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Simple Summary: Monitoring vitals sign such as the respiratory rate, heart rate, or temperature is of
high importance to medical and biological research. Using camera-based methods, we monitored
the respiratory rate of unconstrained laboratory rats by analyzing the visible breathing movement in
the thorax. We hope this is a further step to enabling the non-invasive monitoring of rodent in an
experimental environment without using implanted sensors, reducing the stress and pain within an
otherwise unneeded operation.

Abstract: Animal research has always been crucial for various medical and scientific breakthroughs,
providing information on disease mechanisms, genetic predisposition to diseases, and pharmaco-
logical treatment. However, the use of animals in medical research is a source of great controversy
and ongoing debate in modern science. To ensure a high level of bioethics, new guidelines have
been adopted by the EU, implementing the 3R principles to replace animal testing wherever possible,
reduce the number of animals per experiment, and refine procedures to minimize stress and pain.
Supporting these guidelines, this article proposes an improved approach for unobtrusive, continuous,
and automated monitoring of the respiratory rate of laboratory rats. It uses the cyclical expansion
and contraction of the rats’ thorax/abdominal region to determine this physiological parameter. In
contrast to previous work, the focus is on unconstrained animals, which requires the algorithms to be
especially robust to motion artifacts. To test the feasibility of the proposed approach, video material
of multiple rats was recorded and evaluated. High agreement was obtained between RGB imaging
and the reference method (respiratory rate derived from electrocardiography), which was reflected in
a relative error of 5.46%. The current work shows that camera-based technologies are promising and
relevant alternatives for monitoring the respiratory rate of unconstrained rats, contributing to the
development of new alternatives for a continuous and objective assessment of animal welfare, and
hereby guiding the way to modern and bioethical research.

Keywords: respiration; automatic monitoring; rodent; rat; animal welfare; refinement; 3R; laboratory
animals; camera-based monitoring; breathing

1. Introduction

Animal research has played a major role in many scientific breakthroughs for centuries,
even though it has been a source of various ethical debates [1]. This caused governing
bodies to implement laws and other regulatory means to safeguard animals in experimental
settings. The European Union (EU) requires member states by its Directive 2010/63/EU [2]
to apply the 3R principles proposed by Russell et al. [3] in 1959. These principles refer
to reduction, refinement and replacement as a mean to minimize the use of animals in
scientific studies, while maximizing animal welfare. The term reduction refers to reducing
the number of animals used in a study, while still providing the scientific significance
needed. Refinement refers to minimizing the pain, suffering, or distress introduced by
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animal trials. This can be achieved by using less invasive methods or improving the living
conditions in terms of housing and care. Replacement refers to finding alternatives to
animal testing which are similar or more effective, thus making the animal trial needless.
Feasible alternatives could be using cell cultures, simulations, or human studies.

However, reality shows that not all experiments with living animals can be replaced.
In 2019, the EU reported that 10.61 million animals were still used in animal trials [4],
showing the great need for further refinement methods. Of these, 72% were used for
research, 17% to satisfy regulatory requirements and another 6% for routine production.
Most of the animals were used to enhance the understanding of the nervous system or
finding treatments for diseases such as cancer. Until today, research has not been able to
find adequate replacements for these kinds of animal testing, which makes the refinement
and improvement of these experiments crucial.

Due to their high anatomical, physiological, and genetic similarity to humans, while
being small and easy to maintain, mice and other rodents are most used in research [5]
and represent about half of all trial animals [4]. Cardiovascular, pharmacological, and
toxicological research requires vital parameters such as the heart rate (HR) or respiratory
rate (RR) to assess a given theory. Currently, implanted radio transponders are the only
methods to monitor these for unrestrained mice or rats [6]. This can be ECG sensors,
piezoelectric sensors, implanted catheter, or other implanted devices. Despite its ability
to generate highly precise data, there are several significant drawbacks associated with
this methodology. First, it requires an initial implantation surgery, which is invasive and
time-consuming. The recovery time for animals to regain their normal circadian rhythms
can take up to five to seven days, according to Braga and Burmeister [7]. Second, the
implanted device may cause distress and discomfort, especially in small species. Braga and
Burmeister also noted that the implanted device could have adverse physiological effects,
such as an increased volume in abdominal viscera, which can potentially compromise the
movement of the diaphragm and alter breathing patterns in terms of depth and rhythm.
Therefore, there is a great need for contactless and unobtrusive monitoring of techniques,
which, on the one hand, permit continuously monitoring the laboratory animals and on the
other hand obtaining objective parameters for welfare assessment.

There are numerous examples of the application of RR monitoring for rodents, in-
cluding toxicity studies in drug development [8], anesthesia monitoring [9], respiratory
disease research [10], stress and pain assessment [11], sleep research [12] and many more.
Ohtani et al. [8] compared the analgesic and respiratory effects of norbuprenorphine (NBN)
and buprenorphine (BN), finding that BN had a lower concentration for an analgesic effect
without inducing respiratory depression compared to NBN. Tsukamoto et al. [9] studied the
effect of multiple anesthetics on vital signs such as temperature, heart rate, respiratory rate
and SP02. Card et al. [10] identified the differences in respiratory physiology depending on
the sex, using a seral model of respiratory diseases. Schöner et al. [11] found out that an
increased respiratory rate might occur in a model of PTSD in rats. Mendelson et al. [12]
investigated sleep apnea in rats.

Over the years, numerous researchers have explored monitoring RR remotely. In 2019,
Kunczik et al. [13] showed that the monitoring of mice and rats can be achieved using an
RGB camera while undergoing anesthesia. In this approach, RR is measured by tracking
the movement of the abdominal areas, while HR is measured using a DistancePPG, as
proposed by Kumar et al. [14]. Another approach was presented by Takahashi et al. [15],
using the camera recordings of mice from below a see-through acrylic glass, monitoring
and tracking hairless areas. Both approaches lack the possibility of long-term monitoring
as we would like to see, due to the animals being restrained or in a specialized cage with
no possibility of litter or enrichment materials such as nesting pads.

The current paper presents an improved approach for respiratory rate monitoring in ro-
dents by using visual imaging from above. In contrast to other publications that use videos
of anaesthetized animals to estimate this vital parameter, our focus here is to demonstrate
the capability of the presented algorithm in extracting this from moving animals.
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2. Materials and Methods

The proposed algorithm is a multi-step approach for monitoring respiration in an
RGB video of unconstrained rats, as illustrated in Figure 1. This paragraph provides a brief
overview of all steps, which will be described in detail in the following sections, along
with the experimental protocol. During the first step, segmentation masks of images are
computed from video recordings using a deep learning algorithm to detect the respiration-
associated movement. In the second step, the preprocessing of the segmented regions
is carried out. In the third step, the signal is extracted. Last, the actual computation of
the respiratory rate is carried out. As a reference, respiration signals were extracted from
electrocardiography (ECG) data and used to compare the camera-based signal.
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Figure 1. Key stages involved in extracting the RR from the RGB videos of rats: Video preprocessing
(segmentation, preprocessing), signal extraction, and RR calculation.

2.1. Experimental Protocol

The data used in this work are part of a larger study that adhered to the 3R principles
(replacement, refinement and reduction) to ensure the ethical treatment of animals. The
study followed the approved experimental protocol of the governmental animal care and
used the institution “Regierung von Oberbayern” (Germany, ROB-55.2-2532.Vet_02-16-105),
and was conducted in compliance with the German Animal Welfare Law. All animals
received humane care in accordance with the principles outlined in the “Guide for the Care
and Use of Laboratory Animals” (8th edition, NIH Publication, 2011, USA).

Three male albino Sprague Dawley rats (360–375 g; 9–11 weeks; Envigo, Horst,
The Netherlands) were included in this study. They were subjected to an operation
in which ECG and EEG transponders (DSI-HDX02, Data Sciences International, Inc.,
New Brighton, MN, USA) were implanted. A detailed description about the surgical
procedure was already published in 2019 by Seiffert et al. [16]. Prior to and following
the operation, the rats were placed into an open glass cage, measuring approximately
0.30 m × 0.30 m, and recorded using two cameras (Cam1 and Cam2). The cage was bedded
with a white textile sheet and no additional illumination was provided. The cameras were
mounted above the cage on a tripod at about 1.5 m above the bottom of the cage. The
distance was selected so that both cameras could acquire the complete bottom of the cage.
The experimental setup is depicted in Figure 2.

Cam1 is a long-wave infrared thermal camera (Infratec VarioCAM HD head 820,
InfraTec GmbH, Dresden, Germany) with a resolution of 640 × 480 pixels, a thermal
resolution of up to 20 mK, a frame rate of 60 FPS and a dynamic range of 16 bit. Cam2 is an
RGB camera (Allied Vision Mako G-223C, Allied Vision Technologies GmbH, Stadtrova,
Germany) with a resolution of 1368 × 640 pixels and a framerate of 60 FPS, resulting in
18,000 images for a 5 min recording per modality.

The experiment was conducted over five consecutive days, as shown in the experiment
schedule displayed in Figure 3. At each measurement time (MT), two 5 min videos were
recorded with a parallel ECG recording:

• Day 1: One video recording was obtained for establishing a baseline and the rats
allowed to acclimate to the environment. For this recording, no ECG was recorded.
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• Day 2: This was surgery day where the EEG and ECG transponders were implanted.
Two recordings with all three rats were carried out: the first directly after the surgical
procedure and the second approximately two hours later.

• Days 3 to 5 followed a similar schedule, with recordings starting at 9 am, 11 am, 1 pm
and 3 pm. On day 5, only the first two video acquisitions were made.
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Figure 3. Experiment schedule: The blue bars correspond to the five measurement days. The black
bars indicate the times at which the recordings were made.

For every recording, the ECG transponder had to be activated using a magnetic
switch. Shortly afterward, the camera recordings were started simultaneously for both
cameras. After 5 min of recording time, the cameras switched off automatically, followed
by activating the magnetic switch again to turn off the transponder. This allowed for the
recording of 13 videos for each rat, 5 min each, totaling to 39 videos (in total 195 min of
video recordings). All videos were captured in raw format, without any compression.
During the recording, the rats were allowed to move freely, resulting in occasional sections
of heavy movements, while most of the videos are made up of minor movements such as
sniffing, and fur care is present in all of the videos.

After the experiment, the animals were euthanized with an intraperitoneal sodium
pentobarbital injection (600 mg/kg Narcoren®, Merial GmbH, Hallbergmoos, Germany).

2.2. Segmentation

For assessing the heart rate, a target RoI must be defined. In contrast to previous
works, which mostly monitored anesthetized animals using on the upper abdomen as the
region for signal extraction [8], our goal was to monitor unconstrained animals. This means
that the RoI must be detected and tracked over time. Thus, the RoI was set to cover the
entire chest and abdomen, and was bounded by the connecting line between both upper
and lower legs, which can be recorded by cameras when they are mounted above the cage.
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In 2019, Wu et al. [17] published the detectron2 framework for image segmentation
and object detection, which was customized for segmenting the RoI in rats in this work.
Such supervised deep learning approaches need annotated image data before the training
process of the neural network can be started. Therefore, images from our study (described
in detail in Section 2.1) were selected, such that 50 images that were automatically extracted
from each of the 39 recorded videos, beginning with images with little-to-no movement and
then randomly sampling until the required number (50) was reached. These images were
annotated using LabelMe, a project created by the MIT Computer Science and Artificial
Intelligence Laboratory (Cambridge, MA, USA), which provides an annotation tool to build
image databases for computer vision research. An example of an annotation can be seen
in Figure 4, which was applied in RGB images. Along with the detectron2 framework,
Wu et al. [17] also published pretrained models on various datasets. To begin training our
network, the Mask-RCNN-R50-FPN architecture, was chosen, which was pretrained on the
CoCo-Dataset [18] (referenced as model-ID: 137849600). Mask-R-CNN-R50-FPN references
a deep learning model, for instance segmentation. As a backbone, a ResNet-50 is used,
consisting of 50 convolutional layers to extract the features from the input image. These
features are then used in a feature pyramid network (FPN) to build a multi-scale feature
pyramid for improved object detection and segmentation.
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Figure 4. Annotated rat images: The red area corresponds to the desired RoI (thorax and abdomen),
which should be automatically identified and segmented.

To adapt Mask-R-CNN R50 FPN to the current data, minor changes were made to its
architecture. Appendix A provides a complete set of the changed parameters of the model
architecture. The feature extraction layers of the network were frozen, and the number of
RoI-heads was set to 128 to enable a batch size of 8 during training. Training was performed
using a GeForce RTX 2080 Super (NVIDIA Corporation, Santa Clara, CA, USA). To evaluate
the neural network properly, the dataset was divided into three parts (training, validation,
test), with each part containing data from a single rat. For each rat, a network was trained
on the 650 annotated images per rat, validated on a second rat, and tested on a third rat.
This is done to ensure that the neural network had not been exposed to any images of the
animals included in the test data, and thus prevent any bias during the evaluation caused by
any animal-specific visible features. During training, several augmentations were applied
(see Appendix B for a complete set of augmentations). Applying the segmentation network
to each frame of the video results in two different outputs: a binary mask, and a certainty
score between 0 and 1. Detections which are exceeding a score 0.99 were defined as valid
segmentations.

2.3. Preprocessing and Signal Extraction

For an RR assessment from the segmented images, several steps of preprocessing were
performed. Based upon the binary masks, from the segmentation step, the centers of the
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mass were computed, and each image was cropped to the extent of the bounding box of the
segmentation mask, after nullifying every pixel outside the segmented area. Subsequent to
obtaining all masked images of a given video, the images were shifted so that the centers of
mass are overlapping for each frame in a video. The preliminary respiration signal R was
obtained by computing the area of the segmentation in each image. To extract the signal, R
was denoised using a linear denoising algorithm according to Nowara et al. [19], which
was originally developed for denoising remote photoplethysmography signals, but should
be also applicable for respiration signals due to a similar temporal profile.

The noise signals include the linear detrended center-of-mass coordinates over time
for both X- and Y-coordinates, as well as their first derivatives. The algorithm uses
the disturbed signal R projected onto the noise subspace Q to compute the denoised

signal Z with Z = R − QQT

QT Q R. Furthermore, the resulting signal was preprocessed with
a second-order Butterworth bandpass filter, with a lower and upper cutoff frequency of
1 Hz (60 breaths/min) and 3.3 Hz (200 breaths/min), respectively, and clipped wherever
the gradient exceeded 1.5. The clipped values were then filled by interpolating the two
neighboring values of the respiration signal.

2.4. RR Computation

Once the filtered respiration signal has been acquired, a peak detection is carried out
to determine both in- and exhale cycles, which can later be used to compute the RR. An
algorithm developed for electrical impedance tomography (EIT) by Khodadad et al. [20]
was adapted for this purpose. First, the signal was detrended by subtracting the means
of a best-fit line, and zero crossings in the signal were found. Second, a separate search
for extreme points at both rising and falling zero crossings was performed. Third, an
outlier detection algorithm was applied to identify the valid peaks based on their dis-
tance from the neighboring peaks. Once the peaks have been computed, the instanta-
neous RR (fRR) can be calculated as the inverse of the distance between two consecu-
tive peaks, using the equation: fRR = 60/dpeak, where dpeak corresponds to the number
of sampling points divided by the sampling rate and the respiration signal fRR is given
in breaths per minute (breaths/min). Figure 5 illustrates the algorithm, showing two
signals an ECG-derived-respiration signal at the top and the corresponding computed RR
at the bottom.

Animals 2023, 13, x FOR PEER REVIEW 7 of 16 
 

 

Figure 5. Example of ECG-derived respiration signal and the rate extracted from a rat ECG; (a) EDR 

signal: The blue line corresponds to the EDR signal, on which the red dots represent the maximum 

and the yellow dots the minimum of the breathing signal. (b) The EDR rate is the corresponding 

instantaneous respiratory rate, with its mean value denoted as a dashed line. 

2.5. ECG Analysis and ECG-Derived Respiration 

The results were validated using ECG as the ground truth, since the radio tran-

sponder employed in the animal trial allowed for the extraction of this parameter. ECG-

derived respiration (EDR) describes the process of extracting the respiration signal from 

a given ECG signal. However, to obtain an EDR signal of interest, the processing of the 

raw ECG signal was required. 

Several methods were proposed for peak detection in an ECG signal, including by 

Pan et al. [21], Vuong et al. [22], Kalidas et al. [23], Koka et al. [24] and Makowski et al. 

[25]. Most of these methods focus on detecting the QRS complexes of a given ECG as it is 

the most prominent feature. The peak detection method used was proposed by Makowski 

et al. [25], who used the gradients’ steepness to detect QRS complexes, followed by search-

ing the local maxima within the detected region to find the R-peak. Customization was 

required to enable the computation of the HR of rats, as their ECGs have a morphology 

that is vastly different from that of humans. The schematic ECG of a normal human is 

shown in Figure 6, along with the recorded an ECG of a rat. 

 
(a) (b) 

Figure 6. Heartbeat in ECG signals; (a) Schematic diagram of an ECG of a human. (b) Showcase of 

individual heart beats by ECG of the captured rats in the experiment. 

QRS 

Comple

P 

Q 

R 

S 

T 

(a) 

(b) 

Figure 5. Example of ECG-derived respiration signal and the rate extracted from a rat ECG; (a) EDR
signal: The blue line corresponds to the EDR signal, on which the red dots represent the maximum
and the yellow dots the minimum of the breathing signal. (b) The EDR rate is the corresponding
instantaneous respiratory rate, with its mean value denoted as a dashed line.
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2.5. ECG Analysis and ECG-Derived Respiration

The results were validated using ECG as the ground truth, since the radio transponder
employed in the animal trial allowed for the extraction of this parameter. ECG-derived
respiration (EDR) describes the process of extracting the respiration signal from a given
ECG signal. However, to obtain an EDR signal of interest, the processing of the raw ECG
signal was required.

Several methods were proposed for peak detection in an ECG signal, including by
Pan et al. [21], Vuong et al. [22], Kalidas et al. [23], Koka et al. [24] and Makowski et al. [25].
Most of these methods focus on detecting the QRS complexes of a given ECG as it is the most
prominent feature. The peak detection method used was proposed by Makowski et al. [25],
who used the gradients’ steepness to detect QRS complexes, followed by searching the
local maxima within the detected region to find the R-peak. Customization was required to
enable the computation of the HR of rats, as their ECGs have a morphology that is vastly
different from that of humans. The schematic ECG of a normal human is shown in Figure 6,
along with the recorded an ECG of a rat.
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Figure 6. Heartbeat in ECG signals; (a) Schematic diagram of an ECG of a human. (b) Showcase of
individual heart beats by ECG of the captured rats in the experiment.

The customization involves filtering the signal with a Butterworth low-pass filter, with
a cutoff at 4 Hz, and discarding possible artifacts resulting from a 50 Hz powerline frequency.
To apply the peak detection method to rats, the kernel size for smoothing and averaging
was reduced by factors of two and four (smoothwindow = 0.05 s; avgwindow = 0.1875 s),
respectively. Additionally, the minimum delay between two different peaks was set to 0.1 s.
The threshold for discarding a QRS complex because it is too short was set to 0.1 s. An
exemplary detection of the resulting R-peaks can be seen in Figure 7.
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Many methods have been proposed to extract the EDR from an ECG signal. Sarkar et al. [26],
Charlton et al. [27] and van Gent et al. [28] used simple filtering to reconstruct the respira-
tory signal, while Kontaxis et al. [29] computed the respiratory signal from the difference
between the maximum and the minimum slopes in the QRS complex. Langley et al. [30],
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in turn, computed the EDR signal by applying principal component analysis of the global
amplitude variation of the QRS complex. To receive the respiratory signal from our data,
the approach from van Gent et al. [28] was used, as it was most robust, especially when
used on noisy signals. An EDR signal computed with this method can be seen in Figure 8,
along with its respiratory rate. Figure 9, in turn, shows the spectrum of a processed ECG
spectrum, clearly showing the respiratory rate and the first harmonic.
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Figure 8. ECG-derived respiration in rats. (a) ECG-derived respiratory waveform after applying the
approach proposed by van Gent et al. [22]. (b) Respiratory rate of the animal computed according to
Khodadad et al. [23].
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Figure 9. Frequency spectrum of a rat’s respiratory signal. The highest peak visible at around 100
breaths/min corresponds to the respiratory rate of the animal. Additionally noticeable is the first
harmonic, around approximately 200 breaths/min.

3. Results
3.1. Reference Respiratory Rate

Figure 10 shows the RR derived from the ECG for each measurement time point, as
well as a box plot diagram showing the variation of the ECG-derived RR for each animal.
Looking at the results, it can be observed that the RR ranges from 79.08 breaths/min to
98.87 breaths/min. On average, 92.09 breaths/min was recorded, with a standard deviation
of 4.23 breaths/min. A detailed list of respiratory rates for all measurement time points is
reported in Table 1.
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Figure 10. EDR results: (a) Illustration of the temporal aspect of the RR by grouping measurements
for the boxplot by measurement time. (b) Boxplot of all measurements split by the different animals.

Table 1. RR from camera-based respiration compared to the EDR. For each day and time of the
measurement, the table shows the EDR rate, the camera-based RR (Rrcam), as average over the whole
measurement. Additionally, the resulting relative error and the absolute error are listed. The last row
lists the average of all recorded values.

Day MT Rat ID Mean EDR
[Breaths/min]

Mean RRcam
[Breaths/min] Rel. Error [%] Abs. Error

[Breaths/min]

Day 2 MT3 R1 96.28 99.56 3.41 3.28
R2 79.08 98.63 24.72 19.55
R3 91.34 103.23 13.02 11.89

MT4 R1 94.05 80.29 14.63 13.76
R2 85.55 97.73 14.24 12.18
R3 94.97 96.83 1.96 1.86

Day 3 MT1 R1 94.61 92.88 1.83 1.73
R2 90.69 82.72 8.79 7.97
R3 89.70 91.45 1.95 1.75

MT2 R1 96.28 91.64 4.82 4.64
R2 93.45 90.37 3.30 3.08
R3 89.27 87.77 1.68 1.5

MT3 R1 98.73 99,01 0.28 0.28
R2 96.32 103.9 7.87 7.58
R3 90.27 91.15 0.97 0.88

MT4 R1 98.87 89.18 9.80 9.69
R2 92.41 88.86 3.84 3.55
R3 90.60 95.97 5.93 5.37

Day 4 MT1 R1 97.40 90.03 7.57 7.37
R2 89.8 87.75 2.33 2.09
R3 90.34 98.22 8.72 7.88

MT2 R1 92.79 92.75 0.04 0.04
R2 92.74 91.49 1.35 1.25
R3 90.55 92.68 2.35 2.13

MT3 R1 97.29 97.04 0.26 0.25
R2 84.8 93.48 10.24 8.68
R3 91.48 97.03 6.07 5.55

MT4 R1 89.24 88.32 1.03 0.92
R2 89.74 87.41 2.60 2.33
R3 87.79 93.49 6.49 5.7

Day 5 MT1 R1 98.03 93.67 4.45 4.36
R2 93.69 86.25 7.94 7.44
R3 93.89 98.2 4.59 4.31

MT2 R1 93.86 91.41 2.61 2.45
R2 85.3 86.09 0.93 0.79
R3 93.95 89.95 4.26 4

Ø 92.09 92.67 5.47 4.94
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3.2. Segmentation

The neural networks were trained on the images of one rat each, over the time of
100,000 iterations, thus leaving the images of the other two rats for validation and testing.
Throughout the training process, the weights of the neural network were saved periodically
every 10,000 steps and validated on the validation set, as is shown in Figure 11. The figure
is split into three parts, showing the validation losses, intersection over union (IoU) for
the detected bounding boxes and the IoU of the segmentation masks for each of the three
trained networks over time. At the end of the training process, the network-weights with
the smallest validation loss were selected for the evaluation of the test set.
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Figure 11. Validation loss (a) and intersection-over-union (b,c) for the trained networks. Blue: Network
trained on R1, validated on R2, tested on R3. Green: Network trained on R2, validated on R1, tested
on R2. Pink: Network trained on R3, validated on R1, tested on R2.

Intersection over union is defined as the area of overlap divided by the area of union
IoU = Aintersection/Aunion. Overall, the segmentation on the test data resulted in an average
IoU of 87.75% ± 5.04% for the segmentation masks, and an IoU of 82.52% ± 6.69% for the
bounding boxes. Even though the networks were trained on different animals, only small
differences can be seen in the IoU scores. Table 2 shows the detailed results for the two
IoUs, along with the subjective certainty score computed by the network for all three rats,
along with the average.

Table 2. IoU segmentation algorithm: The table shows the results for all three trained networks,
Rat ID denotes the rat on which the evaluation was performed. N describes the number of images
which were annotated for the corresponding rat and used for testing. IoU is the percentage of the
intersection of both annotated and detected RoIs, once computed with the rectangle (IoU Box) around
the RoI, and once with the pixelwise-mask of the segmented area (IoU-Mask). The certainty score is
the computed certainty that a rat was found in the segmented area.

Rat ID N IoU Box [%] IoU Mask [%] Certainty Score [%]

R1 637 82.27 ± 7.73 86.86 ± 6.18 99.84 ± 0.40
R2 654 82.85 ± 6.01 88.28 ± 4.61 99.90 ± 0.26
R3 659 82.42 ± 6.37 88.09 ± 4.39 99.80 ± 1.69

Ø 650 82.52 ± 6.69 87.75 ± 5.04 99.85 ± 0.79

3.3. Respiratory Rate

In the left part of Figure 12, the EDR (blue) can be seen together with the RR computed
from the RGB videos (orange) for each measurement time point. In turn, the right part
is showing the variation of the EDR and camera-based RR for each animal. In addition,
Table 1 shows the RR for each video that was analyzed and an average RR of the reference.
As can be observed in the table, the relative error averaged 5.47%, while the absolute error
was 4.95 breaths/min.
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Figure 12. EDR ref vs. camera-based RR: (a) RR over time for each MT and its variation as a boxplot. EDR
rate is shown in blue, while the orange curve is the camera-based RR. (b) Boxplot of all results grouped by
animal and modularity. R1-EDR is the EDR rate of R1 and R1-CAM is the camera-based RR for R1.

4. Discussion

The aim of this research paper is to assess the feasibility, and accuracy of monitoring
RR in unrestrained, awake laboratory rats using visible imaging. This is of particular
interest considering that previous approaches have only been performed with sedated
animals, which does not correspond to reality for most respiratory monitoring applications.
Drug development and toxicity studies could especially benefit from the possibility of
long-term respiration monitoring, allowing for the assessment of the side-effects with only
little interaction with the animal care takeover, while also minimizing the cost and labor for
telemetry implants and evaluation. Furthermore, recovery after transmitter implantation
would not be needed. Anesthesia monitoring could also profit from the proposed methods,
even though it is not of much benefit to replace the current monitoring devices during an
operation, as automatic respiration monitoring could be used to ensure a safe recovery from
anesthesia without the need of care-takers to be present. For most respiratory diseases, it is
necessary to monitor the actual breaths rather than the respiratory rate. Since the outliers
are removed to enable monitoring with movement present in the signal, our methods
might not be suitable for signal extraction when they are later used for the classification
of complex breathing patterns. Stress and pain assessment might be one of the most
interesting perspectives for this method, since pain and stress assessment is becoming more
and more important in animal experiments.

The results confirm the successful performance of the segmentation and tracking
algorithm; it accurately identified the thorax and abdominal area as the RoI and effectively
tracked them, achieving an IoU of the segmentation mask of 87.74% on average. Unfortu-
nately, due to the absence of enrichments in the open glass cage, image occlusion testing
could not be carried out. However, based on the inherent nature of the algorithm, we have
strong confidence in its ability to perform effectively, even when the animal is occluded
and reappears in the image. The respiratory waveforms were extracted by leveraging the
cyclical changes in the size of the area of the RoI caused by the expansion and contraction
of the thorax during the respiratory cycle. Despite the presence of challenging conditions,
such as motion artifacts caused by the animal’s movement in the cage, the RR could still be
extracted with a high degree of accuracy from the videos, with the absolute error averaging
4.95 breaths/min, providing a fist proof of the concept which has to be validated further in
future studies with more animals. Nevertheless, the error could be further minimized by
reducing the overall coverage. In this work, all available video sequences were used for
RR estimation and evaluation. Therefore, animal movement leads to movement artifacts
and thus higher errors between the reference and RR computed from visual imaging. Addi-
tionally, an ECG-derived RR rate is not the most accurate ground truth as it is very prone
to motion artifacts. Other sensors, such as an implanted subcutaneous piezoelectric, may
provide a more accurate reference. Varon et al. [31] also reported that EDR is quite prone to
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errors from noisy ECG signals. This is caused by faulty peak detection propagating into
the respiration signal. Nonetheless, alternative gold-standard methods, such as respiratory
belt transducers, require the animal to be restrained during the RR measurements.

There are other studies in the literature that aimed to extract the respiratory wave-
form/RR from rats noninvasively. Wang et al. [32] and Guan et al. [33] used humidity
sensors to evaluate the RR of rodents, but both methods require the animal to be restrained.
These studies primarily focus on describing the sensors themselves and the extracted
respiratory waveform, but lack comprehensive investigations and comparisons with a
reference/ground truth. Esquivelzeta Rabell et al. [34] and Kurnikova et al. [35] used
camera-based methods to monitor respiration, namely thermal and visual imaging. In
these studies, the focus was not on the RR itself, but rather the waveform of the respiratory
curve extracted from the temperature variation around the nostrils, to analyze exploratory
sniffing. As a result, the parameter RR was not calculated further. The algorithms used
required a close-up view of the animal’s nostrils, with minimal motion involved. In 2019,
Kunczik et al. [13] extracted the RR from six anesthetized laboratory rats. The results
have demonstrated excellent algorithm performance, with a root-mean-square error of
0.32 breaths/min. It is worth highlighting that the animals were under anesthesia during
the study, and thus the influence of motion artifacts on the algorithm performance was
not tested. In a study by Anishchenko et al. [36], the RR of laboratory rats during sleep
was remotely measured using a radar, webcam and thermal camera, yet no reference for
validation purposes was acquired, which makes a direct comparison with the present
approach unfeasible.

While the tests in this study were conducted on rats, the algorithm developed can
potentially be applied to other rodents such as mice and hamsters, though retraining the
tracking algorithm would be necessary, along with minor adjustments, such as modifying
the parameters of the temporal filter to adapt to the expected RR range of the specific
animal species.

In relation to the presented study, there are some limitations that should be discussed
as they may have influenced the results. First, the similar colors of animals and background
(both white) might have impaired the algorithm and most probably decreased the overall
accuracy, as the contrast between both is very low. Moreover, when considering the
approach for denoising the respiration signal, it solely focuses on the general relative
movements and does not consider movements such as scratching or sniffing during the
denoising process, which could potentially affect the accuracy of the results. Inaccuracies
of the tracking might have also contributed to more noise in the respiration signal, and
thus a smaller signal-to-noise ratio. To further enhance the results, a dynamic assessment
of the exposure time setting for the camera depending on the illumination of the RoI
could be beneficial. This assessment would involve adjusting the exposure time based
on the RoI rather than the overall lighting environment. By tailoring the exposure time
to the specific RoI, more accurate and precise measurements could be obtained, leading
to improved outcomes. Another possibility to improve the results, and thus the overall
accuracy, would be to decrease the coverage of the algorithm by considering only those
videos sequences in the extraction where no movement is present. However, this would
imply that continuous monitoring would no longer be possible. In this context, the question
arises as to whether continuous monitoring is really indispensable in laboratory research or
whether fewer measurements, for example one measurement per hour, would be sufficient.
Obtaining a short video sequence (e.g., 10–20 s) of motionless animals could potentially be
adequate for this purpose. This could potentially minimize the monitoring burden, while
still providing sufficient data for analysis, depending on the specific research objectives and
requirements. Further investigation and validation would be necessary to determine the
optimal frequency and duration of measurements for the specific research context. Another
potential limitation is that the current segmentation algorithm is not real-time capable,
but this could be improved with a different architecture. If continuous monitoring is not
necessary, then the algorithm does not necessarily need to be real-time capable.
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Overall, the proposed algorithm can evaluate the RR of unconstrained rodents properly.
Further studies will focus on the application of the developed methods in a home cage
scenario, to assess the feasibility of continuous long-term monitoring and the robustness
over a wider range of respiratory rates.

5. Conclusions

Until today, it was not possible to replace animal research entirely in medical and bio-
logical science. Therefore, the need for the further refinement of experiments is significant.
Vitals signs, such as the respiratory rate, are mostly monitored by using ECG implants.
Until now, camera-based methods only allowed for monitoring the respiratory rate in
anesthetized animals, thus a new method was proposed for unconstrained and moving
animals. The respiratory rate was analyzed through the cyclical expansion and contraction
of the rats’ thorax/abdominal region. Compared to the EDR, a relative error of 5.47% could
be achieved, while the IoU of the segmentation mask of the thorax region averaged 87.74%.

Improvements and further experiments are still needed to evaluate the performance of
the algorithm when animals are occluded; furthermore, a higher range of respiratory rates
is needed to evaluate the robustness of this approach. This could enable a fully automatic
camera-based monitoring of rodents, reducing the need for implanted transmitters and
thereby surgeries in animal experiments.
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Appendix A

Table A1. Network parameters. Table of parameters, changed from default parameters in the
Detectron 2 RGB model.

Parameter Value Description

INPUT.MIN SIZE TRAIN (480, 512, 544, 576, 608, 640) Size of short edge for rescale
INPUT.MIN SIZE TEST (480) Size of short edge for rescale

SOLVER.IMS PER BATCH 8 Batch size
SOLVER.BASE LR 0.0001 Learning rate

SOLVER.MAX ITER 100,000 Number of training iterations
MODEL.ROI HEADS.BATCH

SIZE PER IMAGE 128 Number of regions of interest
heads

MODEL.SEM SEG
HEAD.LOSS WEIGHT 2 Weight for segmentation loss

MODEL.ROI HEADS.NUM
CLASSES 1 Number of classes



Animals 2023, 13, 1901 14 of 15

Appendix B

Table A2. Image augmentations. Table of applied image augmentations in Detectron 2.

Augmentation

1. RandomBrightness (intensity min = 0.5, intensity max = 2)
2. RandomContrast (intensity min = 0.5, intensity max = 2)
3. RandomSaturation (intensity min = 0.5, intensity max = 2)
4. RandomFlip (prob = 0.5)
5. RandomFlip (prob = 0.5, horizontal=False, vertical=True)
6. RandomExtent (scale range = (0.8, 1.2), shift range = (0.05, 0.05))
7. RandomRotation (expand = False, angle = [−15, 15], interp = BILINEAR)

8. ResizeShortestEdge (short edge length = INPUT.MIN SIZE TRAIN,
sample style = “choice”, max size = 1368)
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