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Simple Summary: The color of wool is an essential trait in sheep which plays a significant role in the
textile industry. The color of wool is determined by the presence of various pigments, which can range
from white to various shades of brown, gray, black, etc. Understanding the genetics behind wool
color is crucial for selective breeding and producing desirable colors for different textile products. By
studying the genetic basis of wool color, researchers can identify genes related to pigmentation and
develop strategies to enhance or modify wool color. This knowledge contributes to the improvement
of wool quality, diversification of textile options, and economic development in the wool industry.

Abstract: Wool color is controlled by a variety of genes. Although the gene regulation of some wool
colors has been studied in relative depth, there may still be unknown genetic variants and control
genes for some colors or different breeds of wool that need to be identified and recognized by whole
genome resequencing. Therefore, we used whole genome resequencing data to compare and analyze
sheep populations of different breeds by population differentiation index and nucleotide diversity
ratios (Fst and θπ ratio) as well as extended haplotype purity between populations (XP-EHH) to reveal
selection signals related to wool coloration in sheep. Screening in the non-white wool color group
(G1 vs. G2) yielded 365 candidate genes, among which PDE4B, GMDS, GATA1, RCOR1, MAPK4,
SLC36A1, and PPP3CA were associated with the formation of non-white wool; an enrichment analysis
of the candidate genes yielded 21 significant GO terms and 49 significant KEGG pathways (p < 0.05),
among which 17 GO terms and 21 KEGG pathways were associated with the formation of non-white
wool. Screening in the white wool color group (G2 vs. G1) yielded 214 candidate genes, including
ABCD4, VSX2, ITCH, NNT, POLA1, IGF1R, HOXA10, and DAO, which were associated with the
formation of white wool; an enrichment analysis of the candidate genes revealed 9 significant GO-
enriched pathways and 19 significant KEGG pathways (p < 0.05), including 5 GO terms and 12 KEGG
pathways associated with the formation of white wool. In addition to furthering our understanding
of wool color genetics, this research is important for breeding purposes.

Keywords: wool color; whole genome resequencing; Fst; θπ ratio; XP-EHH; selection signal

1. Introduction

The influence of wool color on the textile industry dates back a long time [1–3], and the
colors of wool include white, brown, gray, black, tan, and yellow [2,4,5]. White wool meets
the demand for rich colors [1,3,6,7] due to its excellent dyeing ability. Breeding for white
wool has always been a priority in sheep farming, due to the high level of pursuit by the tex-
tile industry [1,3,5,8,9]. And, with the rise of green concept [3,10,11], natural colored wool is
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a way to replace traditional printing and dyeing [12]. A comparison of modern and ancient
wool products reveals a reduction in the diversity of modern wool colors [5,13], making it
imperative to conserve colored wool breeding resources. Research on wool color-related
genes can help improve varieties [7,14], increase the economic value and competitiveness
of natural wool [14], and provide more options and innovations for textile production of
different colored wools [15]. At the same time, understanding wool color characteristics
of different genotypes and breeds can help maintain genetic diversity [16], prevent gene
loss [16], and promote ecosystem management and conservation [7,17–19]. Therefore,
continued research on candidate genes for various wool colors remains necessary [14].

Regarding the mining of sheep wool color genes, the initial studies mainly explored
the effect of genes on sheep wool color through knockout or mutation of single genes [20].
With the improvement in sequencing technology and the development of in vitro breeding
techniques, more and more genes with their variant forms have been discovered and their
roles have been determined [9,21]. Currently, technologies such as whole genome sequenc-
ing, RNA sequencing, and gene editing techniques are widely used to mine and study wool
color genes in sheep [16,17,22,23]. The wool color of sheep is controlled by a series of genes.
In the past decades, scientists have successfully identified multiple genes related to wool
color in sheep. The MC1R, ASIP, TYRP1, KIT and MITF loci are important in biology and
genetics, and they play key roles in biological processes such as formation and distribution
of coat color, pigment production and distribution, and cell migration. The study of these
genes not only contributes to our in-depth understanding of the genetic mechanism of
coat color but also provides a basis for the improvement and selection of sheep breeds
with specific coat color characteristics. The study of key genes for coat color not only is
important for animal husbandry but also provides valuable information for biological and
medical research, as well as deepening the understanding of ecology and evolution. Under
the action of the MC1R gene, melanocytes produce melanin and deposit it into the hair
follicle, which results in a black or brown coat color in sheep [24,25]. In contrast, under the
action of the ASIP gene, melanin production and deposition is inhibited, leading to light
pigmentation [24]. The ratio of the expression of these two genes allows the wool color to be
presented in the black to reddish-brown range [24]. TYR is a key enzyme in the regulation
of melanogenesis, and mutations in TYR lead to the production of white wool [24,26,27].
TYRP1 is an important enzyme in the synthesis of true melanin [24,26,27]. Mutations in
TYRP1 result in the inability to convert the brownish 5,6-dihydroxyindol into the blackish
eumelanin, which affects the shade of brown color of wool [24,28]. KIT [19], MLPH [24],
and KIF5A [29] are commonly recognized as genes that mediate the formation and distri-
bution of pigment granules in melanocytes which are associated with the translocation
of melanosomes. In contrast, the PMEL [27] gene is involved in melanosome structure,
and its variation can inhibit melanosome formation, resulting in melanin dilution [24,25].
In addition, the regulatory mechanisms of transcription factors are also closely related to
sheep wool color. Transcription factors are a class of proteins that can bind to gene DNA
and regulate gene expression, such as SOX10 [24] and MITF [30], which have been shown
to be essential for melanocyte differentiation and maturation. MITF is a key regulator of
pigmentation, and variations in MITF have been associated with the formation of light-
colored wool [24,30]. Variations in IRF4 lead to lighter coloration [31,32]. Mutations in DCT
result in increased production of eumelanin and decreased production of pheomelanin in
melanocytes [25,27,33,34]. The MSG1 (CITED1) gene enhances melanin production in B16
cells [35]. In previous studies, black and white wools were mainly used, followed by brown
and tan, while other colors of wools were less studied.

Wool color is complex and affected by the interaction of multiple genes [5,24], and
although some relevant genes have been identified, research is still ongoing [14]. Differ-
ent breeds of sheep may be caused by different genes even if they have the same color
wool [19,24], and they have different genetic variants [7,19], requiring in-depth study of
the mechanism of wool color [24]. In addition, gene interactions and environmental factors
also affect wool color [19], which is an issue that may require further research in the future.
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We studied the coat color of different breeds of sheep by whole genome resequencing
to obtain more comprehensive and detailed data [9,19,21]. Employing three signal anal-
ysis methods [36] (population differentiation index (Fst [36]), nucleotide diversity ratio
(θπ ratio [37–39]), and cross-population extended haplotype homozygosity (XP-EHH [40]))
allowed us to obtain comprehensive insights into selection signals, resulting in improved
reliability and understanding of the evolution and adaptations of sheep breeds, as well as
the effects of natural and artificial selection.

2. Materials and Methods
2.1. Ethics Statement

All experimental work on sheep was approved by the Animal Ethics Committee of
the Institute of Animal Science, China Academy of Agricultural Science (protocol code IAS
2022-7 and 25 February 2022).

2.2. Sample Collection and Sequencing

Jugular vein bloods were collected from fifteen sheep breeds (Table 1) in 2019, includ-
ing Bashbay sheep (BAS), Duolang sheep (DUL), Altay sheep (ALT), Qira Black sheep (QIB),
Turfan Black sheep (TUB), Guide Black Fur sheep (GBF), Ninglang Black sheep (NLB),
Shiping Gray sheep (SPG), German Mutton Merino (GME), Poll Dorset (DOP), Large-tailed
Han sheep (LTH), Guangling large-tailed sheep (GLT), Hu Sheep (HUS), Tong Sheep (TON),
and Lanzhou Large-tailed sheep (LLT). DNA extraction and library construction were then
performed. Next, Illumina PE150 was used to sequence the sheep, and the resequenced
data were used for further analysis.

Table 1. Information on the sheep populations in this study.

NO. Breed Abbr. Photo Category Size Color

1

Bashbay sheep BAS
Domestic_East
Asia_Kazakh 4 Brown wool with white face

2
3

4

5
Duolang sheep DUL

Domestic_East
Asia_Kazakh 3

Gray white wool with dark
gray head and limbs,

tawny neck
6

7

8
Altay sheep ALT

Domestic_East
Asia_Kazakh 3 Brown red wool with

white head
9

10

11
Qira Black sheep QIB Domestic_East

Asia_Kazakh 3 Black brown wool12

13

14

Turfan Black sheep TUB
Domestic_East
Asia_Kazakh 4 Black wool

15
16
17

18 Guide Black
Fur sheep GBF

Domestic_East
Asia_Tibet 3 Black red wool19

20

21
Ninglang Black sheep NLB

Domestic_East
Asia_Yunnan 3 Black wool22

23
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Table 1. Cont.

NO. Breed Abbr. Photo Category Size Color

24

Shiping Gray sheep SPG
Domestic_East
Asia_Yunnan 4 Cyan wool with black limbs25

26

27

28
German Mutton

Merino
GME Domestic_Europe 3 White wool29

30

31
Poll Dorset DOP Domestic_Europe 2 White wool

32

33
Large-tailed Han

sheep LTH
Domestic_East
Asia_Mongolia 4 White wool

34
35
36
37

Guangling
large-tailed sheep GLT

Domestic_East
Asia_Mongolia 4 White wool

38
39
40

41
Hu Sheep HUS

Domestic_East
Asia_Mongolia 3 White wool42

43

44
Tong Sheep TON

Domestic_East
Asia_Mongolia 3 White wool45

46

47 Lanzhou Large-
tailed sheep LLT

Domestic_East
Asia_Mongolia 2 White wool48

We carefully selected healthy, breed-typical individuals at the age of 1 year to ensure a
representative and comparable cohort of animals. Whenever possible, we utilized full/half
siblings to minimize individual variations. The farm provided high-quality feed and
ensured access to clean water. Moreover, it offered a suitable and comfortable feeding
environment with appropriate space allocation, dry bedding, and a controlled temperature
range. Regular health checks and vaccination programs were implemented along with
strict hygiene practices. Reasonable exercise opportunities were provided while ensuring
adequate rest for the animals. Additionally, effective breeding management was carried
out alongside regular inspection and maintenance of equipment.

2.3. Alignments and Quality Control

The raw reads of fastq format were first processed through a series of quality control
procedures using FastQC to ensure reliable reads in the subsequent analyses. The standards
of quality control were followed, including (1) removing reads with ≥10% unidentified
nucleotides (N); (2) removing reads with >20% bases having phred quality less than
5; (3) removing reads with >10 nt aligned to the adapter, allowing ≤ 10% mismatches;
and (4) removing putative PCR duplicates generated by PCR amplification in the library
construction process (reads 1 and 2 of 2 paired-end reads that were completely identical).

Valid high-quality sequencing data were aligned to the reference genome (GCF_01677
2045.1_ARS-UI_Ramb_v2.0) using BWA software (v 0.7.17) [41] with the following parame-
ters: mem -t 4 -k 32 -M. The resulting alignments were processed using SAMTOOLS [42] to



Animals 2023, 13, 3265 5 of 24

remove duplicates, employing the parameter rmdup. In order to enhance the accuracy of
data analysis, high-quality SNPs [43] meeting the following criteria were selected: (1) SNPs
with a depth of coverage greater than 2; (2) SNPs with a proportion of MIS (deletions) less
than 10%; (3) SNPs with a minimum allele frequency (MAF) greater than 5% [44].

2.4. Population Structure Analysis

Before conducting the analysis, all single nucleotide polymorphisms (SNPs) under-
went trimming using the indep-pairwise [45] function of PLINK 1.09 software [46]. The
trimming process involved applying specific parameters, including a non-overlapping
window of 25 SNPs, a step size of 5 SNPs, and a threshold of 0.05 for r2, in order to obtain a
set of independent SNP markers. To examine the clustering patterns within the population,
we conducted a principal component analysis (PCA) using PLINK 1.09 [46]. Addition-
ally, to assess the genetic relatedness among individuals, we constructed neighbor-joining
(N-J) trees [47] using MEGA (v 7.0) software [48] and visualized them using ITOL (v 6)
software [49] (https://itol.embl.de/upload.cgi, (accessed on 9 June 2023)). Furthermore,
to evaluate the extent of population stratification and to validate the findings from PCA
and N-J trees, we employed ADMIXTURE (v 1.3) software [50] to construct the population
genetic structure, with k values ranging from 2 to 9.

2.5. Analysis of Selection Signals

Resequenced data are rich in variation information yet are fraught with noise and
false alarms. By first using Fst [36] and θπ ratio [37–39] screening, an initial set of candidate
selection signals can be quickly obtained, reducing the time and resources required for
subsequent analysis. The true selection signal can be more accurately identified and
potential false positives can be eliminated by subsequent verification and validation using
XP-EHH [40]. As a starting point for analysis, BAS, DUL, ALT, QIB, TUB, GBF, NLB,
and SPG were categorized into G1 and GME, DOP, LTH, GLT, HUS, TON, and LLT were
categorized into G2. The Fst and θπ values were computed by employing VCFtools
(version 0.1.15) software [51]. The analysis incorporated specific parameters: -fst-window-
size 50,000 and -fst-window-step 50,000. Subsequently, the obtained values were utilized to
derive the θπ ratio [37–39]. The selected genomic intervals of the G1 and G2 populations
associated with wool color traits were screened by comparing the Fst and pi values of
the G1 and G2 populations. Then, we use population marker information to estimate the
haplotype of each chromosome by fastphase 1.4 [52] with the options set to −Ku40 −Kl10
−Ki10. XP-EHH scores were calculated using haplotype information from the XP-EHH
program at http://hgdp.uchicago.edu/Software/, (accessed on 9 June 2023) to determine
whether selection had occurred in the experimental (G1 or G2) population [40]. Using the
sliding window method, XP-EHH values were then calculated with a window size of 50 kb
and a step size of 20 kb. Next, the mean was computed for each SNP in the sliding window.
A negative XP-EHH score means that selection has taken place in the reference population,
in contrast to a positive XP-EHH score, which represents that selection has occurred in the
experimental population.

The problem of small sample sizes in varieties can be addressed to some extent by
combining multiple methods for analysis. By combining multiple methods, the ability
to detect genetic variation can be improved and the reliance on large sample sizes can
be reduced [40,53,54]. Each method has its own unique information and limitations, so
joint analysis can combine the strengths of different methods and increase the sensitivity
and accuracy of detection of genetic signals [55–57]. In addition to increasing detection
power, the combined analysis of three methods can be independently validated, providing
complementary information [40,53,58,59]. Consistent results from multiple methods can
increase confidence in the signal. When multiple methods indicate the presence of the
same genetic variant signal, the authenticity of the signal can be confirmed with greater
confidence. Different methods have different characteristics and preferences for detect-
ing genetic variation. By utilizing multiple methods in combination, a comprehensive

https://itol.embl.de/upload.cgi
http://hgdp.uchicago.edu/Software/
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understanding of the characteristics and patterns of genetic variation can be obtained from
different perspectives, better revealing the potential biological significance.

2.6. Detection and Annotation of Candidate Genes

Different breeds of wool colors have different heritabilities, mostly low to medium
heritabilities, but some have high heritability [60–64]. It is possible that genes associated
with wool color are located in regions with low genetic diversity. Therefore, in this study, the
threshold for selection signal analysis has been adjusted to the top 5% to avoid overlooking
candidate genes that may be involved in wool color [65]. Then, the loci within the window
where Fst [36], θπ ratio [37,38], and XP-EHH [40] were top5% were extracted as significant
SNP loci, namely the candidate loci for the selection signal. Areas 50 kb upstream and
downstream of the candidate loci were regarded as selection signaling regions. We used
ANNOVAR software (https://annovar.openbioinformatics.org/en/latest/, accessed on
9 June 2023) [66] to annotate the genes with the sheep reference genome. Finally, the
Venn diagram was created on the basis of the candidate genes derived from Fst, θπ ratio,
and XP-EHH.

2.7. Candidate Gene Enrichment Analysis

To uncover the function and the mechanism of expression regulation of the genes, a
functional enrichment analysis was performed. Candidate gene functional enrichment
was performed using DAVID 6.8 [67] (https://david.ncifcrf.gov/, (accessed on 15 June
2023)), with gene symbol as the input parameter and Ovis_aries selected as the background
organism. We tallied the number of genes that were enriched in these GO [68] terms and
evaluated the significance of their enrichment by means of the hypergeometric distribution
test. These genes were analyzed for KEGG [69] enrichment by means of Kobas 3.0 [70] (http:
//kobas.cbi.pku.edu.cn/kobas3/genelist/, (accessed on 15 June 2023)), with Ovis_aries
selected for background organism, using the Hypergeometric test/Fisher’s exact test
as the statistical method. The terms and pathways with p-value < 0.05 were judged to
be significant.

3. Results
3.1. Genetic Variation and Population Genetic Analysis

Whole genome resequencing with an average coverage of 7.6× was performed on
48 sheep individuals in this study. A total of 9,581,315,830 reads were obtained after
alignment to the sheep reference genome (ARS-UI_Ramb_v2.0), covering 98.03% of the
reference sequence. A coverage of 98.03% signifies that the likelihood of missing important
information or encountering errors is minimized, thereby ensuring more comprehensive
and accurate genomic insights. Furthermore, high coverage facilitates enhanced confidence
and interpretability, particularly when examining variant annotations, identifying mutation
sites, and exploring genomic structure and function. Consequently, this dataset proves
valuable for subsequent studies involving population structure analysis and identification
of selection signals. After variant calling and quality control, a total of 22,133,207 SNPs were
identified. Statistical results of SNPs showed that variants mainly occurred in intergenic
interval, followed by intronic interval, exonic interval, etc. Among the exonic variants,
there were 82,379 non-synonymous SNPs and 68,110 synonymous SNPs (Table 2). The
TS/TV ratio was determined to be 1.9, closely approximating 2. This observation implies a
relatively balanced distribution of SNPs across the population, indicative of a normalized
genomic population structure. These findings establish a solid foundation of reliable
data for further investigations into population structure and the identification of potential
selection signals.

https://annovar.openbioinformatics.org/en/latest/
https://david.ncifcrf.gov/
http://kobas.cbi.pku.edu.cn/kobas3/genelist/
http://kobas.cbi.pku.edu.cn/kobas3/genelist/
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Table 2. The distribution of SNP variants in the genome region.

Catalogue SNP Numbers

Upstream 93,281
Exonic 151,411
Intronic 8,123,336
Splicing 4227

Downstream 125,137
upstream/downstream 2550

Intergenic 13,414,800
ts 14,501,815
tv 7,631,392

ts/tv 1.9
Total 22,133,207

Firstly, a map of the worldwide distribution of sheep breeds was created (Figure S1).
Then PCA, phylogenetic tree construction, and population structure analysis were exe-
cuted on the fifteen sheep populations using the received SNP datasets to understand
the genetic relationships and differences between different wool color sheep populations
from a genome-wide perspective. According to the PCA results (Figure 1a), PC1 and PC2
explained 5.33% and 4.04% of the genetic variation, respectively; the 15 breeds clustered
into two groups, European sheep breeds and East Asian sheep breeds; Yunnan sheep
breeds were significantly separated from other East Asian sheep breeds; and Tibetan sheep
breeds were slightly separated from Kazakh and Mongolian sheep breeds. The non-white
wool sheep breeds (GBF, SPG, and NLB) and white wool sheep breeds (DOP and GME)
were separated from the population via PC1 and PC2 (Figure S2). The non-white wool
sheep breeds (BAS, DUL, ALT, QIB, and TUB) could be separated from the remaining
sheep population following PC3 (Figures S3 and S4). The population genetic structure
(Figure 1b,d) was constructed using ADMIXTURE software to confirm the accuracy of the
results obtained from PCA. With K = 2, the blue background was dominant, and there was a
clear transition from European sheep breeds to East Asian Kazakh, Tibetan, and Mongolian
sheep breeds to Yunnan sheep breeds; Yunnan sheep breeds and European sheep breeds
were clearly separated from other breeds; and when K = 3, Tibetan sheep (GBF) were
separated from other breeds. The population genetical structure results confirmed the
results of PCA. The results of the N-J tree (Figure 1c) are somewhat different from those
of PCA and STRUCTURE. The PCA results are the same as those of STRUCTURE, which
suggests that the position of individuals in genetic space is consistent with their genetic
components among different genetic groups. The N-J tree is inconsistent with the PCA
and STRUCTURE results, which suggests that there are differences in the phylogenetic
relationships between species and that further study and consideration of other possible
factors and explanations are needed.

3.2. Analysis of Selection Signals

Within the non-white wool group (G1 vs. G2), 3944 top 5% selection signals were
screened by the joint Fst&θπ ratio (Figure 2a); 8223 top 5% selection signals were screened
by XP-EHH (Figure 2b). Upon ANNOVAR annotation of the screened candidate SNPs,
544 and 1061 candidate genes associated with colored wool color were detected, respec-
tively. After constructing the Venn diagram, 365 overlapping candidate genes were
obtained (Figure 2d), 2431 and 4250 selection signals in the top 5% of Fst&θπ ratio
(Figure 2a) and XP-EHH (Figure 2c) were screened in the white wool group (G2 vs. G1),
and 388 and 625 candidate genes were derived by annotation. Ultimately, 214 overlapping
candidate genes were screened using the Venn diagram [71] (Figure 2e).
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Figure 1. World distribution map of sheep breeds and population genetic structure analysis: (a) prin-
cipal component analysis (PCA); (b) population structure analysis (Different colors represent different
components of ancestry); (c) neighbor-joining tree; (d) cross-validation error.

3.3. Enrichment Analysis

Both GO [68] and KEGG [69] enrichment were performed on candidate genes screened
in the sheep genome using Fst [36], θπ ratio [37–39], and XP-EHH [40]. Initially, there are
21 significant GO terms (Table S5) in the non-white wool group (G1 vs. G2), including
3 noteworthy biological processes (BP), 10 noteworthy cellular components (CC), and
8 noteworthy molecular functions (MF) (p-value < 0.05, Figure 3a). Inquiring about the
role of GO terms (http://geneontology.org/, (accessed on 29 June 2023)) and the results
of previous studies, the following 17 GO terms are associated with non-white wool for-
mation: myosin II complex (GO:0016460, MRCL3, LOC101105123, MYH10), protein kinase
binding (GO:0019901, PPP1CB, ARHGAP33, TRAF3, CHEK2, SPDYA, CCNYL1, NR3C1,
KIZ, CDC25A, MAPK4), actin monomer binding (GO:0003785, NOS3, PRKCE, MTSS1), etc.
(Table S9). In contrast, there were nine significant GO terms (Table S6) in the white wool
group (G2 vs. G1), including three noteworthy BPs, five noteworthy CCs, and one notewor-
thy MF (p-value < 0.05, Figure 3c). The following 5 GO terms are associated with white
wool formation according to the role of GO terms (http://geneontology.org/, (accessed
on 29 June 2023)) and the results of previous studies: myelination (GO:0042552, SLC8A3,
ATRN, ACER3), protein kinase complex (GO:1902911, NEK10, IGF1R), RNA polymerase II
transcription factor activity, sequence-specific DNA binding (GO:0000981, ISL2, HOXA3,
EVX1, HOXA7, ZFHX4, HOXA6, HOXA5), etc (Table S10).

http://geneontology.org/
http://geneontology.org/
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Figure 2. Selection signal analysis: (a) Fst and θπ ratio selection elimination analysis plots; (b) genome-
wide distribution of XP-EHH (G1 vs. G2) (Different colors represent different chromosomes);
(c) genome-wide distribution of XP-EHH (G2 vs. G1) (Different colors represent different chro-
mosomes); (d) Fst, θπ ratio, and XP-EHH screened for overlapping genes (G1 vs. G2); (e) Fst, θπ ratio,
and XP-EHH screened for overlapping genes (G2 vs. G1).

Then, in the non-white wool group (G1 vs. G2), 49 significant KEGG enrichment
pathways (Table S7) were identified (p-value < 0.05, Figure 3b). From the analysis of the role
of KEGG (https://www.kegg.jp/kegg/pathway.html, (accessed on 29 June 2023)) and the
results of previous studies, the following 27 KEGG pathways are associated with non-white
wool formation: arginine and proline metabolism (oas00330, MAOA, NOS3, AGMAT),
purine metabolism (oas00230, PDE4B, ENTPD5, PAPSS2, NT5E, PDE11A), retrograde
endocannabinoid signaling (oas04723, NDUFS1, GABRR1, MAPK10, GABRA1, GRM5),
etc. (Table S11). There were 19 significant KEGG enrichment pathways (Table S8) in the
white wool group (G2 vs. G1) (p < 0.05, Figure 3d). When looking at the role of KEGG
(https://www.kegg.jp/kegg/pathway.html, (accessed on 29 June 2023)) and the results
of previous research, the following 12 KEGG pathways are related to the development
of white wool formation: valine, leucine, and isoleucine degradation (oas00280, PCCB,

https://www.kegg.jp/kegg/pathway.html
https://www.kegg.jp/kegg/pathway.html
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HIBADH, ACAT2, ALDH6A1); lysine degradation (oas00310, COLGALT2, NSD3, ACAT2);
pyruvate metabolism (oas00620, ACSS2, ACAT2); etc. (Table S12).

Figure 3. Cont.
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Figure 3. GO enrichment and KEGG enrichment results. (a) The most enriched GO terms (G1 vs. G2);
(b) KEGG pathway enrichment (G1 vs. G2); (c) the most enriched GO terms (G2 vs. G1); (d) KEGG
pathway enrichment (G2 vs. G1); (e) Sankey diagrams for relevant pathways (G1 vs. G2); (f) Sankey
diagrams for relevant pathways (G2 vs. G1).

Based on the pathways that were screened for association with wool color (Figure 3e,f),
we constructed Sankey diagrams to predict genes involved in the formation of non-white
and white wool (Table 3).

Table 3. Genes associated with wool color inferred from Sankey diagrams.

Category Gene Number of Relevant Pathways

Non-White

PPP1CB 7
CALML4 9
PPP3CA 10
GRM5 6
GRIN1 8
MYLK 6
FGF18 5
FGFR2 6
FGF2 5

MAPK10 8
NOS3 6



Animals 2023, 13, 3265 12 of 24

Table 3. Cont.

Category Gene Number of Relevant Pathways

White

ACAT2 5
PCCB 2

ALDH6A1 2
ACSS2 2
PAPSS2 2

4. Discussion
4.1. Sample Control and Population Genetic Analysis

In this study, we performed whole genome resequencing on 48 sheep samples. Indi-
vidual variations may also potentially affect the analysis of selection signals. To mitigate
these differences, this research focuses on selecting representative samples to minimize
individual disparities. Additionally, a joint analysis method is employed to address the
limitations posed by the small sample size, compensating for individual variations and
reducing potential errors. This approach aims to improve the screening efficiency and
reliability of selection signals by covering a broader and more comprehensive genomic
region using the three combined methods [40,53,54].

According to the PCA and ADMIXTURE results, it was found that there were high
genetic similarities and consistent genetic components among the four populations of
European, Yunnan, Kazakh, and Mongolian sheep, which were consistent with their
breeding history. The Tibetan sheep (GBF) is very close to the Kazakh and Mongolian
sheep in PCA and has the genetic components of Yunnan sheep in the population structure
analysis; GBF is a local breed, which has been selected and bred for a long time, and
according to its geographic location, it is assumed that there is a genetic exchange with
Yunnan sheep, Kazakh, and Mongolian sheep. The QIB in the N-J tree is very inconsistent
with PCA and ADMIXTURE. According to the investigation, QIB was bred in the late 19th
century by merchants and pilgrims who brought back lambskin sheep and other black
lambskin sheep from overseas and crossed them with local ewes. The breeding time is
relatively short, so it is closer to the European sheep in terms of phylogenetic relationship.

4.2. Selective Signal Analysis

Wool color formation is a complex process regulated by a variety of factors and mecha-
nisms, mainly involving the development of pigment cells [72,73], pigment synthesis [72,73],
pigment transport and release [72–75], pigment particle distribution [24,74], and other pro-
cesses. The overall appearance of wool color in different animals also depends on the
distribution pattern of pigment granules. Due to the specific origins of melanoblasts in
certain regions of the neural crest during embryonic development, there are specific time
frames within which migrating cells must reach their designated positions in the skin [72,73].
Failure to do so can lead to areas of the skin lacking pigment cells, resulting in patches
of white coloration known as leucism [24]. Impaired melanogenesis ultimately leads to a
complete absence of pigment. This phenomenon is most commonly observed on the legs,
abdomen, and forehead since these areas are farthest from where melanoblasts originate
and therefore require more time for cell migration [19]. Overall, the formation of wool color
is regulated by gene expression, cell–cell interactions, and hormonal regulation [74].

4.2.1. GO terms and Pathways Associated with Non-White Wool

Based on the enrichment results, we reviewed previous literature and found that the
following GO [68] terms and KEGG [69] pathways are associated with processes such as pig-
ment cell development, pigment synthesis, pigment transport and release, and distribution
of pigment granules. Phosphoric diester hydrolase activity (GO:0008081) regulates the lev-
els of intracellular second messenger molecules, such as intracellular calcium ions (calcium
signaling pathway (oas04020)) [76–78], cAMP [79], and cGMP (cGMP-PKG signaling path-
way (oas04022)), which are important in the regulation of pigment aggregation/dispersal
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and production [76,80] through protein kinase binding (GO:0019901). Deletion of the
ATP-binding region in the structural domain of the kinase inhibits pigment dispersion,
and thus, ATP binding (GO:0005524) plays a key role in pigment transporter and plays an
important role in energy provision [76]. Thus, protein kinase binding (GO:0019901) and
ATP binding (GO:0005524) are closely interrelated during pigment transport and jointly
regulate intracellular signaling pathways and the dynamic distribution of pigment gran-
ules. Actin filaments and myosin motors are required for vesicle transport and retention of
organelles in specific locations [81–84]. Actin filament-monomer turnover leads to the ag-
gregation and dispersion of pigments [82], and thus, actin monomer binding (GO:0003785)
and the regulation of actin cytoskeleton (oas04810) maintains a rational distribution of
intracellular pigments. Myosins are categorized into (muscle) myosins and non-muscle
myosins [85]. Actin-dependent myosin II, known as myosin II complex (GO:0016460),
drives pigment granule aggregation [86,87]. The actin–myosin system plays a role in par-
ticle transport of melanin carriers in rats [88], fish [89], and amphibians [90]. In contrast,
non-muscle myosin II isoforms may play a role in pigment aggregation in crustacean and
vertebrate pigment cells [82,84,85,91]. Focal adhesion assembly (GO:0048041) is a spe-
cialized structure that connects the cell cytoskeleton to the extracellular matrix [92]; focal
adhesion (oas04510) plays a key role in the interaction between the extracellular matrix and
pigment cells [92], which affects the development and distribution of pigment cells [93].
TERMS and PATHWAYS associated with neurotransmitters and their receptors may affect
pigment synthesis and release [94], excitatory postsynaptic potential (GO:0060079) [94],
glutamatergic synapse (GO:0098978) [94,95], dendritic spine (GO:0043197) [77,96,97], axon
(GO:0030424) [98], postsynaptic membrane (GO:0045211) [99,100], integral component
of postsynaptic density membrane (GO:0099061), axon guidance (oas04360), dopaminer-
gic synapse (oas04728) [94,101], neuroactive ligand–receptor interaction (oas04080) [23],
glutamatergic synapse (oas04724) [94,95], and long-term potentiation (oas04720) [100].
The histone deacetylase complex (GO:0000118) plays a key role in melanocyte develop-
ment [102]. The transcriptional repressor complex (GO:0017053) affects hair color phe-
notype by repressing the transcription of genes, thereby reducing or preventing the ex-
pression of specific genes [103–106]. The chloride channel complex (GO:0034707) may
regulate melanin synthesis by modulating melanosome pH [78,107]. The cysteine-type
endopeptidase activity (GO:0004197) may be involved in regulating the degradation or
activation of key enzymes in the pigment synthesis process, affecting the production and
regulation of pigmentation [108]. Zinc ion binding (GO:0008270) contributes to the binding
of zinc ions to TYR and TYRP1, promoting melanogenesis [109,110]. The MAPK signal-
ing pathway (oas04010) [111–113] and Ras signaling pathway (oas04014) [114–116] have
important roles in the proliferation and differentiation of melanocytes, and the MAPK
signaling pathway is directly linked to the synthesis of wool color [112]. The Wnt signaling
pathway (oas04310) is an important pathway in melanin synthesis [112], pigment aggre-
gation [117], and melanocyte stem cell differentiation [117–119]. The PI3K-Akt signaling
pathway (oas04151) is critical for melanocyte proliferation and apoptosis [120–122]. Endo-
cytosis (oas04144) mediates melanin transfer between melanocytes and keratinocytes [123].
Huntington’s disease (oas05016) affects the release of α-melanocyte-stimulating hormone
(α-MSH) [124], which in turn affects melanin synthesis and release [125]. The oxytocin sig-
naling pathway (oas04921) regulates the production and release of oxytocin, and oligopep-
tides such as oxytocin stimulate melanin production [126]. Nicotine addiction (oas05033)
affects melanin synthesis [127–129]. The Rap1 signaling pathway (oas04015) promotes
melanocyte proliferation by activating the downstream protein kinase C-Raf and ERK
signaling pathways [113,116,130,131], in addition to regulating pigment synthesis [132]
as well as pigment cell migration and adhesion [113]. Downregulation of tight junction
(oas04530)-related gene expression results in reduced cell–cell junctions that contribute to
melanosome/melanin transfer [133]. Vascular smooth muscle contraction (oas04270) may
be associated with melanin synthesis [134]. The IL-17 signaling pathway (oas04657) regu-
lates the production and action of IL-17, which can inhibit melanin production [135]. Purine
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metabolism (oas00230) may be associated with golden pigment production [136–138],
which correlates with the blue phenotype [139], and may also affect melanin synthe-
sis [140–142]. Glycine, serine, and threonine metabolism (oas00260) also correlate with
the blue phenotype [139,143]. The histidine metabolism (oas00340) may be associated
with melanin deposition [144,145]. The phosphatidylinositol signaling system (oas04070)
controls melanocyte proliferation and differentiation [146]. The VEGF signaling path-
way (oas04370) affects melanin synthesis [147]. Carotenoids produce yellow, orange, and
red colors, and retrograde endocannabinoid signaling (oas04723) may be associated with
carotenoid-based coloration [148].

4.2.2. GO Terms and Pathways Associated with White Wool

Arginine and proline metabolism (oas00330) affects and regulates the function of
pigment cells, which leads to the lightening or whitening of the animal’s wool color [149].
Myelin and melanocytes share common progenitors, and thus, myelination (GO:0042552)
may affect melanocyte formation, which in turn leads to leucism [72,73]. The structure and
modification of chromatin (GO:0000785) plays an important role in the regulation of gene
expression and phenotypic features, and it may be involved in the synthesis and formation
of skin and hair pigmentation [150–153]. The protein kinase complex (GO:1902911) plays
an important role in cell signaling and regulation and is associated with pigment cell differ-
entiation and pigment synthesis [30,154,155]. The mitochondrion (GO:0005739) is involved
in many cellular functions, including energy production and intracellular signaling, and
its dysfunction is associated with hypopigmentation [156,157]. RNA polymerase II tran-
scription factor activity and sequence-specific DNA binding (GO:0000981) are associated
with melanocyte development and differentiation [158]. Valine, leucine, and isoleucine
degradation (oas00280) is associated with hair color, and complexes of branched-chain
amino acids which are potential depigmenting agents inhibit melanin synthesis [159,160].
Carbon metabolism (oas01200) provides the carbon framework for melanin synthesis, but
low carbon conditions are not favorable for melanin synthesis [161]. Terpenoid backbone
biosynthesis (oas00900) is associated with the synthesis of many natural products, some of
which (carotenoids) may be related to coat color, skin color, and melanin [162–164]. Seleno-
compound metabolism (oas00450) may be related to melanin because selenium is a trace
element that has an effect on melanin synthesis [165,166]. Lysine degradation (oas00310)
prevents melanin pigment formation by inhibiting tyrosinase activity, which in turn leads
to depigmentation [167]. Nicotinate and nicotinamide metabolism (oas00760) decreases
melanin synthesis [168]. Pyruvate metabolism (oas00620) inhibits melanin biogenesis [169].
Glycerophospholipid metabolism (oas00564) and purine metabolism (oas00230) are asso-
ciated with melanin deficiency [170]. The dysregulation of DNA replication (oas03030)
may induce melanocyte decay [171]. Transcriptional misregulation in cancer (oas05202)
is involved in the regulation of melanin deposition [172]. Glycine, serine, and threonine
metabolism (oas00260) may also play a role in the white phenotype [139,143].

4.2.3. Genes Associated with Wool Color

Based on the significantly different genes obtained using the multiple selection signal
analysis method and the cross-pathway genes in the Sankey diagram of wool color-related
pathways, we have obtained some genes reported to be related to wool color formation
after checking the related research literature to confirm previous studies and to better reflect
the accuracy of this paper. However, we must point out that genetic differences between
breeds may also affect the association between genes and coat color, since the two sets of
samples in this study cover different breeds. In addition to this, candidate genes may not
produce consistent effects in coat color phenotypes across breeds. PDE4B is associated
with melanin deposition [173]. Nie et al. found that GMDS may be associated with skin
color regulation from a genome-wide association analysis [174]. GATA1 and RCOR1 are
major transcription factors for melanin formation [175], and GATA1 affects the formation
of the red phenotype [176,177]. The MAPK4-mediated MAPK4/MAPK6 pathway affects
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melanocyte proliferation and differentiation [113]. TECRL is associated with hyperpigmen-
tation of the head [112]. MAPK10 is an important gene involved in melanin synthesis [112].
SLC36A2 may be associated with melanogenesis [178], and it also is a candidate gene
for cream, pearl, and champagne dilution phenotypes in horsehair [179,180]. Mutations
in exon 2 of the SLC36A1 gene are a key locus responsible for the champagne coat color
in horses [179]. MAOA is associated with the leucism phenotype [94,181]. NOS3 may
theoretically reduce melanogenesis [182]. PDE4B is involved in melanin synthesis [183,184]
and were exclusively associated with tanning ability [184]. The overexpression of GABRR1
inhibits melanin stem cell regeneration [185]. The GRM5 gene is associated with skin and
hair pigmentation [186,187]. PPP3CA may be associated with color variation [188]. PPP1CB
was shown to regulate actin filament polymerization and/or reorganization [189], regulat-
ing the distribution of pigment granules. Mutations in ABCD4 cause hyperpigmentation of
the skin, leading to lighter hair color [190,191]. VSX2 affects human skin pigmentation [192]
and is also a candidate gene for vertebrate retinal pigmentation [193,194]. The ITCH gene
regulates the expression of the ASIP gene, which leads to the white wool phenotype [195].
NNT can inhibit melanogenesis by suppressing MITF gene expression [196]. However,
another study showed that NNT can inhibit redox-dependent hyperpigmentation by a
mechanism independent of UVB and MITF [197,198]. POLA1 has been associated with
impaired pigmentation [199]. PDE3A regulates the production of cAMP and cGMP, which
in turn may affect pigment aggregation and dispersion through a number of termes and
pathways [200,201]. MCM6 is associated with pigmentation around the eyes of cattle [202]
and may be related to the formation of orange and blue skin color in lizards [138]. In
addition to this, MCM6 influences the normal development of melanocytes through DNA
replication [203–205]. POLA1 has been shown to be associated with reticulate skin hyper-
pigmentation in humans [206,207] and may be related to hyperpigmentation in threespine
stickleback [206]. IGF1R belongs to a family of tyrosine kinase receptors on cell mem-
branes, and its aberrant expression hinders melanocyte pigmentation, proliferation, and
migration [208–210]. HMGA2 can greatly strength melanocyte stem cell activation and
translocation [211,212]. MEIS1 leads to the formation of ectopic pigment cell clumps [213].
HOXA10 gene upregulates the DKK1 gene to regulate skin pigmentation [214,215] and may
influence the black and white hair follicle phenotype in goats [215]. Abnormal function of
DAO enzymes may be associated with a number of skin pigmentation disorders [216–218].

Based on the screened pathways associated with wool color, we constructed Sankey
diagrams and queried the cross-pathway genes. For some cross-pathway genes that were
unknown to be associated with wool color traits, it was hypothesized that CALML4, GRIN1,
MYLK, FGF18, and FGFR2 were associated with non-white wool formation and that ACAT2,
PCCB, ALDH6A1, and ACSS2 were associated with white wool formation.

5. Conclusions

We have identified a range of genes that play pivotal roles in the formation and
regulation of wool color. Among them, PDE4B, GMDS, RCOR1, TECRL, MAPK10, SLC36A2,
SLC36A1, MAOA, GABRR1, GRM5, PPP3CA, and PPP1CB were associated with melanin
stem cell regeneration, melanocyte proliferation and differentiation, melanin synthesis
and distribution, as well as color variation, affecting the formation of the non-white wool
phenotype; ABCD4, VSX2, ITCH, NNT, POLA1, PDE3A, MCM6, POLA1, IGF1R, HMGA2,
MEIS1, HOXA10, and DAO were involved in impediments to melanocyte pigmentation,
proliferation, and migration, which influence the formation of the white wool phenotype.
In addition, we found that some genes (CALML4, GRIN1, MYLK, FGF18, FGF2, ACAT2,
PCCB, ALDH6A1, and ACSS2) may be involved in wool color formation, which needs to be
further verified. Our results will help to better promote sheep wool improvement breeding,
which is crucial for the development of the white wool industry in China.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ani13203265/s1, Figure S1: World distribution map of sheep
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white wool group; Table S8: KEGG enrichment analysis in white wool vs. non-white wool group;
Table S9: GO terms associated with non-white trait; Table S10: GO terms associated with white trait;
Table S11: KEGG pathways associated with non-white trait; Table S12: KEGG pathways associated
with white trait.

Author Contributions: Conceptualization, C.W.; methodology, C.W.; formal analysis, W.Z. and
M.J.; investigation, W.Z., M.J., T.L., Z.L., H.W. and Z.Y.; resources, C.W. and Z.L.; writing—original
draft preparation, W.Z.; writing—review and editing, M.J., H.W. and Z.L.; project administration,
C.W.; funding acquisition, C.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number No. 32272851.

Institutional Review Board Statement: The animal study protocol was approved by the Institutional
Ethics Committee of the Institute of Animal Sciences, Chinese Academy of Agricultural Sciences
(IAS-CAAS) (protocol code IAS 2022-7 and 25 February 2022).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are available upon request due to privacy/ethical restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chevis, H. Why early modern english clothiers started using spanish wool. Text. Hist. 2021, 52, 122–143. [CrossRef]
2. Liu, J.; Jin, J. Dyes and colours of textiles in europe and asia from the seventeenth to the nineteenth century. Text. Cloth. Along Silk

Roads Themat. Collect. Cult. Exch. Along Silk Roads 2022, 1, 347.
3. Jenkins, D.T. The western wool textile industry in the nineteenth century. Camb. Hist. West. Text. 2003, 2, 761–789.
4. Roberts, J.F.; White, R. Colour inheritance in sheep: V. Dominant black. J. Genet. 1930, 22, 181–190. [CrossRef]
5. Ryder, M.L. The natural pigmentation of animal textile fibres. Text. Hist. 1990, 21, 135–148. [CrossRef]
6. Smail, J. Merchants, Markets and Manufacture: The English Wool Textile Industry in the Eighteenth Century; Palgrave Macmillan:

London, UK, 1999.
7. Kalds, P.; Zhou, S.; Gao, Y.; Cai, B.; Huang, S.; Chen, Y.; Wang, X. Genetics of the phenotypic evolution in sheep: A molecular look

at diversity-driving genes. Genet. Sel. Evol. 2022, 54, 61. [CrossRef]
8. Jiang, Y.; Xie, M.; Chen, W.; Talbot, R.; Maddox, J.F.; Faraut, T.; Wu, C.; Muzny, D.M.; Li, Y.; Zhang, W.; et al. The sheep genome

illuminates biology of the rumen and lipid metabolism. Science 2014, 344, 1168–1173. [CrossRef]
9. Davenport, K.M.; Bickhart, D.M.; Worley, K.; Murali, S.C.; Salavati, M. An improved ovine reference genome assembly to facilitate

in-depth functional annotation of the sheep genome. GigaScience 2022, 11, giab096. [CrossRef]
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/Postępy Dermatol. I Alergol. 2013, 30, 30–41. [CrossRef]

74. Nordlund, J.J.; Abdel-Malek, Z.A.; Boissy, R.E.; Rheins, L.A. Pigment cell biology: An historical review. J. Investig. Dermatol. 1989,
92, S53–S60. [CrossRef]

75. Harland, D.P.; Plowman, J.E. Development of hair fibres. Hair Fibre Proteins Struct. Dev. 2018, 1054, 109–154.
76. Tuma, M.C.; Gelfand, V.I. Molecular mechanisms of pigment transport in melanophores. Pigment Cell Res. 1999, 12, 283–294.

[CrossRef] [PubMed]
77. Higley, M.J.; Sabatini, B.L. Calcium signaling in dendritic spines. Cold Spring Harb. Perspect. Biol. 2012, 4, a005686. [CrossRef]

[PubMed]
78. Bellono, N.W.; Oancea, E.V. Ion transport in pigmentation. Arch. Biochem. Biophys. 2014, 563, 35–41. [CrossRef]
79. Bang, J.; Zippin, J.H. Cyclic adenosine monophosphate (camp) signaling in melanocyte pigmentation and melanomagenesis.

Pigment. Cell Melanoma Res. 2021, 34, 28–43. [CrossRef] [PubMed]
80. Kashina, A.S.; Semenova, I.V.; Ivanov, P.A.; Potekhina, E.S.; Zaliapin, I.; Rodionov, V.I. Protein kinase a, which regulates

intracellular transport, forms complexes with molecular motors on organelles. Curr. Biol. 2004, 14, 1877–1881. [CrossRef]
81. DePina, A.S.; Langford, G.M. Vesicle transport: The role of actin filaments and myosin motors. Microsc. Res. Tech. 1999, 47, 93–106.

[CrossRef]
82. Milograna, S.R.; Ribeiro, M.R.; Baqui, M.M.A.; McNamara, J.C. Pigment granule translocation in red ovarian chromatophores

from the palaemonid shrimp macrobrachium olfersi (weigmann, 1836): Functional roles for the cytoskeleton and its molecular
motors. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2014, 178, 90–101. [CrossRef]

83. DePina, A.S.; Wöllert, T.; Langford, G.M. Membrane associated nonmuscle myosin ii functions as a motor for actin-based vesicle
transport in clam oocyte extracts. Cell Motil. Cytoskelet. 2007, 64, 739–755. [CrossRef]

84. Ivanov, A.I.; McCall, I.C.; Parkos, C.A.; Nusrat, A. Role for actin filament turnover and a myosin ii motor in cytoskeleton-driven
disassembly of the epithelial apical junctional complex. Mol. Biol. Cell 2004, 15, 2639–2651. [CrossRef]

85. Mermall, V.; Post, P.L.; Mooseker, M.S. Unconventional myosins in cell movement, membrane traffic, and signal transduction.
Science 1998, 279, 527–533. [CrossRef]

86. Boyle, R.T.; McNamara, J.C. Association of kinesin and myosin with pigment granules in crustacean chromatophores. Pigment
Cell Res. 2006, 19, 68–75. [CrossRef] [PubMed]

87. Heissler, S.M.; Sellers, J.R. Kinetic adaptations of myosins for their diverse cellular functions. Traffic 2016, 17, 839–859. [CrossRef]
[PubMed]

88. Wu, X.F.; Bowers, B.; Rao, K.; Wei, Q.; Hammer, J.A. Visualization of melanosome dynamics within wild-type and dilute
melanocytes suggests a paradigm for myosin v function in vivo. J. Cell Biol. 1998, 143, 1899–1918. [CrossRef] [PubMed]

89. Rodionov, V.; Yi, J.; Kashina, A.; Oladipo, A.; Gross, S.P. Switching between microtubule- and actin-based transport systems in
melanophores is controlled by camp levels. Curr. Biol. 2003, 13, 1837–1847. [CrossRef] [PubMed]

90. Rogers, S.L.; Karcher, R.L.; Roland, J.T.; Minin, A.A.; Steffen, W.; Gelfand, V.I. Regulation of melanosome movement in the cell
cycle by reversible association with myosin v. J. Cell Biol. 1999, 146, 1265–1276. [CrossRef]

91. Lo, C.-M.; Buxton, D.B.; Chua, G.C.; Dembo, M.; Adelstein, R.S.; Wang, Y.-L. Nonmuscle myosin iib is involved in the guidance of
fibroblast migration. Mol. Biol. Cell 2004, 15, 982–989. [CrossRef]

92. Geiger, B.; Bershadsky, A.; Pankov, R.; Yamada, K.M. Transmembrane crosstalk between the extracellular matrix and the
cytoskeleton. Nat. Rev. Mol. Cell Biol. 2001, 2, 793–805. [CrossRef] [PubMed]
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