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Simple Summary: Meat quality and human-health-related indexes are important traits in beef
cattle breeding. Intramuscular fat content (IMF) is a major meat quality trait that influences aroma,
tenderness, and juiciness. Our objective was to integrate comparative transcriptomic and competing
endogenous RNA (ceRNA) network analyses to identify candidate messenger RNAs (mRNAs) and
regulatory RNAs involved in molecular regulation of longissimus dorsi muscle (LDM) tissue for
IMF and fat metabolism of five beef cattle breeds (Angus, Chinese Simmental, Luxi, Nanyang, and
Shandong Black). This study identified the primary metabolic-signaling pathways associated with
IMF and fat metabolism, including calcium, cGMP-PKG, thyroid hormone, oxytocin signaling, and
other metabolic pathways. In addition, genes MCU, CYB5R1, and BAG3 were common among the
10 comparative groups that were involved in most of the terms related to fat storage and metabolic
process. Perhaps differences in expression levels of lipid-metabolism-related RNAs demonstrated
molecular factors underlying beef cattle breed differences in IMF and fat metabolism. The results
of this study could inform marker-assisted selection and identify regulatory molecular mechanisms
associated with IMF in beef cattle.

Abstract: Intramuscular fat content (IMF), one of the most important carcass traits in beef cattle, is con-
trolled by complex regulatory factors. At present, molecular mechanisms involved in regulating IMF
and fat metabolism in beef cattle are not well understood. Our objective was to integrate comparative
transcriptomic and competing endogenous RNA (ceRNA) network analyses to identify candidate
messenger RNAs (mRNAs) and regulatory RNAs involved in molecular regulation of longissimus
dorsi muscle (LDM) tissue for IMF and fat metabolism of 5 beef cattle breeds (Angus, Chinese Sim-
mental, Luxi, Nanyang, and Shandong Black). In total, 34 circRNAs, 57 lncRNAs, 15 miRNAs, and
374 mRNAs were identified by integrating gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses. Furthermore, 7 key subnets with 16 circRNAs, 43 lncRNAs,
7 miRNAs, and 237 mRNAs were detected through clustering analyses, whereas GO enrichment
analysis of identified RNAs revealed 48, 13, and 28 significantly enriched GO terms related to IMF in
biological process, molecular function, and cellular component categories, respectively. The main
metabolic-signaling pathways associated with IMF and fat metabolism that were enriched included
metabolic, calcium, cGMP-PKG, thyroid hormone, and oxytocin signaling pathways. Moreover, MCU,
CYB5R1, and BAG3 genes were common among the 10 comparative groups defined as important
candidate marker genes for fat metabolism in beef cattle. Contributions of transcriptome profiles
from various beef breeds and a competing endogenous RNA (ceRNA) regulatory network underlying
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phenotypic differences in IMF provided novel insights into molecular mechanisms associated with
meat quality.

Keywords: intramuscular fat content; ceRNA regulatory network; comparative transcriptome; meat
quality; beef cattle

1. Introduction

Intramuscular fat (IMF), also known as marbling, has a major role in various meat
quality traits. The composition of fatty acids in IMF, especially polyunsaturated fatty acids
(PUFA), affects beef quality, with IMF closely related to various sensory characteristics,
including taste, juiciness, and tenderness [1–4]. A critical aspect of beef fatty acid composi-
tion is the ratio ofω-6 andω-3 fatty acid groups in PUFAs [4]. Differences in IMF and its
fatty acid composition among breeds and genotypes of beef cattle are attributed to genetic
factors [2,3] plus environmental factors (age, gender, nutrition, and management). The IMF
content in the longissimus dorsi muscle (LDM) in Japanese black cattle is almost five-fold
that of Angus and Holstein Friesian breeds [5]. In addition, IMF is related to fat metabolism
(adipocyte number and size) and the balance between lipogenesis and lipolysis) [4].

As adipose tissue is critical in IMF and energy homeostasis, evaluating expression
events of adipogenesis, a complex and coordinated process between coding and non-coding
RNA molecules, could elucidate related cellular events [3]. Furthermore, key genes in-
volved in fat metabolism could be genetic markers for improving carcass quality [4,6].
Evolving omics technologies, high-throughput datasets, and advanced computations facili-
tate the merging of complementary evidence from multiple levels of omics to create novel
insights into complex regulatory mechanisms [6,7]. Comparisons of differential expression
profiles in LDM tissue between beef cattle breeds with high- vs. low-IMF indicated that
many genes involved in fat metabolism are related to IMF in beef cattle. These genes,
which included ADIPOQ (Adiponectin, C1Q, Collagen Domain Containing), FABP4 (Fatty
Acid Binding Protein 4), THRSP (Thyroid Hormone Responsive), and PPARG (Peroxisome
Proliferator-Activated Receptor Gamma), were identified as genetic markers related to fat
metabolism in beef cattle [2,6–9]. Moreover, a genome-wide association study (GWAS)
confirmed that IMF was affected by PPARGC1A (PPARG Coactivator 1 Alpha), FOXP3
(Forkhead Box P3), and HNF4G (Hepatocyte Nuclear Factor 4 Gamma) [10].

Several genes involved in IMF and fat metabolism have been identified. How-
ever, the roles of non-coding RNAs (circRNAs, lncRNAs, and miRNAs) are not fully
clarified. According to the ceRNA (competitive endogenous RNA) hypothesis, non-
coding RNA regulatory species (e.g., circRNAs and lncRNAs) and protein-coding RNAs
can act as competitive endogenous RNAs by binding to miRNA sites [11]. Integrat-
ing circRNA–lncRNA–miRNA–mRNA ceRNA networks provided insights into complex
molecular mechanisms by considering various regulatory RNAs [12–15]. Long non-coding
RNAs (lncRNAs) are single-stranded RNA molecules >200 nucleotides that regulate
mRNA/gene expression at transcriptional, RNA processing, and translational process
levels [16]. Recently, three lncRNAs affecting adipogenesis were discovered; lncFAM200B
and NDUFC2AS stimulated differentiation of pre-adipocytes into mature adipocytes with
positive regulatory effects, whereas ADNCR suppressed adipogenesis by targeting miR-
204 [6,17]. Moreover, microRNAs (miRNAs) are non-coding RNA molecules containing
21 to 23 nucleotides involved in RNA silencing and post-transcriptional regulation of gene
expression [18]. Two of these, miR-23a and miR-378 miRNAs, were involved in the growth
and differentiation of muscle cells and the thickness of subcutaneous back fat [3]. CircR-
NAs acted as “molecular sponges” to absorb miRNAs and inhibit their regulatory actions,
usually increasing expression of target genes. Furthermore, circFUT1O, circFGFR4, and
circ-LMO7 circRNAs recruit miR-133a, miR-107, and miR-378a-3p miRNAs, respectively,
and affect skeletal muscle differentiation [19,20].
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Multi-part network approaches integrating various aspects of the transcriptome have
provided novel insights regarding the regulation of complex, multigenic traits [15,21,22]. In
this study, a comparative transcriptomic analysis of five beef cattle breeds (Angus, Chinese
Simmental, Luxi, Nanyang, and Shandong Black), plus literature mining, were performed to
identify related genes and lncRNAs, their functions, and important pathways. Furthermore,
a circRNA–lncRNA–miRNA–mRNA ceRNA regulatory network was constructed, and its
subnets were determined to better understand molecular mechanisms responsible for IMF
and fat metabolism.

2. Materials and Methods

The overall design for data mining, preparation, and analysis of DE genes related to
intramuscular fat (IMF) content in beef cattle is presented in Figure 1.
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2.1. Data Collection 

Figure 1. Schematic of the workflow used to construct the circRNA–lncRNA–miRNA–mRNA ceRNA
regulatory network of intramuscular fat (IMF) content in beef cattle. Regulatory RNAs were obtained
from RNA-Seq data analyses and literature mining. The protein–protein interaction network (PPI),
gene regulatory network (GRN), and ceRNA regulatory network were prepared using STRING and
Cytoscape software.

2.1. Data Collection

Initially, RNA-Seq datasets from the Gene Expression Omnibus (GEO) from the Na-
tional Center for Biotechnology Information (NCBI) were used to identify candidate RNAs,
protein–protein (PPI) interactions, construct a circRNA–lncRNA–miRNA–mRNA ceRNA
regulatory network and its subnets, and determine metabolic and signaling pathways re-
lated to IMF and fatty acid composition in Bos taurus. GEO accession numbers for RNA-Seq
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samples from five beef cattle breeds are in Table 1. Shandong black cattle and Luxi cattle,
in the GSE161272, were obtained from Shandong Black Cattle Technology Co., Ltd., and
Dadi Luxi Cattle, respectively. The genetic basis of Shandong Black cattle is Japanese black,
Luxi, and Bohai black cattle, with the breed approved by the National Animal and Poultry
Genetic Resources Committee [7]. Luxi is a native beef cattle breed widespread throughout
central China, with a reputation for meat freshness, tenderness, and flavor, plus high meat
production capacity [7]. These cattle were fed roughage and concentrate (according to
standard NY5127—2002 pollution-free feeding management of beef cattle) thrice daily with
ad libitum access to drinking water and raised for 18 months at Qingdao Agricultural Uni-
versity in China. Six healthy and mature animals (3 Shandong black cattle and 3 Luxi cattle)
were selected and slaughtered according to GBT19477-2004 cattle slaughtering procedures.
The LDM (between ribs 12–13) was excised and cut into 2–3 cm3 cubes that were put into
cryopreservation tubes and immersed in liquid nitrogen for transport to the laboratory for
RNA extraction and sequencing [7]. GSE171876 included six samples of LDM of Angus
(3 samples) and Chinese Simmental (3 samples), selected from Gansu Zhangye Qilian Muge
Co., Ltd. (Zhangye, China). Angus cattle are renowned as a carcass breed, widely used
in crossbreeding to improve meat quality and milking ability. Angus cattle in China are
purebreds, recently imported from Scotland. Chinese Simmental cattle are a cross between
Simmental from Switzerland and a local Chinese breed, with a history of 50 years; they are
adapted for milking ability and meat production [23]. Angus and Chinese Simmental cattle
18 months of age were fed the same diet. After slaughter, 10 g of LDM tissue from each
animal was collected and packaged into 2 mL sterile cryogenic vials and frozen in liquid
nitrogen for RNA sequencing [23]. The GEO accessions of GSM4131022, GSM4131023,
and GSM4131024 were selected from GSE139102 which was stored by Huang et al., 2020.
Twelve Nanyang cattle were raised in the breeding center of Nanyang cattle (Nanyang,
China). Nanyang cattle breed are important meat animals in China, with tender meat
with high IMF but slow growth and low dressing percentage [24]. They were weaned at
3 months of age, castrated at 6 months, started to fatten at 18 months, and slaughtered at
30 months. Portions of LDM tissue were excised immediately after slaughter and frozen in
liquid nitrogen for RNA extraction [2,25].

Table 1. Summary of GEO accession numbers for RNA-Seq data sets of intramuscular fat (IMF)
content of the five beef cattle breeds used in this study.

No. GEO Accession Platform Breed Sample Citation

1 GSE171876 GPL26012 (Illumina NovaSeq 6000
(Bos taurus))

Angus
GSM5236003,
GSM5236004,
GSM5236005

Zheng et al. [23]

Chinese Simmental
GSM5236006,
GSM5236007,
GSM5236008

2 GSE161272 GPL15749 (Illumina HiSeq 2000
(Bos taurus))

Shandong Black
GSM4904154,
GSM4904155,
GSM4904156 Liu et al. [7];

Liu et al. [4]
Luxi

GSM4904157,
GSM4904158,
GSM4904159

3 GSE139102 GPL21659 (Illumina HiSeq 3000
(Bos taurus)) Nanyang

GSM4131022,
GSM4131023,
GSM4131024

Huang et al. [2];
Zhu et al. [6]

2.2. Differential Gene Expression Analysis

A quality check of raw fastq data was conducted with FastQC software (v0.11.9) [26].
Then, based on raw data quality control issues, noninformative sequences, as well as PCR



Animals 2023, 13, 2598 5 of 22

primers and adapters, were trimmed using Trimmomatic software (v0.38) [27]. Mapping
and sequence alignments were conducted on the Bos taurus reference genome (http://ftp.
ensembl.org/pub/release-103/fasta/bos_taurus/dna/ (accessed on 18 February 2023))
using HISAT2 software (v2.2.1) [28]. FeatureCounts software (v2.0.3) was used to measure
the total read counts of mapped sequences [29]. Finally, DESeq2 software (v2.11.40.7)
was used to identify differentially expressed mRNAs and miRNAs of 10 pairwise com-
parisons: Angus vs. Chinese Simmental, Angus vs. Luxi, Angus vs. Nanyang, Angus
vs. Shandong Black, Chinese Simmental vs. Luxi, Chinese Simmental vs. Nanyang, Chi-
nese Simmental vs. Shandong Black, Luxi vs. Nanyang, Luxi vs. Shandong Black, and
Nanyang vs. Shandong Black. For these, a threshold of a log fold change (FC) ≥1 and
≤−1 and a false discovery rate (FDR) ≤0.05 for significant DE mRNAs and miRNAs were
obtained [30] (Supplementary Materials Table S1). In addition, miRNAs in the RNA-Seq
datasets were identified.

2.3. Literature Mining to Discover Relevant circRNAs, lncRNAs and miRNAs to IMF

Various online databases were examined to discover candidate circRNAs, lncRNAs,
and miRNAs relevant to comprehensive literature mining. Online search databases and
papers included Google Scholar, PubMed, Web of Science, and CrossRef from 2019 to 2023,
with no language restrictions. Search terms consisted of both keywords and database-
specific subject headings for the ceRNA regulatory network and IMF in beef cattle skeletal
muscle tissue: breeds—beef cattle; practical tools—RNA-Seq; and outcome—ceRNA net-
work or Regulatory RNAs—Intramuscular fat content trait. Keywords included beef cattle,
intramuscular fat, longissimus dorsi muscle, lncRNA, circRNA, and ceRNA networks.
First, identifiers and synonyms for each framework element were merged by applying the
Boolean operator “OR”. Second, elements of the framework were merged by applying the
Boolean operator “AND”. The identified non-coding RNAs (i.e., circRNAs, lncRNAs, and
miRNAs) list was extracted as Supplementary Materials Table S2.

2.4. Determining the Main RNAs List

To identify candidate RNAs (mRNAs and miRNAs) related to IMF content from
RNA-Seq analysis, the number of common DE RNAs between eight comparative groups
that were analyzed using the “Calculate and draw custom Venn diagrams” online tool
was considered (https://bioinformatics.psb.ugent.be/webtools/Venn/ (accessed on
21 February 2023)) as shown in Supplementary Materials Table S3. Subsequently,
Supplementary Materials Table S3 (from RNA-Seq analysis) was integrated with the
list of non-coding RNAs (Supplementary Materials Table S2) from literature mining as
the main RNAs list.

2.5. Functional Enrichment Analysis and KEGG Pathways

Gene ontology (GO) and enrichment analyses to explore the relevant metabolic
pathways related to IMF and fat metabolism in beef cattle, including the biological pro-
cess (BP), molecular function (MF), and cellular component (CC) of the main RNAs list
(Supplementary Materials Table S4), were performed using the online web tools DAVID
(Database for Annotation, Visualization, and Integrated Discovery; [31]), PANTHER (Pro-
tein Analysis Through Evolutionary Relationships; [32]), GeneCards (www.genecards.org/
(accessed on 28 February 2023)), as well as the STRING database (https://string-db.org
(accessed on 28 February 2023)) a comprehensive online web tool to define interactions
between mRNAs/genes using a probabilistic confidence score and relevant pathways [33].
Enrichment of the signaling pathways relevant to identified mRNAs was provided in
KEGG (Kyoto Encyclopedia of Genes and Genomes; https://www.genome.jp (accessed on
28 February 2023)); GO terms and pathways with FDR <0.05 were assumed significant and
used to enrich the main gene list.

http://ftp.ensembl.org/pub/release-103/fasta/bos_taurus/dna/
http://ftp.ensembl.org/pub/release-103/fasta/bos_taurus/dna/
https://bioinformatics.psb.ugent.be/webtools/Venn/
www.genecards.org/
https://string-db.org
https://www.genome.jp
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2.6. Identification of Regulatory RNAs and Target Gene Prediction

Potential target mRNAs were searched in the miRBase ([34]; https://www.mirbase.
org/ (accessed on 2 March 2023)) and miRWalk (http://mirwalk.umm.uni-heidelberg.de/
(accessed on 2 March 2023)) databases. Targeted mRNAs were submitted to the DAVID
and STRING databases to identify the enrichment target genes of each miRNA. Other
targeted interactions between regulatory RNAs were predicted using: LNCipedia database
([35]; https://lncipedia.org (accessed on 2 March 2023)), NONCODE database ([36]; http:
//www.noncode.org/ (accessed on 2 March 2023)), and CircInteractome web tool ([37];
https://circinteractome.nia.nih.gov/ (accessed on 2 March 2023)).

2.7. Reconstruction of circRNA–lncRNA–miRNA–mRNA ceRNA Regulatory Network and Its
Clustering Analysis

The circRNA–lncRNA–miRNA–mRNA ceRNA regulatory network was constructed
based on circRNA–miRNA, circRNA–mRNA, lncRNA–mRNA, lncRNA–miRNA, and
miRNA–mRNA interactions documented in related papers and online interaction databases.
Protein–protein interaction (PPI) data extraction and gene regulatory networks (GRN)
analyses were performed using the STRING database (https://string-db.org (accessed
on 28 February 2023)), an online web tool that uses seven primary resources of interac-
tion/association data including neighborhood, co-occurrence, fusion, experimental, co-
expression, database, and literature mining to describe protein–protein interactions using a
probable confidence score [33]. Cytoscape software is an offline tool with various plugins
for analyses, including screening, integrating, and visualizing interactive data (v3.8.2) (Na-
tional Institute of General Medical Sciences, Bethesda Softworks, Rockville, MD, USA; [38].
In the ceRNA regulatory network, biological molecule species (RNAs) and their interaction
relationships were represented as nodes and edges, respectively. Utilized clustering on
the circRNA–lncRNA–miRNA–mRNA ceRNA regulatory network was evaluated using
MCODE [39], a Cytoscape plugin, to explore functional clusters and hub nodes. The
MCODE plugin can be used to identify clusters for directed or undirected networks [39].
Regions in the network in which the node’s connection was high were considered clusters.
The gene expression network was constructed at β = 12 to ensure scale-free topology
(R2 ≥ 0.80). If the scale-free topology fit index for the reference dataset reaches values >0.8
for low powers (<30), the topology of the network is considered scale-free, and therefore,
there are no batch effects [40–43]. Moreover, metabolic and signaling pathways enrichment
in the ceRNA regulatory network and its subnets were identified using STRING, DAVID,
and PANTHER websites.

3. Results
3.1. Identified DE miRNAs and mRNAs from Comparative Transcriptome Analysis

To construct the circRNA–lncRNA–miRNA–mRNA ceRNA regulatory network and
identify molecular mechanisms of IMF and fat metabolism in beef cattle, comparative
transcriptome profiles of LDM tissue were investigated from five beef cattle breeds dur-
ing 10 pairwise comparisons. For this, RNA-Seq datasets were selected from the GEO
database and used as experimental data. Due to differential expression analyses, 1792,
11,675, 10,864, 11,254, 11,111, 10,989, 11,353, 1394, 1231, and 1698 DE RNAs were obtained
with the threshold of an FC ≥ 1 and ≤−1, and an FDR < 0.05 for Angus vs. Chinese
Simmental, Angus vs. Luxi, Angus vs. Nanyang, Angus vs. Shandong Black, Chinese
Simmental vs. Luxi, Chinese Simmental vs. Nanyang, Chinese Simmental vs. Shandong
Black, Luxi vs. Nanyang, Luxi vs. Shandong Black, and Nanyang vs. Shandong Black
comparison groups, respectively (Supplementary Materials Table S1). Finally, 386 DE mR-
NAs and 11 miRNAs were identified in the Venn analysis as common DE RNAs between
eight pairwise comparative groups and Gene Set 1 (Supplementary Materials Table S3).
Differentially expressed miRNAs are shown in Table 2.

https://www.mirbase.org/
https://www.mirbase.org/
http://mirwalk.umm.uni-heidelberg.de/
https://lncipedia.org
http://www.noncode.org/
http://www.noncode.org/
https://circinteractome.nia.nih.gov/
https://string-db.org
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Table 2. Differentially expressed miRNAs between eight pairwise comparative groups associated
with IMF in beef cattle breeds.

miRNA Name
miRNA Locus

Fold Changes (FC) p-Value FDR
BTA miRNA Start miRNA End

bta-miR-95 6 114336289 114336369 −11.272055 7.39 × 10−20 3.06 × 10−18

bta-miR-1-2 24 34453354 34453464 −15.534093 3.98 × 10−20 1.76 × 10−18

bta-miR-125b-1 15 32763901 32763988 −9.7970735 1.38 × 10−13 1.91 × 10−12

bta-miR-1296 28 19489827 19489932 −7.0239642 0.0001303 0.0002563
bta-miR-133a-1 13 54735656 54735750 −19.140042 8.25 × 10−59 2.49 × 10−56

bta-miR-133a-2 24 34456691 34456777 −15.495943 1.16 × 10−38 1.86 × 10−36

bta-miR-193B 25 13248826 13248935 −11.619275 1.69 × 10−21 9.08 × 10−20

bta-miR-206 23 24567204 24567289 −17.307776 5.15 × 10−45 1.02 × 10−42

bta-miR-27b 8 81617234 81617337 −12.70512 1.79 × 10−63 6.65 × 10−61

bta-miR-365-1 25 13253584 13253670 −6.2762783 0.0021245 0.0035438
bta-miR-378d 19 8484500 8484590 −7.4127107 3.99 × 10−7 1.21 × 10−6

3.2. Literature Mining and Determining of Main Gene List

Based on literature mining, 34 candidate circRNAs, 57 candidate lncRNAs, and 4 can-
didate miRNAs were identified (Supplementary Materials Table S2) and considered for
subsequent analyses. Finally, a list of the main RNAs list was obtained by integrating
Supplementary Materials Tables S2 and S3 from comparative transcriptome analyses and
literature mining.

3.3. Gene Ontology and KEGG Pathway Enrichment Analysis of DE mRNAs

The GO analysis was performed based on the biological process (BP), molecular func-
tion (MF), and cellular component (CC) to explore relevant biological functions of DE
mRNAs related to IMF and fat metabolism in beef cattle. Forty-eight biological processes
were enriched based on DE mRNAs, of which the 10 top BP were metabolic process, cel-
lular protein metabolic process, cellular nitrogen compound biosynthetic process, muscle
cell differentiation, peptide metabolic process, carboxylic acid metabolic process, actin
filament-based process, actin cytoskeleton organization, muscle structure development,
and oxidation-reduction process (Figure 2A). Furthermore, DE mRNAs were involved in
13 significant molecular functions (MF), including enzyme binding, cytoskeletal protein
binding, structural molecule activity, actin binding, kinase binding, protein kinase binding,
actin filament binding, actinin binding, alpha-actinin binding, chaperone binding, mus-
cle alpha-actinin binding, structural constituent of muscle, and kinase inhibitor activity
(Figure 2B). Regarding cellular components (CC), 28 terms were identified, of which mito-
chondrion, myofibril, sarcomere, actin cytoskeleton, mitochondrial membrane, I band, Z
disc, mitochondrial inner membrane, polymeric cytoskeletal fiber, and sarcolemma were
the 10 top terms related to IMF in beef cattle (Figure 2C). Moreover, concerning the KEGG
pathway analysis of DE mRNAs related to IMF and fat metabolism, 25 pathways were
identified (Figure 3). Based on functional enrichment analysis, metabolic pathways, carbon
metabolism, oxidative phosphorylation, regulation of actin cytoskeleton, citrate cycle (TCA
cycle), as well as calcium, cGMP-PKG, thyroid hormone, oxytocin, and HIF-1 signaling
pathways, were the top 10 highly associated pathways in IMF.

3.4. PPI Network Construction and Hub Genes Determining

The protein–protein interactions and PPI network construction were accomplished us-
ing the STRING database, indicating interactions between mRNAs based on biological and
biochemical functions. The PPI network obtained had 370 nodes (mRNAs) and 2774 edges
(interactions) (Supplementary Materials Table S5). Furthermore, the hub mRNAs/genes
were considered based on a higher connectivity rate in the PPI network, which included
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ACTR3B, ASH1L, ATP2A2, BAG3, BIRC6, BRWD1, CKM, CTNND1, DNAJB4, EHBP1L1,
HSPB7, LMOD2, MYOZ1, PDLIM1, RYR1, UTRN, VPS13C, VPS13D, VWF, and WDFY3.
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3.5. Reconstruction of circRNA–lncRNA–miRNA–mRNA ceRNA Regulatory Network

To discover how circRNAs and lncRNAs affect gene expression by targeting reg-
ulatory miRNAs and mRNAs, a circRNA–lncRNA–miRNA–mRNA ceRNA regulatory
network was constructed with an integrated interaction between regulatory RNAs. Based
on knowledge of extracted interaction data from the STRING database and other related
original papers (literature mining), a circRNA–lncRNA–miRNA–mRNA ceRNA regulatory
network that involved 455 nodes and 3056 edges was reconstructed. These 455 nodes
included 34 circRNAs, 57 lncRNAs, 15 DE miRNAs, and 349 DE mRNAs, which were
included in the regulatory network (Figure 4). In addition to hub mRNAs/genes, based
on their connections in the ceRNA regulatory network, bta-miR-1296, bta-miR-365-1, and
bta-miR-378d were defined as hub miRNAs. Additionally, MSTRG.10337 lncRNA was
defined as a hub lncRNA due to its interaction in the ceRNA network.
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Figure 4. ceRNA regulatory network: 34 circRNAs, 57 lncRNAs, 15 DE miRNAs, and 349 DE
mRNAs were identified in an interacted network. Circular nodes represent circRNAs, octagonal
nodes represent lncRNAs, triangle nodes represent miRNAs, and quadrilateral nodes represent
mRNAs/genes. Black edges indicate interactions between nodes.

3.6. Clustering Analysis of the circRNA–lncRNA–miRNA–mRNA ceRNA Regulatory Network

After the construction of the circRNA–lncRNA–miRNA–mRNA ceRNA regulatory
network, clustering analysis was performed using the MCODE plugin of Cytoscape [39].
Output consisted of 11 subnets, some of which were sub-clusters of other larger clusters.
After these subnets were removed, the total number of subnets decreased to 7, and included
16 circRNA, 43 lncRNA, 7 miRNA, and 237 DE mRNA (considering repeated nodes).
In addition, subnets 1 to 7 had 147, 135, 123, 112, 50, 34, and 32 nodes, respectively
(Figures 5–11).
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Figure 5. Subnet 1: 8 lncRNAs, 1 DE miRNA, and 138 DE mRNAs in an interacted network were
identified. In this subnet, octagonal nodes represent lncRNAs, triangle nodes represent miRNAs, and
quadrilateral nodes represent mRNAs/genes. The big green octagonal nodes and orange quadrilateral
represent hub lncRNAs and mRNAs/genes involved in the subnet, respectively. Edges indicate inter-
actions; black edges represent mRNA–mRNA interactions, green edges represent lncRNA–mRNA
and lncRNA–lncRNA interactions, and red edges represent miRNA–mRNA interactions.
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Figure 6. Subnet 2: 6 lncRNAs, 3 DE miRNA, and 126 DE mRNAs in an interacted network were
identified. In this subnet, octagonal nodes represent lncRNAs, triangle nodes represent miRNAs,
and quadrilateral nodes represent mRNAs/genes. The big green octagonal nodes and orange
quadrilateral represent hub lncRNAs and mRNAs/genes involved in the subnet, respectively. Edges
indicate interactions; black edges represent mRNA–mRNA interactions, green edges represent
lncRNA–mRNA interactions and red edges represent miRNA–mRNA interactions.
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Figure 7. Subnet 3: 1 lncRNA, 3 DE miRNA, and 119 DE mRNAs in an interacted network were
identified. In this subnet, octagonal nodes represent lncRNAs, triangle nodes represent miRNAs,
and quadrilateral nodes represent mRNAs/genes. Big red triangle nodes and orange quadrilateral
represent hub miRNAs and mRNAs/genes involved in the subnet, respectively. Edges indicate inter-
actions; black edges represent mRNA–mRNA interactions, green edges represent lncRNA–mRNA
interactions and red edges represent miRNA–mRNA interactions.
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Figure 8. Subnet 4: 16 circRNAs, 31 lncRNA, 6 DE miRNA, and 59 DE mRNAs in an interacted
network were identified. In this subnet, circular nodes represent circRNAs, octagonal nodes represent
lncRNAs, triangle nodes represent miRNAs, and quadrilateral nodes represent mRNAs/genes. Big
red triangle nodes and orange quadrilateral represent hub miRNAs and mRNAs/genes involved in
the subnet, respectively. Edges indicate interactions; black edges represent mRNA–mRNA interac-
tions, purple edges represent circRNA–mRNA interactions, green edges represent lncRNA–mRNA
interactions and red edges represent miRNA–mRNA interactions.
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Figure 9. Subnet 5: 2 circRNAs, 4 DE miRNAs, and 44 DE mRNAs in an interacted network were
identified. In this subnet, circular nodes represent circRNAs, triangle nodes represent miRNAs,
and quadrilateral nodes represent mRNAs/genes. Big red triangle nodes and orange quadrilateral
represent hub miRNAs and mRNAs/genes involved in the subnet, respectively. Edges indicate inter-
actions; black edges represent mRNA–mRNA interactions, purple edges represent circRNA–mRNA
interactions and red edges represent miRNA–mRNA interactions.
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Figure 10. Subnet 6: 2 circRNAs, 4 DE miRNAs, and 28 DE mRNAs in an interacted network were
identified. In this subnet, circular nodes represent circRNAs, triangle nodes represent miRNAs,
and quadrilateral nodes represent mRNAs/genes. Big red triangle nodes and orange quadrilateral
represent hub miRNAs and mRNAs/genes involved in the subnet, respectively. Edges indicate inter-
actions; black edges represent mRNA–mRNA interactions, purple edges represent circRNA–mRNA
interactions and red edges represent miRNA–mRNA interactions.
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Figure 11. Subnet 7: 10 circRNAs, 1 DE miRNA, and 21 DE mRNAs in an interacted network were
identified. In this subnet, circular nodes represent circRNAs, triangle nodes represent miRNAs,
and quadrilateral nodes represent mRNAs/genes. Big red triangle nodes and orange quadrilateral
represent hub miRNAs and mRNAs/genes involved in the subnet, respectively. Edges indicate inter-
actions; black edges represent mRNA–mRNA interactions, purple edges represent circRNA–miRNA
interactions and red edges represent miRNA–mRNA interactions.

4. Discussion

Intramuscular fat (IMF) content is a highly complex trait associated with meat color,
tenderness, juiciness, and flavor [7]. As adipogenesis affects the size and number of
adipocytes in beef cattle, it can profoundly affect IMF. Moreover, muscle fiber diameter
has a significant positive correlation with carcass traits [44]. For example, thicker muscle
fiber diameter reduces meat tenderness [7]. Moreover, the type of muscle fiber and its fatty
acid structure is highly related to IMF and various metabolic characteristics of meat in beef
cattle [45]. Unsaturated fatty acids (UFAs), especially polyunsaturated fatty acids (PUFAs),
affect meat taste and flavor [7]. With the continuous development and widespread applica-
tion of high-throughput sequencing technologies, such as RNA-Seq, many studies have
been performed on protein-coding RNAs (mRNAs) and miRNAs, without considering
other molecular species of RNAs such as circRNAs and lncRNAs. Although mRNAs consti-
tute only ~2% of the mammalian genome, considering interactions among regulatory agents
such as lncRNAs can provide important insights into mechanisms involved in IMF and fat
metabolism in beef cattle [46]. After the competitive endogenous RNA (ceRNA) hypothesis
was proposed by Salmena et al. [11], many studies were conducted to explain how ceRNA
(lncRNAs and, recently, circRNAs) function. However, the regulatory network that connects
non-coding and coding RNAs has not been well explained. Perhaps lncRNAs and circRNAs
compete with endogenous RNA by sponging to a certain miRNA to regulate the miRNA’s
target mRNA/gene. Attempts to construct ceRNA networks have been made in animal
science [12,15,47]. In this study, we identified 386 DE mRNAs, 15 DE miRNAs, 34 circRNAs,
and 57 lncRNAs in the integrated analysis (RNA-Seq analysis and literature mining) of
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datasets by comparing five cattle breeds in 10 pairwise comparisons. Then, we recognized
potential circRNA–lncRNA–miRNA–mRNA ceRNA interactions involved in IMF and fat
metabolism in beef cattle. Finally, we constructed a circRNA–lncRNA–miRNA–mRNA
ceRNA regulatory network with 455 nodes and 3056 edges. We also detected seven can-
didate subnets involved in IMF that included 237 mRNAs, 7 miRNAs, 16 circRNAs, and
43 lncRNAs, (with no repeated nodes), respectively, as well as subnets 1 to 7 that included
147, 135, 123 112, 50, 34, and 32 nodes, and 496, 744, 269, 152, 71, 48, and 33 edges, respec-
tively. Information about differentially expressed RNAs and their interactions in subnets of
the ceRNA regulatory network between eight pairwise comparative groups associated with
IMF in beef cattle breeds was presented in Supplementary Materials Table S6. Hub-hub
mRNAs/genes were detected based on a higher degree of connectivity and repetition be-
tween the main ceRNA regulatory network and subnets. Furthermore, our results classified
the GO functional annotation terms of DE RNAs into three groups: biological process
(48 terms), cellular component (28 terms), and molecular function (13 terms), with most
identified metabolic and signaling pathways associated with the structure of muscle cells,
fat metabolism, and intracellular energy pathways.

In this study, we identified the MCU, CYB5R1, and BAG3 genes that were mostly
down-regulated between the 10 comparative groups and were involved with the metabolic
process, actin filament-based process, actin cytoskeleton organization, oxidation-reduction
process, actin filament organization, chaperone binding, myofibril, mitochondrion, sar-
comere, actin cytoskeleton, mitochondrial membrane, I band, Z disc, mitochondrial inner
membrane, mitochondrial protein complex, inner mitochondrial membrane protein com-
plex, and actomyosin. The MCU (Mitochondrial inner membrane calcium uniporter) gene
is a protein-encoding that interacts with mitochondrial calcium uptake and is involved in
calcium homeostasis in mitochondria. Mitochondrial calcium homeostasis has a critical role
in cellular physiology, including the regulation of cell bioenergetics, cytoplasmic calcium
signals, and activation of cell death pathways. This gene is also involved in facilitating
the calcium flow in cardiomyocytes during systole, regulating glucose-dependent insulin
secretion, muscle size, metabolic pathways of prion disease, and the calcium signaling
pathway [48,49]. The CYB5R1 (Cytochrome B5 Reductase 1) gene is associated with meat
tenderness and oleic acid percentage in Jiaxian Red and Japanese Black cattle breeds, serv-
ing as an electron source for stearoyl-CoA desaturase during fatty acid desaturation [50,51].
BAG3 (BCL2-associated athanogene 3) gene was identified as a hub-hub gene mostly ex-
pressed in heart and skeletal muscle tissue. The protein encoded by this gene is involved in
facilitating autophagy, inhibition of apoptosis by binding to B-cell lymphoma 2, provid-
ing structural support for the sarcomere by attaching actin to the Z disk, and linking the
α-adrenergic receptor with the L-type Ca2+ channel [52,53].

In subnet 1, the UTRN gene (Utrophin) is an autosomal protein-coding gene, and the
protein encoded by this gene is smaller than dystrophin and localized to the sarcolemmal
post-synaptic membrane at the neuromuscular junction and myotendinous junction in
mature muscle fibers. Utrophin is highly similar to dystrophin and can complete dys-
trophin’s function. For example, utrophin interacts with the protein complex associated
with dystrophin to complete a link from the cytoskeleton through the membrane and to the
extracellular matrix. Utrophin expression is typically high in developing muscle, but in
mature muscle is enriched at the neuromuscular junction. Expression of utrophin decreases
as muscle fiber matures, whereas dystrophin is expressed in mature muscle fibers [54].
Significant GO terms associated with the IMF affected by the UTRN gene included muscle
structure development, muscle system process, actin binding, cytoskeletal protein binding,
enzyme binding, and the actin cytoskeleton. Regarding the activation role of bta-miR-1-2 for
the UTRN gene, it is understandable to be down-regulated. In this study, LMOD2 and RYR1
genes were jointly involved in nine GO terms, including muscle structure development,
muscle cell differentiation, muscle cell development, striated muscle cell differentiation,
striated muscle cell development, muscle system process, muscle contraction in biological
processes, myofibril and sarcomere in cellular components. Moreover, gene LMOD2 was
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enriched in terms of actin filament-based process, actin cytoskeleton organization, acto-
myosin structure organization, myofibril assembly, actin filament organization, sarcomere
organization, actin polymerization or depolymerization, actin binding, cytoskeletal protein
binding, actin cytoskeleton, polymeric cytoskeletal fiber, A band, actin filament, and M
band. The RYR1 gene was involved in striated muscle tissue development, muscle organ
development, skeletal muscle tissue development, muscle fiber development, I band, Z disc,
sarcolemma, sarcoplasm, sarcoplasmic reticulum, and sarcoplasmic reticulum membrane
(Figure 2).

Leiomodin (LMOD) is an actin-binding protein together with a homolog protein of
tropomodulin (TMOD) present at the slow-growing (pointed) end of the actin filament that
regulates filament lengths [55]. LMOD1 gene is expressed in smooth muscle and extraocular
muscle tissues, whereas LMOD2 and LMOD3 are mainly in cardiac and skeletal muscle tis-
sues. LMOD2 expressed in cardiac muscle tissue is higher than in skeletal muscle and may
have a major role in the maintenance of thin filaments of cardiac muscle tissue [56]. The
protein encoded by CKM (Creatine kinase, M-type) gene is the most abundant transcript in
skeletal muscle tissue [57]. Creatine kinase (CK) is a major enzyme in energy metabolism
that catalyzes the transportation of phosphate between ATP molecules and various phos-
phagens. Isoenzymes of CK are present in various tissues, including skeletal and heart
muscle, spleen, thyroid, and blood, with important roles in energy transfer in many tissues.
Expression of the CKM gene differs among anatomical muscle groups. For example, the
level of CKM protein as well as the enzyme byproduct, creatine phosphate, is two or three
times higher in fast-versus slow-twitch muscle [58]. The RYR1 (Ryanodine Receptor 1)
gene encoded a calcium ion (Ca2+) release channel located in the sarcoplasmic reticulum
membrane in the skeletal muscle and activated by CaV1.1 voltage sensor proteins during
excitation-contraction (EC) [59], is a 2.2 megadalton molecule responsible for calcium gating
in the sarcoplasmic reticulum. Ryanodine receptor 1 (RYR1) gene-related pathogenic varia-
tions are the most frequent causes of congenital myopathies [60]. RYR1-related myopathies
(RYR1-RM) are variable in intensity and include a wide disease spectrum of appointed
and emerging phenotypes related to dominant and recessive inheritance patterns [61].
A selective pattern and gradient of intramuscular fatty infiltration (IMFI) can intensify
RYR1-RM. High IMFI and loss of muscle mass can cause skeletal muscle dysfunctions and
increase disease severity, such as muscular dystrophies and sarcopenic adults [62].

In subnet 2, bta-miR-133a-1 and bta-miR-133a-2 miRNAs suppressed the MSN gene
and were down-regulated for LDM tissue between comparative groups. Moesin, the protein
encoded by the MSN gene, is a member of the Ezrin-Radixin-Moesin (ERM) family of
proteins. ERMs are adaptor molecules that are essential for organizing specified membrane
domains and implicated in diverse basic biological processes, including regulation of cell
shape, motility, and signaling. ERMs also regulate the structural stability of the cell cortex
by connecting the actin cytoskeleton to plasma membrane proteins via an N-terminal
FERM domain and a C-terminal actin-binding domain [63]. ACTR3B was a hub-hub
gene and down-regulated in LDM tissue. ACTR3B gene encodes a member of the actin-
related proteins (ARP), which form multiprotein complexes such as actin-related protein
(ARP) 2/3 complex and share 35–55% amino acid identity with conventional actin. As
the protein coded by this gene is present in the APR2/3 complex, it may have a role in
the organization of the actin cytoskeleton and function as an ATP-binding component of
the Arp2/3 complex, which is involved in the regulation of actin polymerization. This
complex is a regulatory protein in the actin cytoskeleton and induces cell-shape change
and motility [64,65]. Actin filament-based process, actin cytoskeleton organization, actin
binding, cytoskeletal protein binding and actin cytoskeleton were the highly associated GO
terms affected by the ACTR3B gene.

In subnet 3, ATP2A2, MYOZ1, and EHBP1L1 were hub-hub genes. Myozenin 1, known
as calsarcin-2 protein (CS2), is encoded by the MYOZ1 gene and mainly expressed in
fast-twitch muscles, a 299 amino acid nuclear protein that interacts with the Z-disc pro-
tein, α-actinin, filamin 2, and PP2B (calcineurin), and effectively forms bridges between
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proteins and muscle fibers, participating in muscle sarcomere microstructure [66]. Ac-
cording to interactions of the protein encoded by this gene, MYOZ1 may be involved in
Z-line assembly and myofibril formation in striated skeletal muscles. According to reports
from immunofluorescence experiments, calsarcin (CS) family proteins are specifically lo-
cated on the Z line [67]. Because the MYOZ1 gene is closely related to muscle formation,
mutations in the MYOZ1 gene can be associated with muscular dystrophy and neuromus-
cular myopathy [68]. The MYOZ1 gene is involved in 22 GO terms, including the actin
filament-based process, actin cytoskeleton organization, muscle structure development,
muscle cell differentiation, muscle cell development, striated muscle cell differentiation,
actomyosin structure organization, muscle system process, myofibril assembly, striated
muscle tissue development, muscle organ development, sarcomere organization, skeletal
muscle tissue development, and regulation of calcium-mediated signaling in the biological
process, actin binding, and cytoskeletal protein binding in the molecular function, and
myofibril, sarcomere, actin cytoskeleton, I band, and Z disc in the cellular component.

The ATP2A2 gene is mainly expressed in cardiac and type II skeletal muscle and en-
codes SERCA2, one of the SERCA Ca(2+)-ATPases, which is an intracellular calcium pump
in the sarcoplasmic or endoplasmic reticulum in skeletal muscle cells [69]. SERCAs regulate
cytosolic calcium homeostasis and coordinate gene expression and muscle cell function.
SERCA2 specifically catalyzes the hydrolysis of ATP along with the transport of calcium
from the cytosolic region to the lumen of the sarcoplasmic reticulum and is involved in the
regulation of the contraction-relaxation cycle [70]. Interestingly, this gene was in the major-
ity of enriched pathways, including the calcium signaling pathway, cGMP-PKG signaling
pathway, adrenergic signaling in cardiomyocytes, thyroid hormone signaling pathway,
cardiac muscle contraction, and hypertrophic cardiomyopathy, suggesting a possible ma-
jor regulatory role. Other noteworthy hub-hub genes, including CKM, RYR1, and VWF,
presented lower expression in LDM tissue and have critical roles in metabolic pathways,
oxytocin signaling pathway, ECM-receptor interaction, prion disease, and calcium signaling
pathway. In this study, the RYR1 was involved in 19 GO terms, including muscle struc-
ture development, muscle cell differentiation, muscle cell development, striated muscle
cell differentiation, striated muscle cell development, muscle system process, muscle con-
traction, striated muscle tissue development, muscle organ development, skeletal muscle
tissue development, and muscle fiber development, myofibril, sarcomere, I band, Z disc,
sarcolemma, sarcoplasm, sarcoplasmic reticulum, and sarcoplasmic reticulum membrane.

Signaling pathways related to this subnet included the cGMP-PKG, thyroid hormone,
and calcium signaling pathways. Cyclic GMP (cGMP) is the intracellular second messenger
that is produced by guanylate cyclase (GC) and regulates a broad range of biological
processes. Intracellular cGMP exerts its physiological action through three forms of cGMP-
dependent protein kinase (PKG), cGMP-regulated phosphodiesterases (PDE2, PDE3), and
cGMP-gated cation channels, among which PKGs may be the primary mediator. cGMP-
PKG signaling pathway mediates many processes, such as regulation of relaxation and
contraction of vascular smooth muscle cells, anti-cardiac hypertrophy, anti-atherosclerosis,
and anti-vascular injury/restenosis [71]. The thyroid hormone signaling pathway has a
wide range of functions in terms of individual development, maintenance of homeostasis,
cell proliferation and differentiation, and glucose metabolism. Thyroid hormones thyroxine
(T3) and triiodothyronine (T4) are produced by the thyroid gland and have a main role
in maintaining growth and development. Although T4 is the main hormone in the blood,
it is converted to the more active hormone T3 within cells. T3 binds to nuclear thyroid
hormone receptors (TRs), which act as a ligand-dependent transcription factor and control
the expression of target genes (genomic action). Non-genomic mechanisms of action begin
at the integrin receptor. Plasma membrane alpha(v)beta(3)-integrin has distinct binding
sites for T3 and T4. A single binding site binds T3 and activates the phosphatidyl 3-kinase
(PI3K) pathway. The other binding site binds both T3 and T4 and activates the ERK1/2
MAP kinase pathway [72,73]. Ca2+ is also a very versatile intracellular signaling molecule
capable of regulating many processes. Its distribution in intracellular and extracellular
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spaces necessitates specialized pumps and channels for its function and mobility, as well as
the effect of cell depolarization or repolarization. In addition, the amount and duration of
Ca2+ influx determine the type and duration of its effect on intracellular signaling. Ca2+

signaling not only controls intracellular regulation but also appears to contribute to remote
or even organismal signal propagation and physiological response regulation. The calcium
signaling pathway is shaped by an intimate interaction of channels and transporters, and
important individual components have been identified and characterized. This is translated
into defined downstream responses by an elaborate toolbox of Ca2+-binding proteins, many
of which act as Ca2+ sensors [74].

In subnet 4, GLUL is a protein-coding gene that encodes glutamate-ammonia ligase and
belongs to the glutamine synthetase family. This protein catalyzes glutamine synthesis from
glutamate and ammonia in an ATP-dependent reaction. This protein has a role in ammonia
and glutamate detoxification, acid-base homeostasis, cell signaling, cell proliferation, and
also the biosynthesis of several amino acids, pyrimidines, and purines by catalyzing
the glutamine synthesis reaction [75,76]. The GO terms enriched for this gene included
metabolic process, cellular protein metabolic process, carboxylic acid metabolic process,
and mitochondrion. ASH1L gene encoded a histone methyltransferase that belongs to
the Trithorax group of transcriptional activators. This gene apparently has a role in the
positive regulation of gene expression and is positively correlated with myoblast fusion
and myogenesis [77]. This gene is involved in both the metabolic process and the cellular
protein metabolic process. Moreover, metabolic pathways enriched for GLUL and ASH1L
genes included the metabolic pathways, biosynthesis of amino acids and glyoxylate, and
dicarboxylate metabolism.

In subnets 5 and 6, VPS13C and VPS13D hub-hub genes are members of the vacuolar
sorting protein-13 family of proteins that have four isomers: VPS13C, VPS13B, VPS13A,
and VPS13D. The VPS13 family is involved in the transport of membrane proteins between
the trans-Golgi network and the pre-vacuolar compartment, as well as lipid transport
and mitophagy [78]. Mitophagy is crucial in regulating cell health, mitochondrial size,
and homeostasis [79]. VPS13C and VPS13D genes are involved in terms of regulation of
mitophagy, positive regulation of mitophagy, mitochondrion, mitochondrial membrane,
and mitochondrial outer membrane. The BRWD1 gene encodes a member of the WD
repeat protein family, which contains two bromodomains and multiple WD repeats. WD
repeats are minimally conserved regions of almost 40 amino acids typically bracketed by
gly-his and trp-asp (GH-WD) residues that may facilitate the formation of heterotrimeric or
multiprotein complexes. Members of this family are involved in various cellular processes
such as cell cycle progression, signal transduction, apoptosis, regulation of chromatin
remodeling, and gene expression [80].

In subnet 7, we detected bta-miR-378d that suppressed the RTN2 hub gene. The
RTN2 (Reticulon 2) gene is defined as a hub gene that inhibits amyloid precursor protein
processing, probably by blocking BACE1 activity. This gene enhances the trafficking of the
glutamate transporter SLC1A1/EAAC1 from the endoplasmic reticulum to the cell surface
and has a role in the translocation of SLC2A4/GLUT4 from intracellular membranes to the
cell membrane, facilitating glucose uptake into the cell [81].

We used a computational approach with the construction of a circRNA–lncRNA–
miRNA–mRNA ceRNA regulatory network using identified expression profiles of regula-
tory RNAs. Spatiotemporal differential expression in LDM tissue supports the potential role
of RNAs; furthermore, it can have a major role in identifying candidate regulatory RNAs
in transcriptional regulation involved in IMF and fat metabolism. However, further efforts
are necessary to identify specific biological functional roles of RNA regulatory subnets
associated with meat quality traits. A typical explanation for inconsistencies and limitations
in our results compared to other studies was differences in the molecular techniques, differ-
ences in LDM tissue, time and environmental conditions of sampling from different beef
cattle breeds, and bioinformatics tools. Nevertheless, the integration of various regulatory
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RNAs based on ceRNA regulatory networks, plus circRNA, lncRNA, miRNA, and mRNA
interactions, provided novel insights into molecular biological processes.

5. Conclusions

The present study used a method that is novel in animal science to combine various
regulatory RNAs as an integrated network related to IMF and fat metabolism in beef cattle.
Integrating transcriptome profiles from differential expression analysis of five beef cattle
breeds (i.e., Angus, Chinese Simmental, Luxi, Nanyang, and Shandong Black) to provide
hub RNAs with differential expression levels resulted in the identification of 34 circRNAs,
57 lncRNAs, 15 miRNAs, and 374 mRNA/genes involved in IMF and lipid metabolism. Ac-
cording to the circRNA–lncRNA–miRNA–mRNA ceRNA regulatory network, 7 significant
subnets with a total of 16 circRNAs, 43 lncRNAs, 7 miRNAs, and 237 mRNAs/genes were
identified as being involved in major biological molecular mechanisms, including metabolic
pathways, muscle structure development, oxidation-reduction process, protein kinase bind-
ing, actin filament binding, mitochondrial inner membrane, calcium, cGMP-PKG, thyroid
hormone, and oxytocin signaling pathways. In conclusion, performing comparative tran-
scriptome and ceRNA regulatory network analyses between various breeds for LDM tissue
generated novel insights for breeding strategies on the meat quality attributes of beef cattle.
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