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Simple Summary: We improved an algorithm for recognizing forest wildlife to increase the detection
accuracy of wildlife in complex forest environments, and proposed a series of improvement schemes
to address the high detection error and omission rate caused by the low contrast between the
background and the target of the forest wildlife images captured by the trap camera, the serious
occlusion and overlap, and the data imbalance, etc. A 16.8% improvement in the accuracy was finally
achieved, which provides a new and feasible solution for the forest. This provides a new and feasible
solution for forest identification and protection of wildlife provides a new feasible solution and idea.

Abstract: A forest wildlife detection algorithm based on an improved YOLOv5s network model is
proposed to advance forest wildlife monitoring and improve detection accuracy in complex forest
environments. This research utilizes a data set from the Hunan Hupingshan National Nature Reserve
in China, to which data augmentation and expansion methods are applied to extensively train the
proposed model. To enhance the feature extraction ability of the proposed model, a weighted channel
stitching method based on channel attention is introduced. The Swin Transformer module is combined
with a CNN network to add a Self-Attention mechanism, thus improving the perceptual field for
feature extraction. Furthermore, a new loss function (DIOU_Loss) and an adaptive class suppression
loss (L_BCE) are adopted to accelerate the model’s convergence speed, reduce false detections in
confusing categories, and increase its accuracy. When comparing our improved algorithm with the
original YOLOv5s network model under the same experimental conditions and data set, significant
improvements are observed, in particular, the mean average precision (mAP) is increased from 72.6%
to 89.4%, comprising an accuracy improvement of 16.8%. Our improved algorithm also outperforms
popular target detection algorithms, including YOLOv5s, YOLOv3, RetinaNet, and Faster-RCNN.
Our proposed improvement measures can well address the challenges posed by the low contrast
between background and targets, as well as occlusion and overlap, in forest wildlife images captured
by trap cameras. These measures provide practical solutions for enhanced forest wildlife protection
and facilitate efficient data acquisition.

Keywords: forest wildlife; data set annotation and augmentation; detection algorithm improvements;
YOLOv5s; Swin Transformer; network convergence

1. Introduction

Traditional methods for tracking forest wildlife, such as direct searching with the eyes,
collar tracking, sample line methods, and acoustic tracking using voice recorders, are still
the main methods used to collect and record information about animals. However, these
methods have certain limitations. Many zoologists believe that the collar tracking method
is inconvenient to wildlife and can affect the health and movement of the animals [1].
Collars can have short- and long-term negative effects on wild animals. Plus, the act
of capturing them is stressful and invasive. They can also modify the behavior of the
collared animal. The acoustic tracking method is not applicable for all animals, mainly for
burrowing mammals and actively vocalizing ones [2,3]. In addition, voice recorders must
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be installed correctly in order to register the animal. The sample line method consists of
laying out sample lines for surveys, looking for traces of forest wildlife and signs of activity
on the laid-out sample lines, and collecting relevant information for monitoring. All of the
above methods would rely on statistic. However, this method is less efficient, requires a
large investment in terms of human resources, and demands a high level of professional
ability and proficiency from the monitoring individuals.

Trap cameras are widely used in the field of wildlife conservation. This method of
acquiring image data has been used in scientific research and conservation efforts, such as
wildlife monitoring, protection of endangered species, diversity surveying, and population
density assessment. Camera traps are widely deployed by local wildlife conservation
organizations and government departments to continuously acquire large amounts of
image data from the field. For example, researchers at the Hunan Hupingshan National
Nature Reserve in China have installed 150 infrared cameras for wildlife monitoring.
Through these infrared cameras, researchers have observed the tracks and images of many
rare animals. However, processing this image data and recognizing different forest wildlife
species, as well as sorting out blank images (i.e., photos without wildlife), is a challenging
task. As such, improving the efficiency of in-depth data mining and image processing and
analysis approaches has become an urgent problem. Fortunately, state-of-the-art computer
vision technologies and data-driven artificial intelligence techniques may play a role in
solving this problem [4].

We propose an object detection algorithm based on improved YOLOv5, in order to
verify the generalization ability, reliability, and robustness of the proposed algorithm,
five rare forest wildlife species from the Hunan Hupingshan National Nature Reserve
in China and five common forest wildlife species from North America were selected for
experiments in this study. Rare animals such as Ursus thibetanus, Lophura nycthemera,
Prionailurus bengalensis, Macaca mulatta, and Elaphodus cephalophus live in the Hunan Hup-
ingshan National Nature Reserve, and are so scarce that they are all listed in the catalog of
rare and protected animals. As it is very difficult to determine their habitats and collect
survey information such as their population distribution manually, many localities have
begun to use images from trap cameras to obtain information for studying these animals.
Prior to deploying cameras, a 1 km2 or 1 ha grid is created for the entire monitoring plot,
with pre-determined camera locations usually located at the center of each grid and printed
on a map. We determine the path of camera deployment based on the walking routes in
the surveillance area and place the camera locations at the current position (latitude and
longitude) of the GPS navigator. The preset camera locations are found by GPS navigation
and the location is used as a circle to find suitable camera placement locations within
a radius of 20 m. After confirming the actual location of the camera, we re-record the
GPS information of the camera location. During the layout, we try to choose paths where
animals are active and there are nearby water sources. There should be no large leafy plants
in front of the camera. We require fewer shrubs and grasses on the ground, especially
during the plant growing season. Special attention should be paid to the growth of shrubs
and grasses and to avoiding direct sunlight as much as possible. Some barriers can be
erected, but care should be taken to preserve access for animal movement to ensure that
animals have the maximum time before passing the camera. The camera is tied to a tree
trunk approximately 0.5 m high with the camera head parallel to the ground.

Deep learning methods can effectively reduce the workload and improve the detection
efficiency. To ensure the reliability of the algorithm, we also added five common forest
wildlife species from North America to the data set of Hunan Hupingshan National Nature
Reserve images, in order to verify the generalization ability and robustness of the algorithm.

Object detection is one of the fundamental tasks of computer vision, which involves
detecting one or more classes of objects in image data. Deep learning methods are capable
of extracting features and information about the target for network training through convo-
lutional neural networks, and have become a popular solution for classifying automatic
camera trap images [5–7]. However, field trap images contain information such as the
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location, size, and number of multiple targets, in addition to category information, due to
their complex environmental context; thus, deep learning network methods utilizing target
detection are better able to extract information and achieve improved detection results.
The OverFeat [8], SPP-Net [9], RetinaNet [10], SSD [11] (Single Shot MultiBox Detector),
RCNN series [12–14], and YOLO series [15–18] models are the most commonly used target
detection networks. Target detection typically involves extracting feature vectors using
wide and deep convolutional neural networks (CNNs). This process enables the prediction
box to include both category and location coordinate information, significantly enhancing
the recognition accuracy and regression rate for wildlife. With the regression rate indicating
whether or not there were any missed detections in the detected images. Moreover, this
method allows for precise target localization, facilitating the extraction of additional infor-
mation, such as the number and behaviors of the identified targets. Due to the complexity
of the wild environment, it is difficult to achieve good results when directly using the
above target detection algorithms, and the accuracy rate needed to be further improved.
After acquiring wildlife images, Chen et al. [19] developed two CNN structures. The
proposed CNN-1 was used to classify six types of animals, including badgers (Meles meles),
while CNN-2 combined the AlexNet network model with pre-training weights from the
ImageNet data set, which shortened the training time and achieved better results in the
detection of badgers from video streaming segments. Zhao et al. [20] designed a detection
model called MobileNet-YOLO using a lightweight network structure MobileNet instead
of the backbone feature extraction network of YOLOv4, deployed automatic camera traps
in the field to capture wildlife images to form a data set, and also introduced migration
learning [21] to solve the problems of insufficient training data and difficulty in network
fitting. Migration learning improved the average accuracy, detection speed, and reduced
the number of model parameters compared with YOLOv4.

The YOLOv5 target detection algorithm is characterized by a rapid detection speed
and a lightweight model, which creates ideal conditions for improving the efficiency of
image data processing. However, directly using the YOLOv5 network for detecting complex
environments and forest wildlife with severe multi-obscuration overlap still results in high
leakage and false detection rates. In the past few years, many new solutions have emerged
in the field of computer vision, among which Vision Transformer (ViT) has performed
outstandingly in many different computer vision tasks [22–24]. Therefore, it was considered
worthwhile to investigate its combination with YOLOv5 to improve the performance of
the network. The Transformer model was initially extensively applied in the field of
Natural Language Processing (NLP) [25]. It extracts semantic information, sequence details,
and distance information fusion from the input language and its context. By learning
the relationships between components in a sequence, it constructs a global information
interaction mechanism, characterized as a Self-Attention-based method; and is also known
as a Self-Attention (SA)-based deep learning model. Vision Transformer [26] was the first
Transformer model to be directly used in the field of visual processing, breaking the barriers
between CV and NLP and greatly improving the accuracy of target detection. Better results
were achieved when training it on the pre-trained model of a large-scale data set and then
focusing it on a small data set for fine tuning. When utilizing the Vision Transformer
model for feature extraction, it is common to divide the input image into specific segments
prior to processing. Self-Attention [27] is employed to weigh and summarize the elements
at various positions within the sequence to capture global information, resulting in each
element within the entire sequence being calculated once. However, this approach has a
high computational cost.

The Swin Transformer is a novel multi-layer visual Transformer backbone network [28],
which borrows many design concepts—as well as prior knowledge—from convolutional
neural networks, and uses a mechanism called Shifted Window to divide the input image
into multiple chunks before interacting with the information between these chunks. This
avoids the computational burden of processing the whole image at once. By introducing the
Shifted Window Self-Attention mechanism, the input sequence is divided into several non-
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overlapping chunks, and the similarity between the elements in each chunk is calculated.
This is different from the standard Self-Attention mechanism, which requires calculation of
the similarity between all of the elements: the Shifted Window Self-Attention mechanism
only needs to calculate the similarity between each element and the elements within a
certain range around it, which avoids the need to compute too many similarities and thus
improves the computational efficiency. The Swin Transformer has a surprising track record
in a wide variety of computer vision tasks, including image categorization [29], target
detection [30], and semantic segmentation [31]. Specifically, the Swin Transformer has
demonstrated remarkable robustness and generalization ability, particularly when dealing
with random local occlusion, severe occlusion of foreground objects, and interference
from the background. Studies conducted on public data sets have indicated that the Swin
Transformer outperforms other models in handling severely occluded objects [32]. However,
using the Swin Transformer alone for target detection requires a lot of computational
resources, as the encoder–decoder structure of the Swin Transformer is different from that
of traditional CNNs, the acquisition of local information is not as strong as that of CNNs,
and a certain amount of vanishing of the top gradient occurs. Therefore, we aimed to retain
the advantages of both models as much as possible by combining the Swin Transformer
module with the CNN-based YOLOv5s model, referring to other effective computer vision
techniques to further improve the network, including introduction of the SENet channel
attention mechanism and alteration of the loss function. The primary goal of this study is to
use the improved SwinTR-Yolov5s to accurately and effectively detect wildlife in complex
forest environments.

2. Materials and Methods
2.1. Data Acquisition and Pre-Processing
2.1.1. Forest Wildlife Data Set

The data sets used for the experiments in this paper were divided into two sets:
data set 1 includes five rare forest wildlife species from the Hunan Hupingshan National
Nature Reserve in northwestern Shimen County, China Hunan Province, China over
the past five years; namely, Ursus thibetanus (Figure 1a), Lophura nycthemera (Figure 1b),
Prionailurus bengalensis (Figure 1c), Macaca mulatta (Figure 1d), and Elaphodus cephalophus
(Figure 1e). Data set 2 comprises the previous five categories of wildlife, as well as a
screened subset of the 2019 iWildCam Wildlife Identification public data set filmed in
North America [33]. This is an international competition data set for image detection,
which has great validation significance for our model and is only used to further validate
the generalization ability and completeness of the model, and ensure that the model still
performs well on more types and complex data sets, which included Lynx rufus (Figure 1f),
Odocoileus hemionus (Figure 1g), Procyon lotor (Figure 1h), Tamiasciurus hudsonicus (Figure 1i),
and Vulpes vulpes (Figure 1j). As such, data set 2 was expanded to 10 forest wildlife species,
as shown in Figure 1. These data sets had the following characteristics: (1) the image
backgrounds are complex, including jungles, forests, bushes, rivers, and so on; (2) the
images were taken at different locations at different times of the day, with large differences
in light intensity and background; (3) some of the detected targets were group animals and,
therefore, were densely arranged; and (4) some animals belonged to the same family and
had small differences in appearance.

2.1.2. Data Set Annotation and Augmentation

As the network supports multi-resolution images for training, all images were scaled
to the standard size of 640 × 640 during training. Thus, the data set did not have a uniform
image pixel size, and the annotation was performed manually using the open-source
tool Labelimg. After labeling all the original images (Figure 2a), data enhancement and
augmentation were performed using computer vision techniques to further enrich the
data set, including rotated image adjustment (Figure 2b), Gaussian blur/noise (Figure 2c),
and image fusion (Figure 2d). Our image fusion method combined the advantages of
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both the Cutout and CutMix data enhancement methods. Cutout [34] uses fixed-size
rectangular squares to randomly fill a region, masking the information in the filled part
of the image, which helps to improve the generalization ability of the model. CutMix [35]
was used to crop a part of an image and then fill the new one with a certain proportion.
The real frame image, labeled with the cropped data set, was used for filling. Due to the
influence of different pixels in the data set images, the cropped images were subjected to a
normalized scaling operation. The images were synthesized according to the intersection
and merger ratio (IOU), the filling area avoided the main information of the picture, and
each image was randomly filled with two to four images to form a new data set. This
method enriched and enhanced the information of the images, improving the generalization
ability of the model and enhancing the detection effect, to a certain extent. In the process of
data enhancement, the labeled key points and bounding boxes were converted accordingly,
and the enriched data set was able to improve the detection performance of the network.
As some images were poorly enhanced, after further screening, the final data set 1 was
expanded to 5853 images and data set 2 was expanded to 21,300 images, which were
divided into training (80%) and validation (20%) sets, as shown in Table 1, which were
used to develop the forest wildlife detection model.
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2.2. Experimental Conditions

In this paper, the training environment was the Linux version 18.04 operating system
with an NVIDIA GeForce RTX 3080 GPU. The detection network was built based on the
PyTorch deep learning framework, the Python development language version was 3.9,
the compiled IDE was PyCharm, the CUDA version was 10.1, the Learning rate was set
to 0.01, the Optimizer was Adam, the Batch Size was set to 8, and the number of Epochs
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was 200. The parameterization of the experiments is partly based on the original YOLOv5
optimal parameter selection and partly depends on the selection of the performance of the
experimental platforms.

Table 1. Data set composition.

Area Species Number
of Images

Number of
Adjustments
of Rotation

Number of
Gaussian

Blur/Noise

Number of
Image

Fusions
Total

Ursus thibetanus 525 525 453 525

Lophura nycthemera 400 400 362 400

China Prionailurus bengalensis 327 327 293 327 5853

Macaca mulatta 162 162 131 162

Elaphodus cephalophus 93 93 93 93

North America

Lynx rufus 647 647 621 647

Odocoileus hemionus 1065 1065 956 1065

Procyon lotor 655 655 611 655 15,447

Tamiasciurus hudsonicus 804 804 761 804

Vulpes vulpes 758 758 711 758

2.3. Forest Wildlife Detection Network
2.3.1. YOLOv5

YOLO is a single-stage target detection algorithm that operates with the help of
regression techniques, which create conditions for more efficient image processing. All of
these factors create ideal conditions for improving the efficiency of image data processing.
YOLOv5 not only improves the speed, volume, and accuracy compared to the previous
generations of YOLO networks, but its code is also more concise and easier to understand,
more convenient to use, and more convenient to deploy. YOLOv5 has four versions with
the same network structure but with different widths and depths: YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x. The Yolov5s network is the least deep in the Yolov5 family and
has the smallest width of the feature map. The next 3 are deeper and wider on top of that.
The network depth refers to the total number of layers of the network, and the network
width refers to the number of convolution kernels in the convolutional layers, which is
the number of channels (the third dimension of the feature map after convolution), which
can be understood as the thickness of the network. Among these four versions, YOLOv5s
has the smallest number of network parameters and calculations. Therefore, for efficient
detection, the basic version chosen for this paper was YOLOv5s. The structure of YOLOv5s
is divided into four components: Input, Backbone, Neck, and Position.

Input: The mosaic data enhancement method was used to randomly scale, crop,
arrange, and splice the pictures, enhancing the detection of small targets and improving
the training efficiency and robustness of the network. The effect of using mosaic data
enhancement is shown in Figure 2. Adaptive image scaling was conducted to scale the
original picture uniformly to a standard size and, based on the different aspect ratios of the
different pictures, the black edges were adaptively added. The effect is shown in Figure 3,
resulting in reduced computation and greatly improved speed of reasoning.



Animals 2023, 13, 3134 7 of 19

Animals 2023, 13, x  7 of 20 
 

Input: The mosaic data enhancement method was used to randomly scale, crop, ar-
range, and splice the pictures, enhancing the detection of small targets and improving the 
training efficiency and robustness of the network. The effect of using mosaic data enhance-
ment is shown in Figure 2. Adaptive image scaling was conducted to scale the original 
picture uniformly to a standard size and, based on the different aspect ratios of the differ-
ent pictures, the black edges were adaptively added. The effect is shown in Figure 3, re-
sulting in reduced computation and greatly improved speed of reasoning. 

 
(a) (b) 

Figure 3. Structural diagram of Swin Transformer: (a) Overall architecture of the Swin Trans-
former; (b) two successive Swin Transformer blocks 

Backbone: The backbone network was used to extract feature maps from the input 
images with multiple convolutions and merging. A three-layer feature map was then gen-
erated in the backbone network in the sizes of 80 × 80, 40 × 40, and 20 × 20. In order to 
reduce the computational load of the model and to speed up the training process, YOLOv5 
introduces the Focus module that slices and splices the image, which can first divide the 
input 3-channel image into four slices using the Slice operation. The four slices are con-
nected using the Concat operation, and then the output feature mapping is generated us-
ing a convolutional layer. An illustration of the modules CBL, CSP1_X, residual compo-
nents in the backbone network is given in Figure 4b, where CBL is a standard convolution 
module consisting of CONV, Batch Normalization (BN), and Sigmoid Linear Unit (SiLU) 
activation functions; CSP1_X is applied to the backbone part, X stands for X residual com-
ponents, splitting the initial input into two branches, one branch passes through the CBL 

Figure 3. Structural diagram of Swin Transformer: (a) Overall architecture of the Swin Transformer;
(b) two successive Swin Transformer blocks.

Backbone: The backbone network was used to extract feature maps from the input
images with multiple convolutions and merging. A three-layer feature map was then
generated in the backbone network in the sizes of 80 × 80, 40 × 40, and 20 × 20. In order to
reduce the computational load of the model and to speed up the training process, YOLOv5
introduces the Focus module that slices and splices the image, which can first divide the
input 3-channel image into four slices using the Slice operation. The four slices are con-
nected using the Concat operation, and then the output feature mapping is generated using
a convolutional layer. An illustration of the modules CBL, CSP1_X, residual components in
the backbone network is given in Figure 4b, where CBL is a standard convolution module
consisting of CONV, Batch Normalization (BN), and Sigmoid Linear Unit (SiLU) activation
functions; CSP1_X is applied to the backbone part, X stands for X residual components,
splitting the initial input into two branches, one branch passes through the CBL first, then
through multiple residual structures, and then another convolution, the other branch is
directly convolved, and then the two branches are concatenated, and then pass through
the BN (normal distribution) layer, and then there is another activation to increase the
residual structure, which increases the inverse layer to layer. This can increase the value of
the gradient propagation between the layers to avoid the gradient disappearance due to
deepening, so that more fine-grained features can be extracted and we do not have to worry
about the network degradation, CSP2_X relative to CSP1_X, the only difference is that the
CSP2_X will be Res unit replaced by CBL, mainly used in the Neck network. Finally, we
use the spatial pyramid pooling (SPP) module to improve the sensory field by converting
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feature maps of arbitrary size into fixed-size feature vectors (Figure 4d). The feature map is
first output through a CONV layer with a kernel size of 1 × 1. It is then connected to the
output of the feature map subsampled by three parallel maximal pooling layers, followed
by the CONV layer to output the final feature map.
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Neck network: The Neck network contains a series of feature fusion layers that blend
and combine image features. All feature maps of different sizes generated by the backbone
network are fused to obtain more contextual information and reduce information loss.
In the merging process, the feature pyramid structure of the Feature Pyramid Network
(FPN) and Path Aggregation Network (PANet) is used, and the FPN structure is utilized to
transfer the strong features from the top to the bottom feature map. Meanwhile, PANet is
used to transfer the strong localization features from the lower feature map to the higher
feature map. In conclusion, the combined use of FPN and PANet enhances the feature
fusion capability of the Neck network. It consists of three detection layers corresponding
to output feature maps of 80 × 80, 40 × 40, and 20 × 20 for detecting objects in the input
image. Each detection layer can ultimately output 21-channel vectors, which are then
generated and labeled with predicted bounding boxes and categories of the target in the
original input image for final detection.

Output side: Non-Maximum Suppression (NMS) was used in the post-processing
process for multi-target screening, with GIOU as the loss function.

2.3.2. Swin Transformer

A compact version of the Swin Transformer [28] architecture is illustrated in Figure 3a.
It first splits an input RGB image into non-overlapping patches using a patch splitting mod-
ule, such as ViT. Each patch is treated as a token, whose features are set as the concatenation
of raw pixel values in the RGB image. In this process, a patch size of 4 × 4 is used. Several
Transformer blocks with modified Self-Attention computation (Swin Transformer blocks)
are applied to these patch tokens. The structure of the Swin Transformer blocks is also
shown in Figure 3. Unlike the convolutional neural network with residual computation
of YOLOv5s—which is first normalized by a normalization layer (Batch Normalization,
LN)—in the Windows Multi-Head Self-Attention calculation module (Windows Multi-
Head Self-Attention, W-MSA), the image is divided into four non-overlapping window
regions, and each window calculates the Self-Attention independently. Then, after residual
computation and renormalization, it enters into a Multi-layer Perceptron. The Multi-layer
Perceptron (MLP) is a neural network layer using non-linear activation function, which
carries out non-linear mapping and accelerates the fitting of the network. Finally, another
residual computation is carried out to obtain the new output features and enter the second
round of sliding window computation. The second round has the same structure as the
first round, except that a sliding window operation is performed in the sliding window
multi-head Self-Attention layer.
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2.3.3. SENet Channel Attention Mechanism

In order to maximize the retention of local information while condensing the fusion
information, the channel attention mechanism SENet was proposed by Hu et al. [36]. It
learns the feature weights, obtains the importance degree of each feature map, and assigns a
weight value to each feature channel according to the degree of importance, which enhances
the effectiveness of the information and suppresses irrelevant information, allowing the
model to achieve better results. In order to easily and intuitively compare it with the
original algorithm’s Concat module, we denote the SE module by ConcatE in this paper.
The ConcatE module is depicted in Figure 4e, in which H is the height (height), W is the
width (width), and C is the number of channels. First, the Squeeze operation is carried
out on the convolutionally obtained feature map, which uses global average pooling to
compress H ×W × C into 1 × 1 × C. After H ×W is compressed into one dimension, it
is equivalent to a one-dimensional parameter to obtain the global vision of H ×W, and
the perceptive region is wider. Then, the Excitation operation is performed on the global
features and two fully connected layers are used to learn the correlations between channels.
The first FC layer has the role of dimensionality reduction, then ReLU activation is used,
while the final fully connected layer restores the original dimensionality. The obtained
features are multiplied by the original feature map to obtain the final features. Essentially,
the SE module introduces an attention mechanism to the channel dimension, which allows
the model to pay more attention to the most informative channel features and suppress
unimportant channel features.

2.3.4. Integration of Swin Transformer and SENet-YOLOv5

First, in order to utilize the advantages of both the Swin Transformer and YOLOv5,
we replaced the first CSP_1 layer of the original YOLOv5 backbone network and the CSP_2
layer located in the three layers of the Neck network to extract multi-layer features with
the Swin Transformer module, while retaining the rest of the CNN-based CBL and CSP
layers. YOLOv5, as a typical CNN, has excellent local sensing ability but lacks global
modeling capacity [37]. The Swin Transformer is based on the multi-head Self-Attention
mechanism, which can be used to capture long-distance dependencies and thus obtain
global information. Therefore, in our proposed method, by combining YOLOv5s and the
Swin Transformer, the new structure leverages both of their advantages to retain global and
local features. Second, in order to further optimize the structure, we introduce the ConcatE
module of SENet based on the attention mechanism, in order to learn the splicing process
of the global and local features in a weighted manner while retaining features that have
an important influence on the detection results. Our proposed fusion network is shown
in Figure 4, which is more effective for wildlife detection when considering the complex
environment of forests.

2.3.5. Loss Function Improvement

The loss function of YOLOv5 generally contains the prediction error of the prediction
frame, the prediction frame confidence error, and the target category error. The loss function
of the prediction error of the prediction frame adopts the GIOU loss function, which is
calculated as follows:

GIOULoss = IOU − C− (A ∪ B)
C

, (1)

where A and B represent the prediction frame and the real frame, respectively, and C is the
minimum outsourcing frame that contains both A and B. GIOU solves the problem that
the gradient of the IOU loss function cannot be calculated and adds a penalty term to the
minimum outsourcing area, but it still cannot resolve the problem of slow convergence,
increased iteration times, and increased computation brought about by the fact that the
initial prediction frame does not intersect with the real frame.
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The YOLOv5 prediction frame confidence error and target category error loss are both
calculated using the two-cross entropy loss function with the following formula:

BCE(xi) = −
C

∑
i=1

Log
(
Ĉi
)
, (2)

where Ĉi is the predicted value of traversing all categories, which takes a value between 0
and 1. The two-cross entropy loss function is unfavorable for the classification of positive
and negative samples, to a certain extent, and positive and negative samples are generally
unbalanced. In this case, when a network is being trained, the focus of the training
attention tends to the category with the most samples, and the excessive inhibitory gradient
generated by the dominant (head) category will seriously hinder the detection results on
the other (tail) categories.

To address the above problems, the improved loss function given in Equations (3)–(5)
is used to first improve the prediction error of the algorithm prediction frame using
DIOU_Loss [38], in order to introduce a new penalty term for geometric factors, which not
only solves the non-overlapping problem, but also speeds up convergence.

DIOU_Loss = 1− IOU +
ρ2(b, bgt)

c2 (3)

where b and bgt are the centroids of the prediction and target boxes, respectively; ρ2 is the
square of the Euclidean distance calculated between the two centroids; and c2 is the square
of the diagonal length of the smallest rectangular box containing the prediction and target
boxes.

Second, we use a new adaptive class suppression loss to protect the training of tail
data [39] and adaptively select the classes to be suppressed based on the learning state.

LBCE(xi)
= −

c

∑
i=1

ωi Log
(
Ĉi
)
, (4)

ωi =


1 i f i = k
1, i f i 6= k and ci ≥ α
0, i f i 6= k and ci < α

(5)

As shown in Equations (4) and (5), we multiply the weighting term ωi with the loss
term −Log

(
Ĉi
)

of category i and traversed all categories, where ωi takes a value of 1 if the
detection category i belongs to the true category k. For the other categories i (i 6= k), we
judge whether the confidence of the outputs of this category exceeded the threshold α. We
utilize the output confidence ci as a signal to determine whether to suppress category i. If
a category has ci greater than or equal to the threshold α, this implies that the network is
confusing the categories i and k. Therefore, we set ωi to 1 for discriminative learning and
set ωi to 0 to go against it, in order to avoid unwanted negative inhibition.

3. Results
3.1. Evaluation Criteria

In order to evaluate the effectiveness of our proposed method in terms of detection
in forest wildlife trap images, the accuracy (Precision; P), regression rate (Recall; R), mean
average precision (mAP), and detection speed (Frames Per Second; FPS) were chosen as
evaluation indicators. The AP is calculated as the area under the precision–recall curve,
while the mAP is obtained by averaging the AP for all detection categories; the larger the
mAP, the better the model detection effect. For this paper, we adopted the mAP (50%); that
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is, the threshold was 0.5 and a confidence level exceeding 0.5 was the target. The P, R, and
mAP indices were calculated as follows:

P =
TP

TP + FP
, (6)

R =
TP

TP + FN
, (7)

mAP =
∑N−1

i=0

∫ 1
0 P(R)dR
N

, (8)

where TP denotes the number of correctly recognized images, FP denotes the number of
incorrectly recognized images, and FN denotes the number of missed images.

3.2. Results of Forest Wildlife Detection Experiments
3.2.1. Ablation Study

We designed a series of ablation experiments to validate the performance of the
proposed algorithm and tested it on data set 1 with and without data augmentation, the
ConcatE structure, the SwinTR module, DIOU_Loss and L_BCE. All networks were pre-
trained models trained on the COCO data set [40] using the officially provided YOLOv5s
network with the same hyper-parameter settings. The training, validation, and testing
data sets were obtained from the data set described in this paper, in order to control the
variables and ensure the validity of the results.

For the first group of tests, we used the data set before data enhancement and modeled
the YOLOv5s network; the second group used the data set after data enhancement and
modeled the YOLOv5s network as well; the third group added the ConcatE structure in
addition to the conditions of the second group; the fourth group introduced the SwinTR
module, also on top of the second group; the fifth group added both the ConcatE and
the SwinTR module; and the sixth group replaced the new loss functions DIOU_Loss and
L_BCE on the basis of the fifth group. The test results for all networks are provided in
Table 2.

Table 2. Results of ablation experiments.

Group Model Average
Accuracy (%)

Average
Recall (%)

mAP@0.5
(%)

Detection
Speed (FPS)

1 YOLOv5s 82.2 63.9 72.6 53

2 YOLOv5s + Data Augmentation 85.4 69.5 76.5 53

3 YOLOv5s + Data Augmentation + ConcatE 87.4 72.8 78.4 53

4 YOLOv5s + Data Augmentation + Swin T 89.4 74.6 85.5 41

5 YOLOv5s + Data Augmentation + ConcatE + Swin T 90.5 79.5 87.7 40

6 YOLOv5s+ Data Augmentation + ConcatE + Swin T +
DIOU_Loss + L_BCE 90.2 83.3 89.4 40

From Table 2, it can be seen that, when the data were enhanced, the degree of attention
to the important feature information of wildlife through the attention module was im-
proved, combining the advantages of the global attention associated to the SwinTR module
with those of convolutional kernel extraction of features by the CNN in order to improve
the performance of the network in terms of extracting feature information. Furthermore,
using the loss functions DIOU_Loss and L_BCE improved the accuracy and speed of the
prediction frame regression and reduced detection errors. Compared to the initial network,
the final proposed method improved the mAP value by 16.8%.
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We verified the effect of modifying the loss functions on the detection results by
further observing the changes in the confusion matrix, as shown in Figure 5a,b; the FP of
background refers to the probability of mistakenly treating rare wild animals that were not
originally background as background, resulting in missed detection of the corresponding
rare wild animals, while the FN of background refers to the probability of identifying the
background as the corresponding wild animals, falsely detecting objects that were not
originally present, and causing false detection. We found that the model obtained after
improving the loss function reduced the misdetection rate of different species of wildlife,
and the environmental misdetections and omissions under complex backgrounds were
also optimized, to a certain extent. Compared with the improvement of the loss function
before and after, we found that the model significantly improved the detection accuracy
of Ursus thibetanus, Lophura nycthemera, Prionailurus bengalensis, and Macaca mulatta, with
only Elaphodus cephalophus slightly reduced. We speculate that this is due to the fact that
the environment in which Elaphodus cephalophus is active is similar to its own color, making
it difficult to effectively distinguish the background. Overall, the improvement of the
loss function has indeed optimized the false detection rate of the model in distinguishing
multiple wild animals, which can to some extent solve the problem of low accuracy caused
by data imbalance.
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Next, we compared our improved model with other popular detection models. The
results are given in Table 3. We found that Faster-R-CNN, as a two-stage target detection
algorithm, had a certain advantage in terms of detection accuracy but, due to the need
to extract feature vectors in the feature region in both the training stage and detection
stage, it wasted a significant amount of memory and time, required a lot of hardware
equipment, had a slow detection speed, and cannot realize real-time detection, making
it unsuitable for further research and applications. Due to the diverse morphology and
complex background of wildlife in the data set, the detection accuracy of the RetinaNet
method was not high, and the YOLO series of methods—which are lightweight and can
achieve rapid detection—had problems related to misdetection and omission under the
complex backgrounds. Our improved model obtained a lower misdetection rate and false
detection rate while making substantial improvements in accuracy. It also inherited the
advantages of the YOLOv5s model, with the best overall performance.

Table 3. Performance comparison of different detection methods.

Model mAP@0.5 (%) Detection Speed (FPS) Model Size (MB)

YOLOv5s 72.6 53 14.6
YOLOv3 69.4 41 240.8

RetinaNet 72.5 49 49.3
Faster-RCNN 78.9 34 112.6

Improved algorithm 89.4 40 15.2

After determining that our model outperforms other popular models, in order to
verify that it also outperforms the convolutional feature extraction model and the Swin
Transformer feature extraction model individually, we further compared the initial YOLOv5
model, the Swin-YOLOv5s model, with all CSP convolutional modules replaced with
SwinTR modules, and our fusion improved algorithm on data set 1 and data set 2. The
test results are shown in Figures 6 and 7. It can be found that the improved model has a
significant detection improvement effect on all categories of wild animals, and the bird
Lophura nycthemera is not significantly different from other mammals. The model has
the best improvement effect on Elaphodus cephalophus detection in mammals, as the false
detection rate brought by Tamiasciurus hudsonicus from the same family of animals has been
controlled to some extent. However, due to its minimal training data, it is still difficult to
achieve high detection accuracy. Our improved model has the best performance in detecting
larger wild animals. However, the performance improvement is greater for detecting small-
and medium-sized targets, this is thanks to the multi-scale fusion mechanism of the global
attention mechanism of the Swin Transformer module. In addition, the detection speed of
the model decreased accordingly as more Swin Transformer modules were used, due to the
greater computational requirements of the Swin Transformer modules.

3.2.2. Test Results

Figure 8 shows some of the test results based on images from the test set of data set 2.
The left side of Figure 8a–f shows the detection results for the initial model of YOLOv5s,
while the right side shows the detection results for the improved algorithm proposed in
this paper. From the detection results shown in Figure 8a,b, it can be observed that both
models had good capabilities when processing clear, medium-sized, and incompletely
captured images; however, our model performed better in terms of confidence. Further
observation of Figure 8c reveals that the initial model YOLOv5s showed leakage regarding
the detection of smaller target; in Figure 8d, leakage also occurred for the detection of small
targets where it was difficult to distinguish between the target and background. However,
our improved model successfully avoided these problems. In addition, in Figure 8e,f, the
initial model appeared to suffer from inaccurate localization and missed detection when
the targets had high overlap, while our improved algorithmic model solved this problem.
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4. Discussion

To address the problem of insufficient detection accuracy when using existing methods
for the detection of forest wildlife in complex environments, we proposed an improved
model. To evaluate the performance of this model, we compared it with other commonly
used detectors, including YOLOv5, YOLOv3, RetinaNet, and Faster-RCNN. By comparing
the experimental results, we were able to draw the following conclusions:

1. Animal detection based on the Swin Transformer model has good results [41,42].
In contrast, the improved method we propose in this paper is based on the origi-
nal YOLOv5 network model and takes some steps to improving the training of the
model. First, we use our proposed data enhancement method and some enhancement
methods to enhance the richness of the data set. Second, we introduced the idea of
channel-based attention by replacing the original Concat with a weighted channel
splicing method (denoted as ConcatE), which increases the number of channel layers
for key feature information and improves the attention to important channel infor-
mation. In addition, we found the optimal backbone network structure suitable for
this data set through comparative experiments, and we used the Swin Transformer
module to replace the CSP_1 layer in the YOLOv5 backbone network and the CSP_2
layer in the Neck network, while retaining the other CNN-based CBL and CSP layers,
thus taking advantage of convolutional, attentional, and Self-Attentional mechanisms.
To address the non-overlap problem, we employ a new loss function (DIOU_Loss) to
speed up the convergence of the model and introduce an adaptive class suppression
loss (L_BCE) to suppress false detection of confusing classes and ensure the accuracy
of the tail data. Ensuring the accuracy of detection between animal species with
high similarity levels. By analyzing the confusion matrix, we find that L_BCE fur-
ther reduces the impact of data imbalance on the detection results and improves the
detection accuracy. The experimental results demonstrate the sophistication of our
improved model with an accuracy of 90.2%, a recall of 83.3%, and a mAP of 89.4%.
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2. Based on the experimental results, we observed that the difference between the detec-
tion results of the models before and after the proposed improvements on two data
sets with different data volumes was relatively small, and all of the improved methods
achieved significant improvements. In particular, the experimental results on data set
1 indicated that our improved algorithm model improved the mAP metric by 16.8%,
20%, 16.9%, and 10.5% when compared to the YOLOv5s, YOLOv3, RetinaNet, and
Faster-RCNN methods, respectively. These results indicated that our improvements
were very effective in enhancing the detection performance of the proposed model. In
addition, our improved algorithm is well suited for edge deployment and embedded
development with the help of some control algorithms [43] and hardware device [44],
as the inference speed of the model ensures the feasibility of real-time detection.

3. Our model effectively solves some of the problems of omission and false detection that
occur during the detection process in complex environments. The difference between
the detection results of ten types of forest wildlife before and after the improvement
of the two models is not significant, and the effect of data collection area on wildlife
detection results is also not significant. Although the best test results were obtained
from the Ursus thibetanus in the Hupingshan National Nature Reserve, rather than
the Odocoileus hemionus with the most abundant training data, with a mAP of 94.7, the
detection accuracy of other wild animals in Hupingshan was lower than that of North
American wild animals with richer training data. These results are reasonable. Ursus
thibetanus are characterized by high discrimination, large feature differences, large
size, and relatively sufficient training data. Therefore, the biggest factor affecting the
detection results in the first place remains the training data, which is closely related
to the amount and diversity of data. Secondly the single-stage detection algorithm
based on regression thinking is better at detecting large-sized targets than small ones,
and we optimize the detection ability for small targets. In addition, the probability
of false detection is greater for conspecifics with high feature similarity, and we also
propose an improvement method for this point, which effectively solves the problem
of maintaining a high level of detection accuracy when detecting animal species with
high similarity.

4. Although we undertook some work to improve the algorithmic model, there are
still some shortcomings. Specifically, we observed some contradictions between the
complexity of the network structure and the model detection performance. In order
to balance the model detection performance and FPS performance, we made certain
tradeoffs. We employed multi-scale feature fusion and global feature extraction,
which increased the computational effort and slowed down inference. Although
we lost some of the original inference speed, to a certain extent, this improved the
model’s detection of difficult targets. The current GPU acceleration optimization of the
Transformer model is not sufficient, which limits the inference speed. However, with
the optimization of GPU hardware support and improvement of the model structure
in the future, the speed of Transformer-based models is expected to further improve.
In addition, we intend to work on improving the proposed algorithm through the use
of more efficient strategies [45] to reduce the impact on FPS in future research.

5. Conclusions

In this paper, we design a Swin Transformer-YOLOv5 detection network for forest
wildlife based on YOLOv5s. We use a combination of some current techniques in com-
puter vision, and by testing on the data set, the improved algorithm has better overall
performance compared with other commonly used target detection models, achieving a
mAP of 89.4% while the FPS is 40, and the parameter size is only 15.2 MB, which realizes
the high precision and high efficiency remote target detection of wildlife images in the
complex environment of the forest, and has the ability of real-time detection, which means
that it is a target detection algorithm with practical value, and it can provide a convenient
and effective method of wildlife initial detection for forest wildlife monitors, and promote
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the monitoring and protection of the forest wildlife action work, and we also hope that
this paper can be helpful to more developers and researchers dealing with forest wildlife
classification.
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