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Simple Summary: The beef industry plays a crucial role in the livestock supply chain, and data are
becoming increasingly vital for informed decision-making. In Australia, significant amounts of data
are collected within cattle farms; however, due to a lack of suitable data-driven methods, much of
the data go to waste without being effectively utilized. This study developed a statistical model
to predict the carcass weight (CW) of grass-fed beef cattle at four different stages before slaughter
using farm-level data. Two statistical modelling approaches were used, and results were compared.
Four timespans prior to the slaughter, i.e., 1 month, 3 months, 9–10 months, and at weaning, were
considered in the predictive modelling. Seven phenotypic features of cattle were used to describe
the CW. The results showed that the CW of the cattle was strongly associated with the animal’s
body weight at each stage before slaughter. The CW can be predicted with an average error of 4%
(~12–16 kg) at three months before slaughter. The predictive error increased gradually when moving
away from the slaughter date, where the prediction error at weaning was ~8% (~20–25 kg). The
outcomes of this study demonstrate the value of using historical data in optimizing production and
improving efficiency in the supply chain.

Abstract: Gaining insights into the utilization of farm-level data for decision-making within the beef
industry is vital for improving production and profitability. In this study, we present a statistical
model to predict the carcass weight (CW) of grass-fed beef cattle at different stages before slaughter
using historical cattle data. Models were developed using two approaches: boosted regression trees
and multiple linear regression. A sample of 2995 grass-fed beef cattle from 3 major properties in
Northern Australia was used in the modeling. Four timespans prior to the slaughter, i.e., 1 month,
3 months, 9–10 months, and at weaning, were considered in the predictive modelling. Seven
predictors, i.e., weaning weight, weight gain since weaning to each stage before slaughter, time since
weaning to each stage before slaughter, breed, sex, weaning season (wet and dry), and property, were
used as the potential predictors of the CW. To assess the predictive performance in each scenario,
a test set which was not used to train the models was utilized. The results showed that the CW of
the cattle was strongly associated with the animal’s body weight at each stage before slaughter. The
results showed that the CW can be predicted with a mean absolute percentage error (MAPE) of 4%
(~12–16 kg) at three months before slaughter. The predictive error increased gradually when moving
away from the slaughter date, e.g., the prediction error at weaning was ~8% (~20–25 kg). The overall
predictive performances of the two statistical approaches was approximately similar, and neither
of the models substantially outperformed each other. Predicting the CW in advance of slaughter
may allow farmers to adequately prepare for forthcoming needs at the farm level, such as changing
husbandry practices, control inventory, and estimate price return, thus allowing them to maximize
the profitability of the industry.
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1. Introduction

The Australian beef industry contributes significantly to the Gross Domestic Prod-
uct [1]. In 2018, Australia accounted for approximately 4% of global beef production, and
in 2019, Australia was the second largest beef exporter, after Brazil [2]. Approximately 64%
of the total beef production in Australia in 2019 consisted of grass-fed cattle [3]. Moreover,
grass-fed beef constitutes approximately 72% of exported beef [3]. Strategies to enhance
the profitability and sustainability of grazing beef production are therefore important for
the Australian economy.

In recent years, there has been a growing trend in the agricultural sector to utilize
historical data for decision-making [4–7]. However, in Australia’s cattle farming industry,
despite the collection of large volumes of data, its potential value remains largely untapped
due to a lack of suitable analysis tools and data-driven insights. Moreover, many farmers
in the grazing beef industry heavily rely on intuitive decision-making based on personal
experiences and historical patterns, often without thorough analysis or consideration of
factual information. In this context, harnessing historical data to develop data-driven tools
presents significant opportunities for enhancing the efficiency of beef production.

To date, there has been a scarcity of published studies focusing on the prediction of
the carcass weight (CW) in beef cattle [4,8–10]. Only one Australian research was found
among these studies that discuss CW predictions [10]. However, this particular study
predicted CW relative to the pre_slaughter weight and the dressing percentage (DP); the
DP is calculated based on the hot carcass weight and the pre_slaughter weight [11]. While
McPhee’s approach [10] can be influenced significantly by the cattle’s breed and other
external factors, the advantages of the proposed method are also minimal due to its reliance
on the pre_slaughter weight. The factors considered in the studies outside Australia include
zoometric measurements of cattle [8], economic and nutritional factors, and environmental
factors [4].

In this paper, we present a methodology to predict the CW of grass-fed beef cattle
at four different stages before slaughter by using a set of phenotypic characteristics of
cattle that are readily available at the farm level. We further discuss the impact of the
weaning weight (WW) on the CW. In this study, we used two different statistical methods
to develop and compare the predictions of the CW. The two models included a more
traditional regression—the multiple linear regression model (MLR)—and the relatively
novel and popular boosted regression tree model (BRT) [12,13].

The CW predictions provided by this study offer numerous advantages for grazing
beef producers in Australia. Early forecasts enable adjustments in husbandry practices
to enhance cattle growth. They also help in identifying the most suitable market for the
cattle. Moreover, CW forecasts are valuable for predicting cash flow and ensuring timely
fulfillment of customer orders. Additionally, these forecasts may contribute to minimizing
unnecessary paddock costs and optimizing the overall operational efficiency.

2. Materials and Methods
2.1. Data

The study conducted in this research utilized data provided by Black Box Co. (Bris-
bane, Australia), which boasts the largest collection of phenotypic records for cattle across
Australia’s supply chain. Notably, the northern beef industry, which accounts for more
than half of Australian beef production, is a key focus. The dataset utilized in the study
consisted of 2995 grass-fed beef cattle, which were slaughtered between 2019 and 2021.
These cattle were sourced from three major cattle farms in the northern region of Australia
in which various body weights at different stages from weaning to slaughter were recorded.
The northern region of Australia is characterized by tropical and sub-tropical climates [14].
Consequently, the predominant breed in the northern beef industry is Bos indicus and its
derivatives, which exhibit adaptability to these tropical conditions [15]. A comprehensive
overview of the dataset is provided in the results section of the study.
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2.2. Modelling and Forecasting

The outcome of interest (response variable) of the study was the CW. Weaning weight
(WW), weight gain since weaning to each stage before slaughter (GSW), time (days) since
weaning to each stage before slaughter (TSW), breed, sex, weaning season (dry and wet),
and property were considered as potential explanatory variables (predictors) of the CW.
Here, the sum of WW and GSW represented the BW of the cattle in the corresponding stage
before slaughter. Weaning weight is the BW of the cattle at weaning and typically ranges
between 100 kg and 350 kg [16]. TSW was considered a predictor alternative to the age of
the cattle, where age was not utilized due to the higher degree of uncertainty associated
with the date of birth records. The breed was encoded as a factor variable representing five
major breeds: Brahman, Brahman cross, British/European cross, crossbreed/composite,
Santa cross, and a category for unknown breeds; initially, seventeen different breeds
were in the data, and they were reduced into these six types based on the desires of end
users. The weaning season was encoded as a factor variable representing wet and dry
seasons, where May to October and November to April were considered as dry and wet
seasons, respectively.

The dataset was split into subsets based on the availability of BW data and the desires
of end users to evaluate the predictive performance of the models at four different stages
before slaughter. These four stages were chosen for the following reasons:

• At weaning: Since farmers often acquire cattle from different breeders at weaning,
forecasting at this stage can provide an initial estimate of final production and assist
in decision-making.

• Nine–ten months before slaughter: In northern cattle farming, the average time cattle
spent in pastures from weaning to slaughter is around two years. Forecasting at
this intermediate stage allows farmers to adjust husbandry practices if necessary to
improve weight gain.

• Three months before slaughter: Forecasts at this stage are highly valuable for decision-
making in the selling process, such as identifying an appropriate market for cattle and
ensuring timely fulfillment of customer orders.

• One month before slaughter: These forecasts can support optimization of freight
transport, enable predictions related to cash flow management, etc.

The forecasts in these distinct stages provide useful information for farmers, assisting
them in making informed decisions at different points in the cattle production and selling
cycle. Consequently, two subsets from the entire sample, containing BW recorded before
1 month of slaughter (set 1) and 9–10 months of slaughter (set 2), were considered and used
to evaluate forecast performance before 1 month and 9–10 months of slaughter, respectively.
The entire dataset (set 3) was considered to obtain the forecasts before 3 months of slaughter.
Set 3 was further utilized to evaluate forecast performance at weaning.

In set 3, the majority of cattle had no BW recorded before 3 months of the slaughter,
and the following procedure was used to approximate the BW:

BW before 3 months of slaughter =
1 Pre_slaughter BW− (91− (slaughter date− pre_slaughter BW recorded date))× 2 ADG
1 All the cattle had a pre_slaughter BW which was generally recorded within one to

two weeks before the slaughter. 2 ADG is the average daily gain of the cattle and described
as: ADG = (pre_slaughter BW − the nearest BW before pre_slaughter BW)/number of days
between the two BW recorded dates.

For 1 month, 3 months, and 9–10 months before slaughter, the MLR and BRT models
were fitted using all predictors: GSW, TSW, WW, sex, breed, weaning season, and property.
To assess the predictive performance at weaning, models were fitted using five predictors
only; GSW or TSW do not exist at weaning. In each modelling scenario, the predictive
accuracies of the models were validated using separate test sets that were not used to train
the models.

In addition to forecasting, we conducted a separate analysis for the entire dataset to
explore how grass and labor costs varied during the post-weaning-to-slaughter period



Animals 2023, 13, 1968 4 of 13

based on WW, weight gain, and time on grass; grass and labor are the main costs in grazing
beef production in Northern Australia. However, the purpose of the present cost analysis
was to compare the variations in main costs in the grazing beef industry relative to WW,
weight gain, and time on grass, but not to provide estimates of associated costs.

2.3. Measures of Predictive Performance

The study used the mean absolute percentage error (MAPE), the mean absolute error
(MAE), and the root mean squared error (RMSE) for evaluating the predictive accuracy
of the models. The MAE computes the average absolute difference between the actual
CW and the predicted CW, whereas the MAPE computes the absolute difference between
the actual and predicted weights as a percentage respective to the actual CW. The RMSE
computes the square root of the mean squared differences between the actual CW and the
predicted CW. The equations for MAE, MAPE, and RMSE are as follows:

MAE =
1
n ∑n

i=1|yi − ŷi|, MAPE =
1
n ∑n

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣, RMSE =

√
∑n

i=1 (yi − ŷi)
2

n

where yi is the observed CW and ŷi is the predicted CW in the validation (test) dataset.

2.4. Multiple Linear Regression

Multiple linear regression [17] models the linear dependence between a response
variable Y and a set of predictor variables X. The standard form of a multiple linear
regression model is defined as follows:

Yi = β0 + β1Xi1 + · · ·+ βkXik + εi, i = 1, . . . , n

where Yi is the response variable, Xi are the predictor variables, β0 is the constant term, βi
are the regression coefficients, and εi is the residual error.

2.5. Boosted Regression Trees

Boosted regression trees (BRTs) are an emerging machine-learning technique utilized
in modelling and forecasting. It combines two powerful techniques, namely regression trees
and boosting, to enhance predictive outcomes [18]. Regression trees model the dependence
between the response variable Y and a set of predictor variables X through a set of splits of
the predictor variables X in a tree-like structure [18]. Boosting, on the other hand, combines
multiple weak learners to create a stronger model. Consequently, the BRT model combines
a weighted set of single trees for improved prediction performance [18]. Further, the BRT
model effectively handles complex non-linear predictor–response associations, missing
data and outliers [13,19]. The general form of a BRT can be written as follows [13,20]:

f (X) = ∑p βpb
(
X; γp

)
, p = 1, 2, . . . . . . , P

where b
(
X; γp

)
represent individual regression trees with γp indicating the split vari-

ables and their values at splitting and terminal nodes, and βp represent the boosting
mechanism through expansion coefficients or weight values assigned to the nodes of the
regression trees.

A key step in BRT modelling is the regularization of the model parameters to reduce
model overfitting. These parameters are the number of trees, tree complexity (the number
of splits), and the learning rate (the contribution of each tree to the growing model). In
this study, a series of BRT models were fitted with different combinations of the number of
trees (200 to 2000), tree complexity (1 to 5 splits), and the learning rate (0.01 to 0.001).

The study used R statistical software to conduct all the analyses [21]. The package
dismo [22] and R stats package were used for the BRT and the MLR models, respectively.
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3. Results
3.1. Characteristics of Grass-Fed Beef Cattle

The majority of the beef cattle were crossbreeds, with Brahman crossbreeds comprising
almost half (~49%) of the sample (Table 1). A quarter of cattle in the sample had no breed
recorded, where a majority of them also were Brahman crossbreeds. The CW of the beef
cattle slaughtered between the years 2019 and 2021 was 295 kg on average, varying from
197 kg to 426 kg (Figure 1A). The WW of the cattle was 217 kg on average (Figure 1B)
with 10% early weaners (weaned at 100–150 kg). In the northern beef industry, weaning
generally occurred on average (sd = 6 months) two years before slaughter. The cattle were
weaned predominantly (~62%) in the dry season. They gained a mean weight of 336 kg
between weaning and slaughter, with on average 0.5 kg per day. The average BW of the
cattle at pre_slaughter was 554 kg. Only 2.7% of the beef cattle were female.

Table 1. Descriptive summary of the characteristics of the grass-fed beef cattle slaughtered between
2019 and 2021.

Quantitative

Feature Min Mean Max SD

Carcass weight (kg) 197.0 295.0 426.0 27.1
Weaning weight (kg) 100.0 217.0 350.0 51.0

Pre_slaughter weight (kg) 400.0 554.0 802.0 46.8
Weight gain since weaning to slaughter (kg) 104.0 336.4 587.0 59.7

Average daily gain since weaning to slaughter (kg) 0.2 0.5 1.3 0.1
Time since weaning to slaughter (months) 10.2 25.0 47.1 5.8

Qualitative

Feature P 1 (%) Feature P 1 (%)

Breed Weaned season
Brahman (Bh) 4.5 Dry 61.8

Brahman cross (Bh-X) 48.6 Wet 38.2
British/European cross (Bt/Ep) 5.4
Crossbreed/composite (Cc/Cm) 2.3 Property

Santa cross (St-X) 12.7 A 73.3
Unknown (Un) 26.4 B 15.8

C 10.9
Sex

Female 2.7
Male 97.3

1 Proportion of the given category compared to the total number of cows in each feature.
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3.2. Analyses

The primary focus of interest in the study was forecasting performance in the four sce-
narios. However, the relative importance of predictors in forecasting the CW was briefly
discussed first. The outcomes of the MLR and the BRT models across four modelling
scenarios indicated that WW, GSW, TSW, and breed were significantly (p < 0.05) associated
with the CW (Figure 2); in scenario 4 at weaning, the significant predictors were only
WW (BW) and breed. The most variation in the CW was explained by the body weight
(WW + GSW) of the cattle (Table 2 and Figure 2). BW alone explained above 70% of the
variation in the CW within three months before slaughter, while it was 30–40% within
9–10 months before slaughter. BW at weaning (WW) also explained 8–10% of the variation
in CW.

Sex was found to be a significant predictor of the CW through the modelling of the
entire dataset (set 3); however, sex was excluded from the forecasting models due to the
small proportion of females in the sample and the absence of female cattle in the smaller
subsets (set 1 and set 2). The season of weaning and property showed no significant effect
on the CW. Further, no significant interactions between predictors were found.

Table 2. Variance explained (R2) in carcass weight using the MLR and BRT models.

Scenario
Variance Explained in Carcass Weight—R2 (%)

MLR BRT

BW Only BW + Other
Predictors BW Only BW + Other

Predictors

Before 1 month of slaughter 77 82 78 84
Before 3 months of slaughter 70 74 71 80

Before 9–10 months of slaughter 30 46 39 59
At weaning 8 10 10 16

3.3. Predictive Performance

The error estimates (MAPE (%), MAE (kg), and RMSE (kg)) of the predictive models
under four scenarios are reported in Table 3. Figure 3 graphically illustrates the forecasting
performance using observed and predicted values with a 95% prediction interval.

Overall, the outcomes with the two methods, the MLR and the BRT, were approx-
imately similar. The predictive ability of the CW decreased when moving away from
the slaughter. Both models predicted the CW with an approximately 3% average error
(~8–12 kg) one month prior to slaughter, while the MAPE was 4% (~12–16 kg) when pre-
dicting three months prior to slaughter. The error increased considerably (MAPE—~6%
and ~16–21 kg) for CW predictions at 9–10 months before slaughter. At weaning, the CW
could be predicted with an average error of ~8% (~20–25 kg) using BW and breed only.

Table 3. Predictive error of the carcass weight at different stages before slaughter.

Time before Slaughter Sample
Size MLR BRT

MAPE
(%)

MAE
(kg)

RMSE
(kg)

MAPE
(%)

MAE
(kg)

RMSE
(kg)

1 month (scenario 1) 483 2.67 7.90 10.48 2.98 8.72 11.65
3 months (scenario 2) 2995 4.12 12.04 15.57 4.03 11.78 15.34

9–10 months (scenario 3) 487 5.80 16.57 20.60 5.67 16.28 20.76
At weaning (scenario 4) 2995 7.79 19.67 25.29 7.68 19.38 25.06
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the MLR model.

Additional cost analysis (descriptive analysis) indicated that cattle with lower WWs
were associated with higher growing costs (grass + labor) during the post-weaning-to-
slaughter period due to a longer time spent on grass (Table 4). The costs were particularly
higher for cattle weaned at 100–150 kg (early weaners). The association between early
weaners and the CW was further reflected in modelling in scenario 4 (Figure 4), where
cattle weaned at a lower BW were associated with lower CW. For instance, cattle weaned at
100 kg and cattle weaned at 200 kg had an approximately 35 kg difference in CW. However,
the impact on the CW decreased with increasing weaning weights, e.g., the difference in
CW among cattle weaned between 250 kg and 350 kg was less than 10 kg. However, the
findings also indicate that the final CW and the associated costs can be impacted by weight
gain during the post-weaning-to-slaughter period for some cows, regardless of the WW.
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Table 4. Descriptive summary of costs (grass + labor) during the post-weaning-to-slaughter period
by the weaning weight and weight gain categories.

Weaning Weight
Weight Gain:
Weaning to
Slaughter

Number
of

Cows

Carcass Weight per
Head (kg)

Time on Grass per
Head (Months)

Cost (Grass +
Labor) per Head 1

($)

Mean SD Mean SD Mean SD

100:150 kg 200:300 kg 12 235 10.6 32.4 1.7 844.7 43.8
100:150 kg 300:400 kg 161 264 17.9 32.8 2.7 855.1 69.4
100:150 kg 400:500 kg 117 297 16.1 27.9 6.2 727.4 161.9
100:150 kg 500:600 kg 2 331 28.3 37.5 2.1 977.7 55.3
150:200 kg 200:300 kg 70 248 21.7 27.0 5.0 703.9 129.1
150:200 kg 300:400 kg 558 288 19.4 26.1 4.9 680.5 128.3
150:200 kg 400:500 kg 176 318 18.7 26.4 5.7 688.3 149.7
150:200 kg 500:600 kg 8 378 23.0 34.5 5.8 899.5 152.0
200:250 kg 100:200 kg 3 217 12.7 21.7 6.8 565.8 177.5
200:250 kg 200:300 kg 171 267 20.4 25.4 5.1 662.2 133.2
200:250 kg 300:400 kg 838 302 17.7 24.1 4.8 628.3 125.7
200:250 kg 400:500 kg 64 339 17.1 28.1 5.5 732.6 142.4
200:250 kg 500:600 kg 7 399 18.4 36.0 3.0 938.6 78.2
250:300 kg 100:200 kg 17 249 18.9 22.6 5.6 589.2 145.7
250:300 kg 200:300 kg 319 290 17.6 22.2 4.9 578.8 128.3
250:300 kg 300:400 kg 238 316 20.9 23.7 5.6 617.9 145.7
250:300 kg 400:500 kg 7 353 15.5 26.4 3.6 688.3 92.6
300:350 kg 100:200 kg 25 268 21.3 18.4 5.7 479.7 148.3
300:350 kg 200:300 kg 137 304 17.8 19.4 5.2 505.8 135.6
300:350 kg 300:400 kg 30 345 23.7 23.1 5.5 602.3 142.4

1 Cost cost (grass + labor) per month × time on grass; cost of grass + labor was considered as $6 per week; the
costs values were obtained with the communication of end users.

4. Discussion

The aim of the present study was to develop a statistical model to predict the CW
of grass-fed beef cattle at different stages before slaughter by using data collected at the
farm level. The key predictor of the CW in the models was the BW of the animal in the
corresponding stage before slaughter. The results of the study revealed the potential for
predicting the CW of grazing beef cattle with higher accuracy several months prior to
slaughter. Furthermore, the findings demonstrated a good level of accuracy in predicting
the CW even at the weaning stage.

The forecasting model developed in this study is beneficial for grazing beef producers
in Australia in various ways; for instance, early forecasts may be useful in changing
husbandry practices if needed to improve the growth of the cattle, such as the provision of
supplementation. Further, these forecasts can be used to identify the appropriate market for
cattle; for example, if unlikely to yield a high CW, those cattle may be sold into a feedlot or
to live export. Forecasts of the CW may be also useful for predicting cash flow, identifying
when management practices should take place, e.g., ensuring withholding periods on drugs
are appropriate and optimizing freight transport such as grouping the appropriate number
of cattle on a truck. Moreover, fulfilling customer orders in a timely manner and mitigating
unnecessary paddock costs can be considered as further benefits of early forecasts of the
CW. It is worth noting that forecasts prior to one month are less beneficial across the four
scenarios examined in the study.

To the best of our knowledge, the present statistical methodology to predict the CW
is a novel application to the northern Australian beef industry. The approach used in this
study to predict the CW is applicable not only to Australia, but also to beef production
systems in other tropical regions worldwide that record essential cattle data. Given that
over half of global beef production occurs in tropical regions, with Bos indicus and its
derivatives being the predominant breeds, the implications of these findings extend to a
significant portion of the global beef industry [23].

In the literature, only a limited number of studies have specifically focused on predict-
ing the CW of beef cattle. A study conducted in Spain [8] utilized zoometric measurements
of beef cattle to predict the CW before six different stages of slaughter starting from 30 days
to 150 days. The predictive errors (MAPE) of their models for one month and three months
before slaughter were 3.3% and 3.9%, respectively, whereas the corresponding figures
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for our study were 2.7% and 4.0%, respectively; however, obtaining different zoometric
measurements of animals is a difficult task compared to weighing the cattle. Hence, the
approach proposed in our study is more straightforward, because collecting BW data of
cattle is becoming more common on many farms. For instance, innovations in technol-
ogy, such as walk-over weighing and Optiweigh methods are used in Australia currently.
A recent study [4] conducted in Brazil used regression (multiple linear regression) and
machine learning methods (random forest and multilayer neural networks) to predict the
CW. This study incorporated a wide range of factors, including environmental conditions,
economic considerations, nutritional aspects, and other relevant variables to predict the
CW. However, the forecast error reported in the Brazil study was comparably larger and
varied between 30 and 50 kg; instead, the prediction error of our models, which uses a few
readily available factors, did not exceed 21 kg even with the forecasts before 9–10 months
of slaughter.

An interesting finding of our study is the association found between the WW and the
CW of cattle. We found that early weaners (100–150 kg) were associated with significantly
lower CW. Further, they were kept longer in the grass to reach higher body weights. As a
result of poor growth, cattle weaned at lower weights resulted in notably higher costs from
post-weaning to slaughter. Even though early weaning is generally undertaken to optimize
the reproductive performance of the mother [24], it can negatively impact profitability
unless the growth of early weaners is carefully monitored to obtain higher weight gain
during the post-weaning period. Sorting cattle by the weight category at weaning may
assist farmers in better monitoring and maintaining animals’ weight gains, for instance, to
decide targeted nutrition to meet specific weight gain goals. Such proactive actions may
result in reduced costs and higher yields.

In the present study, two widely used methods—the MLR and the BRT—were con-
sidered to compare the forecasting outcomes. The BRT method is generally identified as a
more robust method in forecasting, particularly with data consisting of complex non-linear
predictor–response associations [13,18]. Nevertheless, this study did not find superior
performance in the BRT over the MLR, which points to an absence of complex non-linear
associations across the variables considered in the study. BRT models also provide flexible
graphical tools to better understand predictor–response associations.

A major drawback identified in the study across the current management practices
in the northern beef industry is the lack of regularly recorded body weight (BW) data
at different stages of a cattle’s life. For instance, recording BW at least every six months
starting from birth to slaughter would be highly beneficial for understanding cattle growth
patterns, providing insights into improving the profitability of the beef supply chain.
Studies [5,25,26] discussed that monitoring the growth and weight of cattle is significantly
associated with the meat quality, profitability, and well-being of the cattle. The findings
of our study have also shown the importance of weight data, particularly in forecasting,
and highlight potential benefits for improved cattle monitoring and management practices.
Nevertheless, current management systems face challenges in obtaining frequent BW
measurements of cattle due to labor and time constraints. One potential solution for this
problem involves employing previously discussed walk-over-weighing methods at regular
intervals [27].

It is worth noting that certain factors such as birth weight [28], age at weaning [29], age
at slaughter [30], records of diseases [31], and vaccination history [32] may potentially be
associated with the growth performance of the cattle and thereby with the CW. Moreover,
the quality of forage plays a pivotal role in determining the CW. Numerous studies have
demonstrated a linear association between the nutritional content of forage and the live
weight gain of beef cattle [33]. Nevertheless, these factors were not available to us in
the study. Further, the current model with forecasts prior to one month of slaughter
still has 16–18% of unexplained variation in the CW, which may be attributable to other
characteristics; one key factor in this circumstance could be the weight loss of the cattle
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occurring closer to slaughter due to stress-related factors, such as changing environments
and climates, loading to trucks, and separation from herds [34].

We used approximated weights for some cattle to assess the predictive performance
before three months of slaughter; even though these values can be slightly different from
actual weight values, effects arising from such errors were low to negligible. Further in
the cost analysis, we only considered the grass and labor cost, but there are other small
costs such as freight, repair, and maintenance that were not available for us in the study;
nevertheless, these costs do not vary across cattle and apply to the entire herd.

The properties considered in the present study have mostly similar management
practices related to grazing beef cattle, and hence no significant effects were observed in
cattle across properties. While the impacts of predictive variables may vary depending on
different practices, the methods and models presented in our study are widely applicable
as previously discussed. In our future work, the models will be expanded for the southern
beef industry in Australia; the southern industry differs from the northern beef industry
related to different factors, such as management practices, diverse climate, and breed. In
the present study, no impact from the weaning season was found likely due to the fact that
many northern breeds are tropically adapted. Conversely, we expect significant seasonal
impacts on the CW and other predictors from different breeds in the southern industry.

5. Conclusions

We showed that the carcass weight of grazing beef cattle can be predicted with better
accuracy at different stages before slaughter by using readily available farm-level data. In
summary, the findings of this study demonstrate that detailed cattle data can be better
utilized to support decision-making in the beef supply chain with the use of statistical mod-
elling, resulting in improved production outcomes. The statistical methodology developed
in this study is directly applicable to grazing beef producers in Northern Australia. By
offering actionable insights at the farm level, the adoption of this methodology is expected
to enhance the productivity and profitability within the northern beef industry.
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Abbreviations

ADG average daily gain
BRT boosted regression trees
CW carcass weight
GSW weight gain since weaning to each stage before slaughter
MAE mean absolute error
MAPE mean absolute percentage error
MLR multiple linear regression
RMSE root mean squared error
TSW time since weaning to each stage before slaughter
WW weaning weight
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