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Simple Summary: Human activities have imposed unprecedented changes on more than half of
the Earth’s terrestrial surfaces. Biodiversity losses will ensue. Considering patchy landscapes (e.g.,
different landcover types, from completely “unnatural” to “natural” systems), what should be the
shape of the relationship between the total number of species as a function of the proportion of natural
landcover? Current theoretical and empirical studies have insisted on monotonic increasing rela-
tionships, implying species linearly declining as natural covers are converted to human-dominated
areas, ignoring non-linear unimodal ones. We addressed this issue, offering potential explanation of
which factors may be linked to hump-shaped relationships between avian diversity and gradients
of natural landcover in landscapes of different sizes (25–900 km2) in Ontario and New York State.
We showed that the hump-shaped pattern is consistent across spatial scales and bioclimatic regions,
where diversity reaches its maximum of around 40–60% of natural landcover. Pragmatic conservation
actions aiming to mitigate biodiversity loss from land-use modifications should focus on alleviating
environmental stress in intensively used areas while managing efficiently the ones holding moderate
proportions of natural habitats.

Abstract: Predicting species’ ecological responses to landcovers within landscapes could guide con-
servation practices. Current modelling efforts derived from classic species–area relationships almost
always predict richness monotonically increasing as the proportion of landcovers increases. Yet
evidence to explain hump-shaped richness–landcover patterns is lacking. We tested predictions
related to hypothesised drivers of peaked relationships between richness and proportion of natural
landcover. We estimated richness from breeding bird atlases at different spatial scales (25 to 900 km2)
in New York State and Southern Ontario. We modelled richness to gradients of natural landcover,
temperature, and landcover heterogeneity. We controlled models for sampling effort and regional
size of the species pool. Species richness peaks as a function of the proportion of natural landcover
consistently across spatial scales and geographic regions sharing similar biogeographic characteris-
tics. Temperature plays a role, but peaked relationships are not entirely due to climate–landcover
collinearities. Heterogeneity weakly explains richness variance in the models. Increased amounts
of natural landcover promote species richness to a limit in landscapes with relatively little (<30%)
natural cover. Higher amounts of natural cover and a certain amount of human-modified landcovers
can provide habitats for species that prefer open habitats. Much of the variation in richness among
landscapes must be related to variables other than natural versus human-dominated landcovers.

Keywords: birds; species richness; biodiversity; natural landcover amount; habitat amount; range
maps; breeding bird survey; species pool; peaked species–habitat relationship

1. Introduction

Conversion of natural landcover into human-modified landscapes may lead to rapid
and potentially irreversible biodiversity changes at local scales worldwide [1–3]. Currently,
more than half of the Earth’s surface has some degree of modification, leaving most areas
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with mixtures of natural habitats, agricultural lands, and areas more intensively utilised by
humans [4,5]. Intensification of land use often leads to the extirpation of natural habitats,
causing local extinctions and potentially overall species losses. International initiatives
have recently called for half terrestrial-realm protection to halt species extinctions and
biodiversity erosion by 2050 [6,7]. This target seems to be reasonable and necessary. Yet
it has not been based on empirical evidence, since model predictions of how biodiversity
responds to human modification of landscapes remain largely inaccurate [8–10].

A general pattern for the species richness–natural landcover relationship could guide
conservation practices on how much habitat should be protected, conserved, and re-
stored [11–13]. Most approaches to modelling spatial variation in species richness are built
on classic species–area relationships (SAR models). Classic SAR models (S = cAz, where
S = species diversity, A = area, and c and z are empirical constants) assume that species
richness increases as a power function of area [14], and they have been widely applied in
global assessments of biodiversity to estimate species loss from habitat loss [15–17]. Yet
SARs have been shown consistently to overestimate species losses in practice [18]. This
happens because these models ignore the fact that natural landcover that is transformed
by human activity is not necessarily lost. It may provide habitats for different species,
defying the overall SAR modelling premises that more natural habitat leads to more species
diversity in landscapes.

More recent models have attempted to make better predictions by showing that species
distinguish among multiple landcover types in human-modified landscapes. Called multi-
habitat SAR or countryside SAR models, these approaches assume that landscapes contain
different habitat types resulting from habitat conversion and that identifiable guilds of
species respond differently to the amount of each habitat type [19]. They usually perform
better than classic SAR models [20] since they distinguish only between the amounts of
natural and human-modified covers in a landscape [18,21]. Despite that, multi-habitat
equations are essentially twisted power functions of the area and mostly predict richness
increase as a function of habitat in a monotonic fashion [22,23]. Moreover, for a general
model to be useful for applied purposes, it would have to capture a high proportion of
the spatial variability in richness (e.g., high R2), and it must not vary among geographic
regions (see, for example [22,24]).

Non-monotonic relationships of richness versus natural landcover have been less
frequently documented in the literature but are not rare. Habitat variability may explain
these patterns at the landscape level [25]. Hump-shaped richness as a function of gradients
of natural landcover amounts (e.g., 0–100% human-dominated to natural habitats) has
been documented in plants [26], birds [27–29], and invertebrates [29]. Desrochers et al. [27]
observed that avian species richness peaks as a function of the natural landcover in Southern
Ontario, Canada. Building on their work, De Camargo and Currie [28] empirically demon-
strated that the peaked richness–natural landcover relationship is a result of (1) a relationship
describing forest species richness increasing as a power function of forest amount, summed
with (2) a peaked relationship of the richness of open-habitat species as a function of the
amount of human-dominated landcovers. The authors conceptualised the Lost-Habitat
SAR to explain peaked patterns, in which parts of human-dominated landcovers in highly
anthropogenic landscapes are unavailable for some open-habitat species. Thus, a mixture
of both forested- and human-dominated habitats accommodates a higher diversity total
number of species (see also [23,30–32]). As a result, species richness may increase with
habitat heterogeneity at moderate levels of pressure [33,34], declining when human activi-
ties cumulates in the environment. In turn, richness may not increase monotonically with
the amount of natural habitat in landscapes [29,29,35,36].

Here, we test the overarching hypothesis that the proportion of natural landcover
amounts drive species richness at the landscape level and across large regions. Specifically,
we test a series of predictions on the underlying factors driving the peak relationships
between avian species richness and natural landcover that were observed in our previous
work in Southern Ontario, Canada (Table 1). We found hump-shaped rather than monotonic
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positive curves consistently describing the richness–natural landcover relationships within
multi-scale (25–900 km2) landscapes across New York State, NY, USA, and Ontario, ON,
Canada. We discuss underlying mechanisms of hump-shaped richness–natural cover
relationships and their conservation implications.

Table 1. Predictions of the hypothesis that avian species richness peaks at intermediate levels of
natural landcover amounts.

Predictions Rationale Test Expected Results

P1. Richness–natural landcover
relationship is peaked rather than

monotonically positive,
independently of spatial grain
size (e.g., landscape size) and

geographic region

SAR power functions preclude
hump-shaped richness–natural

landcover relationships [28].
Would the peaked relationship be
a common pattern elsewhere and

across spatial scales?

Generalised linear
models/autoregressive models

Landcover model
richness = f(proportion of natural

landcover) *

- Richness peaks rather
increase monotonically at
intermediate levels of
natural landcover within
multiple-size landscapes
and geographic regions
with similar biomes

P2. Collinearity between natural
landcover and temperature may

drive observed peaked
relationships between richness

and natural landcover

Agricultural suitability and
temperature in Ontario both show
strong south–north gradients, but
with (potentially) opposite effects
on birds (Figure 1). It is possible

that avian richness is low in
Southern Ontario due to low

forest cover and low in Northern
Ontario (where forest cover is

high) because of low temperatures

Generalised linear
models/autoregressive models *
Landcover, temperature model

richness = f(proportion of natural
landcover, temperature) *

- Richness–natural landcover
is peaked even after
accounting for temperature

P3. Habitat heterogeneity (i.e.,
variety of landcover types) within

landscapes may explain the
peaked relationship between

richness and natural landcover

It has been hypothesised that a
greater number of landcover
types may increase species

richness within a given landscape.
Desrochers et al. [27] showed that
different landcover types partially

explain the peaked pattern
observed in landscapes

of Ontario

Generalised linear
models/autoregressive models *

Full model
richness = f(proportion of natural

landcover, landcover variety,
temperature) *

- Landcover variety may
override effects of natural
landcover amounts on
species richness in
full models

* Models controlled for effort and regional richness (pool of species) and fitted with varying landscape sizes
(25–900 km2) in New York State and Ontario (i.e., study areas share similar biomes).
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2. Methodology
2.1. Study Region and Species Richness

The study region includes Southern Ontario, ON, Canada (~200,000 km2), and New
York State, NY, USA (~125,400 km2) (Figure 1). Both areas contain mixed hardwood forests
in lowland areas and boreal forests in areas on Precambrian granite shield and at higher
elevations. Forest clearing in the area occurred principally during the 17th- to 19th-century
European settlement of the area [28].

To calculate landscape-level avian species richness in this study, we used species
distribution data from the Ontario Breeding Bird Atlas (OBBA [38]) and the New York
State Breeding Bird Atlas (NYBBA [39]). Both atlases were based on systematic surveys
conducted between 2000 and 2005. Both used experienced birders to identify the breeding
bird species occurring within each quadrat. Sampling was carried out over several years
and was designed to sample all habitats in a grid cell (hereafter, grid cells, quadrats, and
landscapes are interchangeable terms and represent the sampling units). Since the goal was
to find all species breeding in each quadrat, we treated species not observed in a quadrat
as being truly absent [40]. Richness in a quadrat represents the total number of species
observed breeding in that quadrat during one or more years in the five-year period. For
both sets of atlas data, we excluded wedge-shaped UTM quadrats and quadrats with more
than 10% lake area to minimise “area” variation among quadrats.

Species richness estimates may depend upon the size of the sampling unit [41]. Hence,
we tallied bird species richness in three landscape sizes: 25, 100, and 900 km2. We consid-
ered these spatial grain sizes relevant for conservation and management purposes since
conservation decisions are often made at grains of the order of 10–1000 km2, reflecting
planning, zoning, and other landscape or conservation management ordnances [42]. The
NYBBA sampled birds on a 5 × 5 km grid; the OBBA used a quadrat size of 10 × 10 km.
To compare richness between atlases, we resampled the NYBBA data at the 10 × 10 km
quadrat size (same cell size as the OBBA). We calculated richness by counting the number
of unique species’ presences from the original survey quadrats within each new 100 km2

grid cell in New York State. We also compared survey richness in 30 × 30 km grid cells in
both regions, following the same resampling procedures. The total numbers of grid cells
for each landscape size analysed were 4822 for NY at 5 × 5 km; 985 and 1075 for ON and
NY, respectively, at 10 × 10 km; and 251 covering ON and NY at 30 × 30 km.

2.2. Independent Variables
Main Predictors: The Amount of Natural Landcover, Temperature, and Landcover Variety

SAR models predict overall richness increases as the proportion of natural areas in-
creases [43,44]. To estimate the proportion of natural landcover (pNLC) within landscapes,
we used a global consensus landcover dataset [37] (Figure 1). The dataset was composed of
12 landcover classes, observed at a spatial resolution of 30 arc-seconds (~1 km2), and derived
from satellite imagery from 1999 to 2006. The landcover classes were: 1. evergreen/deciduous
needleleaf trees, 2. evergreen broadleaf trees, 3. deciduous broadleaf trees, 4. mixed wood/other
trees, 5. shrubs, 6. herbaceous vegetation, 7. cultivated and managed vegetation, 8. regularly
flooded vegetation, 9. urban/built-up, 10. snow/ice, 11. barren, and 12. open water. The
proportion of pixels in each landcover class was determined within each quadrat (0–100%). To
obtain the pNLC in each of our sampling units, we summed classes 1–6 and 8.

Temperature strongly correlates positively with species richness patterns at broad
scales in mid to high latitudes [45,46]. Hence, we used Mean Annual Temperature (MAT)
as a predictor of avian richness for each grid cell at different spatial scales. Temperature
data were obtained from the WorldClim database, aggregated across a target temporal
range of 1970–2000 at 1-km2 resolution Figure 2 [47]. Although we could have used other
temperature variables (e.g., breeding season temperature), different temperature metrics are
very strongly collinear at broad spatial scales, and one would expect similar relationships
between richness and most measures of temperature.
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and New York (Adirondack Mountains) are both cooler and on Precambrian granite.

It has been hypothesised that species richness may increase with the number of
different habitat types at the landscape level (i.e., habitat heterogeneity) [34,44], and that
may lead to humped-shape richness-habitat relationships [27]. To test this hypothesis, we
included the number of different landcover classes [37] as a measure of landcover variety
(LCV) in our models. We also fitted the models using the diversity of landcover types,
based on the Shannon index. Since the results were qualitatively similar using the number
of landcover classes and the diversity of classes (see also Desrochers et al. [27]), we present
model results fitted with the former.

2.3. Statistical Analysis

We used Ordinary Least Squares (OLS) regression models to relate species richness
to the predictors and covariates described above. For the full model, we compared the
partial regression coefficients and statistical significance within a model including all
three predictors (pNLC, MAT, and LCV) and the covariates listed below. We fitted survey
richness as quadratic functions of these variables to allow for non-linearity. We considered
a relationship between richness and landcover to be peaked if the (a) the quadratic term
in the regression was significant and (b) the hypothesis that the maximum or minimum
of the curve fell outside the observed range of pNLC could be significantly rejected, as
determined by an MOS test [48]. We presented statistical results for the full model and for
the average of all supported models in a multi-model inference framework [49]. For the
multi-model inference analysis, we compared the averaged partial regression coefficients
from all models within a 95% confidence set. Similar results from both methods give us
extra confidence that our estimates of relative importance are meaningful [50].

We dealt with the collinearity between temperature and pNLC in different ways. First,
we visually analysed the spatial distribution of species richness across both study areas and
how temperature influenced pNLC through simple linear regressions. Then, we analysed
whether temperature and pNLC were correlated beyond the arbitrary threshold (Pearson’s
correlation >0.7) [49]. Finally, we analysed the richness–natural landcover relationships where
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collinearity between temperature and pNLC is lowest by sub-setting the data in two ways:
(a) small temperature range and maximum variability in pNLC (5 ◦C ≤ MAT ≤ 10 ◦C, see
Figure S1) and (b) in the coolest and warmest places in both study areas (e.g., Figure 2—Boreal
Shield, ON, and Adirondacks, NY State).

Model Covariates: Sampling Effort and the Size of the Regional Species Pool

The influence of sampling effort on estimates of total species richness has been known
for a long time [51,52]. For the NYBBA, atlassers were assigned to survey one or more
NYBBA quadrats and were expected to spend at least 8 h in each 25 km2 block, visiting each
habitat present and recording at least 76 species. We excluded quadrats with efforts ≤8 h,
totalising 4822 quadrats of 5 × 5 km with a median effort ∼= 10.5 h. For resampling, we
summed up original sampling efforts from 5 × 5 km that were encompassed into 100 and
900 km2 landscapes.

For the OBBA surveys, each volunteer was assigned to search a specific 100 km2

quadrat as completely as possible for evidence of all species breeding therein. Volunteers
were instructed to search for regionally rare species. We excluded 7 quadrats in which
sampling effort was much higher than in all other quadrats (1200 h, vs. 10–430 h in other
quadrats) because these two quadrats had very high leverage in the regression models.
That led to a total of 985 quadrats of 10 × 10 km with a median effort ∼= 45 h. For the
30 × 30 km resampling, we summed up original sampling efforts from 10 × 10 grids that
were encompassed into 900 km2 landscapes. Since the original OBBA quadrats were four
times larger than the NYBBA quadrats, the effort per unit area was relatively similar in the
two atlases, making the data comparable in terms of sampling effort.

The richness of local communities is limited primarily by local factors, but it may also
be influenced by the size (richness) of the regional pool of species [53,54]. The richness of
the regional pool can also be estimated by superimposing species’ range maps resolved
at fairly coarse spatial grains (e.g., ~104 km2) [55] and tallying the number of ranges that
overlap each landscape. Range maps were obtained from the BirdLife International World
Bird Database [56]. We overlaid species’ ranges on the 25 km2 (NYBBA) and 100 km2

(OBBA) quadrats. We resampled New York at 100 km2 and both Ontario and New York
with 30 × 30 km grid cells (900 km2). Hence, we calculated the richness of the pool of birds
occurring at the regional level for each landscape containing richness from atlases.

Spatial autocorrelation can affect model coefficients in spatial analyses [57]. In our
data, avian richness is spatially autocorrelated (Moran’s I = 0.10 in 5 × 5 km, 0.12 in
10 × 10 km, and 0.14 in 30 × 30 km landscapes at the nearest distance class and declines
with distance in each respective dataset). This may be related to spatially structured land-
scape features, such as natural landcover, habitat heterogeneity, and/or climate variables
(e.g., temperature). Thus, we fitted simultaneous autoregressive error (SARerr) models, as
proposed by [58], in R (“spatialreg” package, “errorsarlm” function). To show how much
variance explained in richness is due to spatial autocorrelation, we present autoregressive
models in the main text and equivalent results from OLS models in the Supplementary
Materials. Spatial data, including satellite images and climate raster files, were treated
in ArcGIS, and all statistics were carried out in R, more specifically, using the following
packages: stats, vegan, ggplot, reshape2, RColoBrewer, grid, lm.beta, polynom, fms, and
AICcmodavg, to name a few of them [59].

3. Results

Supporting Prediction P1 (Table 1), bird species richness peaks rather than monoton-
ically increasing with the increasing proportion of natural landcover within landscapes
(Figure 3). Richness peaks at ~50–60% pNLC in Ontario and New York State. The shape of
the relationship between avian richness and amount of natural landcover is similar across
the 25 km2, 100 km2, and 900 km2 cell sizes; the strength of the relationships (R2) increases
slightly with grain size (Figure 3). The hump-shaped relationship found in New York State
is very similar to the richness-pNLC relation previously observed in 100 km2 landscapes of
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Ontario (see Figure 2a in Desrochers et al., 2011 [27]). MOS tests confirmed that the peaks
of the polynomials fall within the range of the data (Table S1).
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Figure 3. Relationships between bird species richness and landcover in grid cells covering Southern
Ontario and New York State at different spatial grain sizes (5 × 5 km, 10 × 10 km, and 30 × 30 km).
R2 represents the goodness of fit of second-degree polynomial OLS regression models. Survey
richness peaks at 62% natural cover in 5 × 5 km quadrats in NY (n = 4822), 64% in 10 × 10 km
quadrats in NY (n = 1075), 64% in 30 × 30 km quadrats in NY (n = 165), 54% in 10 × 10 km quadrats
in ON (985), and 50% in 30 × 30 km quadrats in ON (n = 138).
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Could the peaked relationship between avian richness and pNLC be due to collinearity
between landcover and temperature (P2, Table 1)? Spatial autoregressive models showed
that bird species richness in both regions is still a peaked function of amount of natural
landcover after accounting for temperature in both regions (standardised coefficients
in Table 2). Incorporating spatial autocorrelation increased the variance explained of
richness models by 1–19%, where explained variance increases as landscapes become larger
(Table 2 vs. Table S2). Averaging of standardised coefficients obtained from multi-model
inference analysis (Figure S2) showed similar result patterns to full models’ outcomes
(Table 2); temperature and amount of natural landcover are the main drivers of species
richness patterns across spatial grain sizes and in both geographic regions.

Table 2. Autoregressive model results for predictors of total avian richness in landscapes of three
different sizes in Southern Ontario (ON) and New York State (NYS). Predictors included in full models:
annual mean temperature (MAT), the proportion of natural landcover (pNLC), and landcover variety
(LCV), and covariates: sampling effort (E) and the size (richness) of the regional pool of species
(Pool). n represents the number of landscapes in each study area. AICc is the Akaike information
criterion corrected for sample sizes [60]. Nagelkerke pseudo-R2 is the equivalent to regular adjusted
model goodness of fit in OLS models. Non-statistically significant terms (p < 0.05) shown in brackets.
Models fitted with the entire dataset.

Landscape
Sizes Study Areas

Standardised Coefficients
AICc Nagelkerke R2

MAT MAT2 pNLC pNLC2 LCV LCV2 E E2 Pool Pool2

5 × 5 km NYS (n = 4822) 2.12 −2.11 1.19 −1.19 0.20 0.13 0.22 −0.35 0.91 −0.75 12,133 0.28

10 × 10 km
NYS (n = 1075) −2.53 −2.53 1.41 −1.37 0.00 0.60 0.15 −0.18 (−0.38) (0.20) 2598 0.35
ON (n = 985) 1.56 −1.20 2.18 −1.91 0.35 (−0.15) 0.65 −0.36 (0.66) −0.62 1947 0.58

30 × 30 km
NYS (n = 165) 0.46 −0.47 1.71 −1.58 1.08 −1.13 0.48 −0.52 (0.67) (−0.84) 373 0.50
ON (n = 138) 2.62 −2.71 1.05 −0.95 0.29 (−0.34) 0.82 −0.59 (−4.07) (4.11) 212 0.71

Avian richness derived from atlas data and from range maps varies spatially in differ-
ent ways (Figure S5). The geographic variation of atlas richness is more spatially structured
over short distances (maps in Figure S5, column A), reflecting the finer spatial grain of the
underlying species distribution data. The spatial structure of atlas richness resembles the
variation in pNLC in the study area, especially in areas with reduced amounts of natural
landcover, such as Southwestern Ontario and highly urbanised areas in New York State
(cf. Figure 1 vs. Figure S5, Panel A). In contrast, the spatial structure of range-map richness
follows the temperature/latitudinal gradient (cf. Figure 2 and Figure S5). Total species
richness from atlas data does not seem strongly dependent on the regional size (richness)
of the species pool (Figure S6). Moreover, avian richness of the regional pool of species
increases with temperature in both New York and Ontario (Figure S7a–c). In contrast, atlas
richness is a peaked function of temperature in both regions (Figure S8).

The partial regression coefficients are similar in NY and ON, despite the much lower
collinearity between temperature and pNLC (data subset: 5 ◦C < MAT > 10 ◦C) (Table 2
main text vs. Table S3). Moreover, the shape of the relationship remains peaked in the
warmest and the coldest places of both study areas (Figure S3). Within these subsets
of reduced temperature variation, pNLC still varies considerably (see Figure S1). These
results are inconsistent with the proposition that the peaked relationship is solely due to
collinearity between temperature and pNLC.

Bird species richness within landscapes had a weakly positive relationship with land-
cover variety (i.e., habitat heterogeneity) (Table 2, Figure 4). These results do not support
the assumption that a variety of habitat types within landscapes (habitat heterogeneity)
leads to more species diversity (P3, Table 1). The term increased the explained variance in
avian richness by 1–3% (results not shown). Collinearity between landcover variety and
the other independent variables used in the models was relatively weak (Figure S4), and
the peaked relationship between richness and pNLC persisted after controlling for habitat
heterogeneity (Table 2).
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4. Discussion

Previous studies have shown that bird species richness peaks rather than increases
as the proportion of natural landcover (pNLC, i.e., mainly forested areas) varies within
landscapes of Southern Ontario, Canada [27,28]. In this study, we empirically tested
predictions related to underlying factors that could help to explain the peaked pattern. We
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found that the peaked relationship (1) is also observed in similar ecosystems in another
geographic region (New York State); (2) is somehow affected by temperature gradients, but
not solely due to collinearity with climate; (3) is not explained by landcover variety; (4) is
not due to variation in the size of the regional pool of species; and (5) is not dependent
on spatial grains between 25 and 900 km2. Controlling for these potentially confounding
variables does not lead to a monotonic positive relationship between richness and the
amount of natural landcover. Perhaps surprisingly, species richness is not strongly related
to the variation in natural landcover among landscapes. The peaked pattern has been
largely ignored in current modelling approaches trying to predict biodiversity change from
landcover changes. We address each of these points in turn.

Calculations of the effects of landcover conversion on biodiversity loss have led to
notorious overstatements, e.g., “[. . .] current rates of extinction are about 1000 times the
likely background rate of extinction” [61]. These extinction rates entirely based on SAR
models [62] have been repeated to exhaustion even though they have been proven wrong [18].
If human-dominated landcovers were completely unavailable to species (i.e., from the
typical binary power function species–area relationship), then there should be a monotonic
positive relationship between species richness and the total area of remnants of natural
areas, irrespective of spatial grain (see, for example, [63]). Hence, SARs have frequently
been used to forecast species losses (e.g., the number of species extinct or threatened) from
the removal of natural (usually forested) cover [61,64–67]. At coarse spatial grains and for
large extents, those forecasts have greatly exceeded observed species losses [18,22,67,68].
The discrepancy is sometimes attributed to “extinction debt”: extinctions that are predicted
to occur but have not had time to do so. The difficulty is that the concept of “extinction debt”
assumes that the causal link between species extinction and habitat loss exists, despite data
to the contrary. Further, without a specified time by which the debt will have been resolved,
the idea is untestable. Nonetheless, species–area relationships are still commonly applied
in conservation studies to predict loss of species as a function of habitat modification,
assuming that extinction debts will be paid [61,65,67–69]. In contrast, if natural landcovers
and human-dominated landcovers provide habitats for different sets of species [28,31],
then conversion of some natural landcover to human-dominated covers may increase the
richness of species that prefer human-dominated (often open, early successional) habitats
to a greater extent than it decreases the richness of forest species. There may be no need to
postulate extinction debt.

Most current multi-habitat models do not account for peaked relationships between
species’ ecological responses (e.g., occurrences, richness) and species’ habitats. Countryside
models have indeed outperformed most single-habitat models (SARs and derivations) and
other multi-habitat models [20,23,31,70]. This is because they assume that species respond
to the increase in species’ amount of habitat found within landscapes. However, their
concept might be fundamentally flawed for three reasons: (1) not all landcover may be
available to species in human-modified landscapes. For example, intensively used areas
may not offer habitats for any species [28]; (2) richness does not vary strongly with the
number of different classes of satellite-sensed landcover (Figure 4). Rather, the richness of
different species sharing similar habitat requirements (e.g., amounts of open- and human-
dominated landcovers) may respond equivalently to different landcover types (e.g., pasture,
urban, abandoned fields, etc.) [71]; and (3) the conversion of natural habitat to human-
dominated cover is not the only way that human activity may influence the ability of
species to persist in a landscape (i.e., hunting, pollution, etc.).

Habitat loss per se may not be the biggest threat to biodiversity, except in landscapes
with very little natural habitat [13,72]. Our relationships between species richness and
the amount of natural landcover are not especially strong. However, richness increases
monotonically and positively in landscapes with 50% or lower amounts of natural landcover
(see Figure 3 in this study, Fahrig et al., 2013 [21]). Other factors must therefore play a
major role in explaining diversity decline or act in combination with habitat loss to imperil
species [73]. For instance, hunting practices have been linked to prehistoric [74] and
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modern [75] species extinctions. Yet hunting is poorly represented in assessments of
threats to biodiversity [76]. Species losses have been related to pesticide use in agricultural
landscapes [77–80]. Also, land-use intensity has emerged as a potential major driver of
species declines worldwide [1,81–84]. Southeastern Ontario and Western NY State are
heavily agricultural. Long Island has a high human population density. It is in these
areas that survey richness is the lowest. The relationship between landscape-scale avian
species richness and the amount of natural landcover is neither monotonically positive nor
particularly strong. This suggests that the contention that “In general terms, the loss of
biodiversity is caused by habitat loss. . .” [85] is an over-simplification, true mainly at the
limit (i.e., again for landscapes holding <50% natural cover).

Climate (mainly temperature) drives species richness at coarser scales [86–88]. While
the mechanisms underlying such patterns are contentious [89–92], range-map-derived
richness of most species groups increases monotonically with mean annual temperature
(MAT) and/or a moisture–heat interaction [86]. At a finer grain (e.g., 5–100 km2), the
influence of temperature on species richness is less clear [86].

Avian range-map richness is less strongly related to the amount of natural landcover,
and the relationship is monotonically negative (Figure S7d–f). This is true in two indepen-
dent areas (NY and ON) and in landscapes that vary in size from 25 to 900 km2. It seems
unlikely that greater forest cover causes low range-map richness. Ranges circumscribe oc-
cupied and unoccupied areas, and landcover varies dramatically within individual species’
ranges (Figure 1). Range maps rarely exclude areas of absence within a species’ range
(see any species’ range map on Birdlife International 2020). There is little reason to expect
ranges to respond to landcover changes, except perhaps by contracting at range margins. A
more likely explanation for the negative relationship is that there has been greater forest
loss in warmer areas of New York and Ontario [46], where more species’ ranges overlap
(Figure 1). We regard range-map richness as a measure of the number of species that could
potentially occupy a landscape rather than a measure of landscape richness.

It has long been hypothesised that habitat heterogeneity may increase species diver-
sity [93]. At the landscape level, empirical evidence remains scarce and debatable (see
reviews in [25,94]). At coarser scales, studies have found that areas presenting high ranges
of elevation, precipitation, vegetation, and other environmental features may promote
the diversification of habitat or energy sources, which could in turn increase species rich-
ness [95–97]. In areas with very little natural habitat (e.g., intensive agricultural fields),
our results are consistent with earlier work indicating that richness increases rapidly with
the amount of natural habitat [28,33,98] because the landscape provides habitat for forest
birds. Similarly, in areas with very little open habitat, the richness of open-habitat species
increases rapidly when some forest is replaced with human-modified landcovers. This may
not be a simple matter of landcover classes as surrogates for habitat heterogeneity. Many
bird species share similar habitat requirements (e.g., >2–3 landcover classes), which could
explain the fact that the number of different landcover classes was only a weak predictor of
richness in both ON and NY (Figure 4).

Finally, species richness is only one metric of the conservation value of landscapes.
Conservation may focus on individual species, ecosystem services, carbon storage, spiritual
values, or other properties [99]. We chose to focus here on species richness because it is a
high-level integrated index that has a long conceptual and empirical history. Also, it should
be noted that new modelling approaches using other biodiversity metrics (e.g., phyloge-
netic and genetic diversity metrics) have the potential to overcome the basic modelling
shortcoming discussed in this study [100]. In parallel to this study, De Camargo et al. [71]
examined the probabilities of occurrence of individual species in landscapes as functions of
landcover. Their conclusions are broadly like those presented above.

5. Conclusions

Nature and humans form coupled systems presenting non-linear relationships [98].
Moderate pressures in terrestrial ecosystems may boost species diversity, while intensively
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used land will cause species losses. Currently, modelling approaches have ignored these
unimodal relationship patterns, failing to guide efficient conservation management at the
landscape scale across large regions. Further studies should focus on identifying human
pressures that may cause species to decline at lower values of the proportion of natural
landcover at local scales across large spatial extents. A general macroecological framework
on species’ ecological responses to cumulative pressures in the environment may better
predict diversity changes due to habitat loss than current species–area relationship models.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ani13162647/s1, Figure S1: Relationships between the proportion of
natural land cover and temperature; Figure S2: Effect sizes of predictors on avian species richness;
Figure S3: Richness-land cover relationships for warmest and coolest places of the study area;
Figure S4: Person’s correlations for independent variables; Figure S5: Atlas and range-maps avian
richness spatial distributions; Figure S6: Relationships between atlas vs. range-maps richness; Figure
S7: Relationships of range-map richness (the species pool) with both temperature and landcover;
Figure S8: Relationships between temperature total avian species richness and temperature in
landscapes. Table S1: The test’s null hypothesis is that richness humps of a quadratic function of
the proportion of natural landcover (pNLC) at its min or max; Table S2: multiple regressions output.
Table S3: multiple regressions output.
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