development; any
modifications in intrafollicular activity of steroid hormones decides the fate of a specific
follicle, resulting in the formation of follicular cysts.

However, high-throughput studies on the formation of ovarian cysts are lacking. A
previous microarray analysis investigated gene expression in granulosa cells from dominant
and cystic follicles, revealing 163 DEGs, of which 19 were up-regulated and 144 were
down-regulated [35]. As the development of advanced molecular genetics technologies,
especially next-generation sequencing and bioinformatics, transcriptome sequencing (RNA-
seq) provides a convenient platform for analyzing large-scale gene expression patterns in
organisms [55]. Some studies have analyzed the transcriptome profiles of liver samples
from lactating dairy cows divergent in NEB [56] and the anterior pituitary of heifers before
and after ovulation [57]. In our study, large-scale gene expression patterns were used to
analyze the molecular mechanism of ovarian follicular cysts. The results showed that the
expressions of STAR, 3β-HSD, CYP11A1 and CYP17A1 genes on the ovarian steroidogenesis
pathway were significantly different in ovarian follicular cysts compared with the control
follicles. The synthesis of steroid hormones is under strict control; subtle adapted secretion
of steroids usually results in serious disorder. The cholesterol transport protein, StAR,
promotes the translocation of cholesterol from the outer mitochondrial membrane to the
inner mitochondrial membrane and the two steroidogenic enzymes, 3β-HSD is critical for
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the conversion of cholesterol to pregnenolone [58–60], and CYP11A1 controls the first and
rate-limiting step of steroid biosynthesis through the cAMP-signaling pathway [61]. The
gene expression pattern corresponded well to the hormone profiles. The results revealed
that the ovarian steroidogenesis pathway was linked to the formation of ovarian cysts by
changing the hormone profile.

5. Conclusions

The results presented herein showed that decreased E2, insulin, IGF1 and leptin levels
and increased ghrelin and ACTH levels in the follicular fluids of follicles and changed
expressions of corresponding receptors in the theca interna set a key pole in the process
of ovarian follicular cysts. Further analysis of the transcriptome via RNA-seq found the
up-expression of STAR, 3β-HSD, CYP11A1 and CYP17A1 on the ovarian steroidogenesis
pathway associated with cattle ovarian follicular cysts. Our current work comparing cystic
and normal follicles greatly expands our knowledge in this area. However, coupled with
previous studies, the main cause of cyst formation has not been completely understood.
There are still some limitations to researching the clinical cases of spontaneous ovarian
follicular cysts cows; the conditions affecting ovarian function may be different between
the time of diagnosis and cysts formation. Therefore, further investigation is needed to
determine cause-and-effect relationships.
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