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Simple Summary: Microsporidia are obligatory intracellular fungi that cause infection in a broad
variety of eukaryotes. However, there are few epidemiological studies on microsporidia in red
pandas in China. Therefore, we conducted an epidemiological survey of microsporidia in red
pandas from six zoos in Sichuan Province, China. In 198 fecal samples, Enterocytozoon bieneusi
was detected in 24 samples (12.1%), while Encephalitozoon spp. was detected in 8 fecal samples
(4.0%). Further analysis revealed the presence of genotypes of E. bieneusi with zoonotic concerns.
Interestingly, we also observed that the infection rate of microsporidia was higher in semi-free red
pandas with more frequent contact with other animals or humans. This is the first report on the
occurrence and genotypes of E. bieneusi and Encephalitozoon spp. in red pandas in Sichuan Province,
China, contributing to our understanding of the worldwide distribution and genetic diversity of
this pathogen.

Abstract: Enterocytozoon bieneusi and Encephalitozoon spp. are microsporidian pathogens with zoonotic
potential that pose significant public health concerns. To ascertain the occurrence and genotypes
of E. bieneusi and Encephalitozoon spp., we used nested PCR to amplify the internal transcribed
spacer (ITS) gene and DNA sequencing to analyze 198 fecal samples from red pandas from 6 zoos
in China. The total rate of microsporidial infection was 15.7% (31/198), with 12.1% (24/198), 1.0%
(2/198), 2.0% (4/198) and 1.0% (2/198) for infection rate of E. bieneusi, Encephalitozoon cuniculi,
Encephalitozoon intestinalis and Encephalitozoon hellem, respectively. One red panda was detected
positive for a mixed infection (E. bieneusi and E. intestinalis). Red pandas living in semi-free conditions
are more likely to be infected with microsporidia (χ2 = 6.212, df = 1, p < 0.05). Three known (SC02, D,
and PL2) and one novel (SCR1) genotypes of E. bieneusi were found. Three genotypes of E. bieneusi
(SC02, D, SCR1) were grouped into group 1 with public health importance, while genotype PL2
formed a separate clade associated with group 2. These findings suggest that red pandas may serve
as a host reservoir for zoonotic microsporidia, potentially allowing transmission from red pandas to
humans and other animals.

Keywords: Enterocytozoon bieneusi; Encephalitozoon cuniculi; Encephalitozoon intestinalis; Encephalitozoon hellem;
red panda
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1. Introduction

Microsporidia are obligate intracellular parasites with more than 1700 species and
have been described as opportunistic agents, widely parasitizing arthropods, birds, mam-
mals, and humans [1]. Among the 15 pathogenic microsporidia, Enterocytozoon bieneusi
and Encephalitozoon spp. are recognized as the main causes of microsporidiosis in animals
and humans [2]. The fecal-oral route is considered to be the major route of microsporidia
transmission, such as ingestion of water and food contaminated with spores. The majority
of reports of asymptomatic microsporidial infections occur in immunocompetent individ-
uals. However, when it comes to immunocompromised individuals, such as those with
HIV/AIDS, B-cell acute lymphoblastic lymphoma, multiple myeloma, and organ transplant
recipients, microsporidia are often seen as the primary pathogen causing their chronic
diarrhea [1]. Noteworthily, microsporidial keratoconjunctivitis has been increasingly re-
ported in healthy populations [3].

The spores of microsporidia are so tiny (1–10 µm) that they are difficult to identify by
traditional morphological observation, which prompted the detection and genotyping of
microsporidia by PCR amplification of the ribosomal RNA (rRNA) internal transcribed
spacer (ITS) gene [4,5]. Among these four microsporidia (E. bieneusi and Encephalitozoon
spp.), E. bieneusi is widely prevalent worldwide. Currently, there are over 600 different
E. bieneusi genotypes, classified into 11 groups based on phylogenetic analyses of the
ITS gene [6]. Genotypes belonging to groups 1 and 2 (CD2, CAF1, BEB6, and J) are
considered potentially zoonotic, while groups 3–11 are mainly host-specific and non-
hazardous [7,8]. A new group of E. bieneusi denominated Group 2-like has been proposed
previously [9]. Sequence analysis of the ITS gene has so far revealed four genotypes of
Encephalitozoon cuniculi (I, II, III, and IV) and three genotypes of Encephalitozoon hellem (1A,
2, and 3) [10,11]. There is no evidence of intraspecific polymorphisms in the ITS gene of
Encephalitozoon intestinalis in any study [12,13].

The red panda is considered an endangered species by the International Union for Con-
servation of Nature, while in China, they are classified as a Category II-protected species
under the Wild Animal Protection Law [14]. Over the past few years, epidemiological stud-
ies on microsporidia in China have been carried out in both humans and animals, including
AIDS patients, livestock, wildlife, and pets [15–18]. Although E. bieneusi infections in red
pandas from wildlife parks and wildlife rescue and breeding centers were first reported
in China in 2015 [19], the occurrence and genetic characterization of four microsporidian
species in red pandas remain poorly studied. E. bieneusi genotypes belonging to zoonotic
group 2 have been reported in the past in red pandas [19,20], suggesting that red pandas
could be a source of zoonotic microsporidia. Previous studies have reported that parasitic
infections are currently the most significant threat to the survival of pandas [21]. Therefore,
epidemiological surveys of microsporidia in red pandas have an important role in their
conservation. The aim of this study was to identify the incidence and genotyping of four
microsporidia species in red pandas in Sichuan Province, southwest China.

2. Materials and Methods
2.1. Ethics Statement

The institutional animal ethics committee at China’s Sichuan Agricultural University
gave its approval to this investigation. Every experiment was carried out in conformity
with the ethical standards and legal requirements. All stool samples were sampled with
the permission of six zoos.

2.2. Sample Collection

In total, 198 stool specimens of red pandas were sampled between July and December
2020 at 6 sites in southwestern China, including Chengdu Research Base of Giant Panda
Breeding (CDRBGPB), Panda Valley (PV), Wolong China Panda Garden Shenshuping Base
(WLCPGSB), Chengdu Zoo (CDZ), Bifengxia Zoo (BFXZ), and Sanlang Resort (SLR) in
Sichuan Province (Figure 1). Of these, 85 fecal samples were collected from 85 captive
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red pandas, and 113 fecal samples were collected from 113 semi-free red pandas. All red
pandas included in the study were in good health and showed no abnormal clinical signs
at the time of fecal sampling. Most red pandas were bred in captivity, while a small portion
came from wild rescue efforts. The keepers from the six locations were informed of the
fecal collection process in advance. Each red panda was sampled only once to collect its
feces. All samples were collected with sterile gloves within 24 h after defecation by keepers,
immediately transported to the clinic veterinary laboratory of the Sichuan Agricultural
University with ice bags, and then stored at −20 ◦C until DNA isolation. All red pandas
were studied in two groups, depending on their range of motion and level of human contact.
Group i captive represents the red pandas that are kept in cages and do not contact tourists
except for the keepers. The zoo carefully regulates the diet of captive red pandas, sourcing
their food exclusively from the market and prohibiting tourists from feeding them. Group
ii semi-free has a high level of human contact, as red pandas are free to move around within
a certain area and have access to other animals or visitors. Semi-free captive red pandas
have close contact with visitors without strict fences or personnel to restrict visitors from
entering. Despite the presence of designated areas and fences between different animals,
they have the opportunity to venture into other animals’ exclusive zones. Additionally,
other animals, such as primates, are known to enter the red panda activity area. They have
housing accommodations with unrestricted access. Semi-free red pandas are partially fed
by keepers, but they also receive food from visitors.
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Figure 1. Specific locations for collecting fecal specimens from red pandas in Sichuan province,
southwest China. BFXZ: Bifengxia Zoo; CDRBGPB: Chengdu Research Base of Giant Panda Breeding;
CDZ: Chengdu Zoo; PV: Panda Valley; SLR: Sanlang Resort; WLCPGSB: Wolong China Panda Garden
Shenshuping Base.

2.3. DNA Isolation and PCR Amplification

The stool sample was suspended in distilled water and mixed thoroughly. The suspen-
sion was then filtered through a 250-µm metal mesh filter. The filtrate was transferred to a
50-mL centrifuge tube and centrifuged at 3000 rpm for 5 minutes. The supernatant was
removed, and the sediment was used for DNA extraction. Genomic DNA was isolated from
around 200 mg of processed feces using the E.Z.N.A.® stool DNA Kit (OMEGA, Biotek Inc.,
Norcross, GA, USA). Prior to PCR amplification, the isolated DNA was stored at −20 ◦C.
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The partial ribosomal ITS region of E. bieneusi was amplified using nested PCR to determine
the genotypes of E. bieneusi, as reported previously [22]. The multi-locus sequence typing
(MLST) tool at MS1, MS3, MS4, and MS7 loci was further performed to characterize ITS-
positive samples [23]. Encephalitozoon spp. were identified by amplification of an ITS rRNA
gene of ~300 bp [24]. All primers, cycling conditions, and amplicon sizes are described
in Supplementary Table S1. All PCR tests were conducted using a 25 µL reaction mixture
containing 12.5 µL of Premix Taq™ (TaKaRa Bio, Otsu, Japan), 8.5 µL of sterilized ddH2O,
1 µL of each primer, and 2 µL of genomic DNA. Both positive and negative controls were
used in each PCR run. All PCR reaction products were electrophoresed on a 1.5% agarose
gel containing TS-GelRed (Tsingke Biotechnology Co., Ltd., Beijing, China) and visualized
under ultraviolet light.

2.4. Sequencing and Phylogenetic Analysis

Positive PCR products were delivered to Tsingke Biotechnology Co., Ltd. (Chengdu,
China) for bidirectional sequencing using an ABIPRISMTM 3730XL DNA Analyzer. Align-
ment and correction of bidirectional sequencing results were done using ClustalW (https://
www.ebi.ac.uk/Tools/msa/clustalw2/, accessed on 16 February 2022). A comparison of the
corrected sequences with reference sequences in GenBank (https://blast.ncbi.nlm.nih.gov,
accessed on 16 February 2022) was performed to determine the species and genotypes
of microsporidia using the nucleotide Basic Local Alignment Search Tool (BLAST) pro-
gram. Phylogenetic trees were constructed using neighbor-joining trees based on the
evolutionary distances calculated by the Kimura-2-parameter model in the MEGA11 soft-
ware (https://megasoftware.net, accessed on 17 February 2022). The dependability of the
tree was evaluated using the bootstrap method with 1000 repetitions.

2.5. Statistics Analyses

To analyze differences in prevalence among regions and activity pattern in this study,
the Chi-square test was used with SPSS version 22.0 (IBM Armonk Corp., Armonk, NY,
USA). Statistical significance was defined as p-values < 0.05.

2.6. Nucleotide Sequence Accession Numbers

The ITS sequences of E. bieneusi have been deposited in the GenBank database and
assigned accession numbers MW880217-MW880236 and MW880238-MW880241. Addi-
tionally, the nucleotide sequences of the MS1, MS3, MS4, and MS7 loci of E. bieneusi have
also been assigned GenBank database accession numbers MW922590-MW922622. The
sequences of Encephalitozoon spp. have been deposited in GenBank with accession numbers
OM731710-OM731713 and OM738338-OM738341.

3. Results
3.1. Prevalence of Microsporidia in Fecal Samples

The ITS genes of 4 microsporidian species were amplified in 198 fecal specimens, of
which 31 (15.7%) red pandas were positive for microsporidia infection. Further, 24 red pan-
das (12.1%) were detected to be infected with E. bieneusi, (Table 1). The overall prevalence
of Encephalitozoon spp. in red pandas was 4.0% (8/198), with 2.0% (4/198) in E. intestinalis
and 1.0% (2/198) in both E. cuniculi and E. hellem. Moreover, one sample was confirmed to
be co-infected with E. bieneusi and E. intestinalis.

Positive samples for microsporidia were detected in all regions, with the prevalence
of microsporidia ranging from 0 to 24%, but the differences between regions were not
significant (χ2 = 7.566, df = 5, p > 0.05). More red pandas in Group ii (21.2%) had a higher
infection rate with microsporidia compared to Group i (8.2%) (χ2 = 6.212, df = 1, p < 0.05).

https://www.ebi.ac.uk/Tools/msa/clustalw2/
https://www.ebi.ac.uk/Tools/msa/clustalw2/
https://blast.ncbi.nlm.nih.gov
https://megasoftware.net
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Table 1. Prevalence and genotypic characterization of microsporidia in red pandas in six regions
of Sichuan Province. CDZ: Chengdu Zoo; WLCPGSB: Wolong China Panda Garden Shenshuping
Base; SLR: Sanlang Resort; BFXZ: Bifengxia Zoo; CDRBGPB: Chengdu Research Base of Giant Panda
Breeding; PV: Panda Valley. Group i and group ii represent captive red pandas and semi-free-ranging
red pandas, respectively.

Region Group (i/ii)
No. of

Positive/No. of
Samples (%)

PCR Positive
E. bieneusi Encephalitozoon spp. Mixed Infection

No. (%) Genotype (n) No. (%) No. (%)

CDZ i 2/11 (18.2) 1 (9.1) D 1 (9.0) 0
WLCPGSB i 1/18 (5.6) 0 (0.0) 0 1 (5.6) 0

SLR i 3/42 (7.1) 3 (7.1) SCR1 0 0
BFXZ i 1/14 (7.1) 1 (7.1) D 0 0

CDRBGPB ii 22/100 (22.0) 18 (18.0) PL2 4 (4.0) 0
PV ii 2/13 (15.4) 1 (7.7) SC02 2 (15.4) 1 (7.7)

Total 31/198 (15.7) 24 (12.1) D, SCR1, PL2, SC02 8/198 (4.0) 1 (0.5)

3.2. Genotypes of E. bieneusi and Homology Comparison

Four distinct genotypes of E. bieneusi, including three known (D, PL2, and SC02)
and one new (SCR1) genotype, were identified. The genotypes D, PL2, and SC02 were
identical with the reference sequences KY950534, MT497891, and KU852476 from GenBank,
respectively. The homology between the new genotype SCR1 and genotype FJL (MK357781)
was 98.6% with two single nucleotide polymorphisms (Supplementary Figure S1). Of these,
genotype PL2 (75.0%, n = 18) was the most prevalent, followed by genotype SCR1 (12.5%,
n = 3) and SC02 (8.3%, n = 2), while genotype D was found in only one sample (Table 1).

Homology comparison of four E. intestinalis (OM738338-OM738341) revealed varying
degrees of similarity with E. intestinalis isolates with 100% query cover value, ranging from
86.21% to 93.29% with isolates reported in immunocompromised patients (KP735194 and
KP735187), and 87.30% with an isolate reported in pigeons (AB897501). The E. cuniculi
detected in red pandas from CDRBGPB (OM731710 and OM731711) showed the highest
homology with E. cuniculi isolates reported in Gorilla beringei beringei in Rwanda (94.85%,
KJ577583) with a query cover value of 98%, and Lagurus lagurus in Czech Republic (95.53%,
KJ469979) with a query cover value of 95.53%, respectively. E. hellem from CDRBGPB
(OM731712) and CDZ (OM731713) shared homology with E. hellem isolates, with similarities
of 93.10% (CP075157) and 87.25% (KM459507), respectively.

3.3. Phylogenetic Relationship of E. bieneusi and Encephalitozoon spp.

The obtained sequences representing the 4 distinct genotypes of E. bieneusi were
analyzed phylogenetically along with sequences that represent the 11 known groups of
E. bieneusi (Figure 2). The isolates with three genotypes (SC02, D, SCR1) in this study
belonged to group 1. Genotype PL2 formed a separate branch known as the group 2-like,
which is associated with group 2. The phylogenetic analysis of the obtained sequences of
Encephalitozoon spp. was also performed (Figure 3).

3.4. Multi-Locus Sequence Typing of E. bieneusi

To improve the reliability of the characterization of E. bieneusi subtypes isolated from
red pandas, the 24 ITS-positive samples were analyzed more thoroughly by MLST at 4 loci
(MS1, MS3, MS4, and MS7). At least 62.5% of samples were successfully genotyped at one
locus. Further, 25.0% (6/24), 45.8% (11/24), 16.7% (4/24), and 50.0% (12/24) of ITS-positive
samples were successfully amplified at four loci (Table 2). In total, three haplotypes at all
four loci and three different multi-locus genotypes (MLGs) were identified. All three MLGs
(MLG1, MLG2, and MLG3) were discovered in E. bieneusi with genotype PL2.
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Table 2. Multi-locus genotypes of Enterocytozoon bieneusi isolated from red pandas in this study.
CDRBGPB: Chengdu Research Base of Giant Panda Breeding; SLR: Sanlang Resort; BFXZ: Bifengxia
Zoo; PV: Panda Valley.

Sampling Sites ITS Genotype Multi-Locus Genotypes
MS1 MS3 MS4 MS7 MLGs

CDRBGPB

PL2 - Type 1 - Type 1 -
PL2 - Type 1 - Type 1 -
PL2 Type 1 Type 1 Type 1 Type 1 MLG1
PL2 Type 1 Type 1 - - -
PL2 - - - Type 1 -
PL2 Type 1 - Type 1 Type 1 -
PL2 - Type 1 - - -
PL2 - Type 1 - Type 1 -
PL2 - Type 1 - Type 1 -
PL2 Type 1 Type 1 Type 2 Type 1 MLG2
PL2 Type 1 - - Type 1 -
PL2 Type 1 Type 1 Type 3 Type 1 MLG3

SLR SCR1 - Type 1 - Type 1 -
BFXZ D - Type 2 - - -

PV SC02 - - - Type 1 -

4. Discussion

Although waterborne transmission is thought to be the primary route of microsporidia
infection in humans and animals, the possible routes and sources of transmission are still not
entirely defined. In recent years, more studies have been done on animal microsporidiosis
to determine the source of the disease and evaluate zoonotic risk, but less on the red panda
as a potential host. Herein, we performed the initial epidemiological survey of E. bieneusi
and Encephalitozoon spp. and demonstrated the presence and genotypic characteristics of
microsporidian species in red pandas in Sichuan Province, Southwest China.

This study revealed that infection rates of microsporidia are significantly higher in
semi-free red pandas than in captive red pandas (χ2 = 6.212, df = 1, p < 0.05). This trend is
consistent with an earlier study that has shown a higher prevalence of Cryptosporidium spp.
in captive and semi-wild orangutans who experienced a higher frequency of human contact
compared to wild orangutans [25]. Similarly, Md. Robiul Karim et al. also found that
captive non-human primates had a significantly higher prevalence of E. bieneusi compared
to their free-ranging counterparts [26]. Differences in microsporidia infection rates may be
attributed to environmental and host factors, including frequency of contact with humans or
other animals, living and health conditions, and other underlying stressors. These findings
may indicate that the safety of semi-free roaming behavior needs to be further reconsidered
due to the potential for zoonotic transmission. However, due to the incomplete collection
of sample information in this study, the age and gender data for certain red pandas could
not be obtained, preventing an accurate analysis of the relationship between prevalence
and gender and age.

So far, epidemiological investigations of E. bieneusi have been carried out on humans,
pets, wildlife, and domestic animals [2,27]. The results showed that the total infection rate
of E. bieneusi in red pandas was 12.1%, which is close to the previous report of red pandas
in Shaanxi province, northwestern China (11.1–13.9%) [19]. In this study, the prevalence of
E. bieneusi in red pandas at Chengdu Zoo and Bifengxia Zoo was 7.1% and 9.1%, respectively,
both lower than previously reported rates (10.6% and 29.7%) [20]. Differences in E. bieneusi
prevalence between studies may be influenced by geographic region, sample size, sampling
time, animal health status, activity patterns, and population density [28–30]. The raccoon
(Procyon lotor), as the closest phylogenetic relationship animal with the red panda, had a
higher prevalence of E. bieneusi (27.3% and 60.0%) [22,31,32]. This may be due to differences
in lifestyle or diet, as raccoons are scavengers adapted to survive by consuming a wide
range of food, while red pandas primarily feed on bamboo and fruit as herbivores. In
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addition, the overall prevalence of E. bieneusi in red pandas was lower compared to other
species commonly found in Chinese zoos with a sampling size of more than 20 (Table 3).

Table 3. The prevalence of Enterocytozoon bieneusi in other species of Chinese zoos. Only studies with
a sampling size of more than 20 were included.

Family Species No. of Tested No. of Positive (%) Reference

Ailuridae Red pandas (Ailurus fulgens) 198 24 (12.1%) This study

Cercopithecidae Golden snub-nosed monkey
(Cercopithecus kandti) 160 74 (46.2%) [33]

Rhesus macaque (Macaca mulatta) 411 116 (28.2%) [34]
Hamadryas baboon (Papio hamadryas) 21 6 (28.6%) [35]

Cynomolgus monkey (Macaca fascicularis) 62 42 (67.7%) [26]
Cebidae Squirrel monkey (Saimiri sp.) 43 17 (39.5%) [35]

Black-capped capuchin (Cebus apella) 22 6 (27.3%) [35]
Ursidae Giant panda (Ailuropoda melanoleuca) 46 4 (8.7%) [19]

Asiatic black bears (Ursus thibetanus) 106 29 (27.4%) [36]
Bovidae Golden takin (Budorcas taxicolor bedfordi) 191 28 (14.7%) [37]
Anatidae Whooper swans (Cygnus cygnus) 467 35 (7.5%) [38]

Moschidae Musk deer (Moschus berezovskii) 223 38 (17.0%) [39]
Lemuridae Ring-tailed lemur (Lemur catta) 45 11 (24.0%) [35]
Hominidae Bornean orangutan (Pongo pygmaeus) 23 4 (17.4%) [35]

Macropodidae Red kangaroo (Macropus rufus) 38 14 (36.8%) [40]

The four genotypes observed in this study were completely different from those
previously identified in red pandas in Shaanxi and Sichuan Provinces (QYLP1-3, LGLP1-2,
CHB1) [19,20]. PL2, the predominant genotype, was only found in masked palm civets
(Paguma larvata) and formed a clade related to Group 2 in the phylogenetic analysis [9]. All
positive isolates of E. bieneusi from Chengdu Research Base of Giant Panda Breeding were
genotyped as PL2, suggesting that the red panda may be a specific host for genotype PL2.
The high prevalence of E. bieneusi in this location suggests that interspecific transmission
of E. bieneusi may occur, possibly due to semi-free roaming behavior. However, cross-
species transmission could also occur here, as other animals also have a semi-free roaming
lifestyle, which increases contact between different species, such as primates and red
pandas. Further studies are required to determine whether the semi-free activity pattern
increases the potential risk of E. bieneusi transmission within and across species in red panda
populations. The genotype SC02 has been found in a broad variety of species in China,
such as captive giant pandas, pet birds, pet rabbits, and captive black bears [15,41–43].
Here, the first SC02 genotype was identified in red pandas. E. bieneusi with genotype D
was detected in a red panda from both Chengdu Zoo and Bifengxia Zoo. Interestingly,
genotype D was also found in other animals in the abovementioned zoos, suggesting the
possibility of cross-species transmission of E. bieneusi [20]. However, genotype D has been
reported to be detected in humans and wild animals, which indicates a potential zoonotic
risk [2,44]. The three genotypes (D, SCR1, and SC02) found in the present study belong
to group 1 with zoonotic concerns [45]. Although there are no studies showing human
infection with animal-derived E. bieneusi, close human-animal contact is considered to be a
risk factor for microsporidial infection [46]. A study carried out in Peru reported possible
transmission between humans and guinea pigs. The same genotype of E. bieneusi (Peru16)
was identified in a 2-year-old child and guinea pig in the same household [47]. MLST was
utilized as a widely accepted genotyping tool to further highlight the genetic variations of
E. bieneusi in the present study. We found three MLGs (MLG1, MLG2, and MLG3) at the
same sampling site, all of which were PL2 genotypes, suggesting that E. bieneusi isolates in
PL2 genotypes have high genetic diversity.

Encephalitozoon spp. was detected in 8 out of the 198 (4.0%) fecal samples from
four locations. While the primers used in this study were not specific to Encephalitozoon
spp., we identified these eight sequences as Encephalitozoon spp. based on their high
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similarity and evolutionary relationships. In this case, specific primers should be used
to further identify E. cuniculi, E. hellem and E. intestinalis. Four pairs of primers have
been described for the identification of E. intestinalis, which amplify the SSU rRNA gene
region, including V1/Si500 [48], 3/3 [49], SINTF1/SINTR [50], and V1/Sep1 [51]. The
primers ECUNF/ECUNR and EHELF/EHELR were also used for specific identification of
E. cuniculi and E. hellem, respectively [52,53]. In this study, due to the lack of specificity of
the primers used for these microsporidian species, we found that the genetic diversity of
E. hellem and E. cuniculi could not be assessed based on the ITS sequences. Therefore, to
determine intraspecific variation within E. hellem and E. cuniculi, another protocol based on
the analysis of the polar tube protein gene should be used [54,55]. Encephalitozoon spp. has
been reported in wild, livestock and companion animals worldwide [56–59]. This study
presents, to the best of our knowledge, the initial data on zoonotic Encephalitozoon spp.
in red pandas in China. Red pandas may acquire microsporidia in their intestinal tract
from various sources such as water, vegetables, and fruits, as prior research has indicated
that fresh produce can harbor potentially viable microsporidia spores that pose a risk of
infection [60]. Future studies should be conducted to analyze the correlation between
microsporidia in food and water sources and microsporidia in the gut of red pandas to
further elucidate the potential transmission pathways.

5. Conclusions

This study demonstrates the occurrence of E. bieneusi infections and Encephalitozoon
spp. in red pandas. The total infection rate for microsporidia was 15.7%. The semi-free
activity pattern may be a potential risk factor for microsporidia infection in red pandas.
Four genotypes of E. bieneusi were identified, including three known genotypes (SC02,
D, and PL2) and one novel genotype (SCR1), with PL2 being the predominant genotype
in red pandas. Three MLGs of E. bieneusi were identified in red pandas. The results of
this study provide data on the occurrence and molecular characteristics of E. bieneusi and
Encephalitozoon spp. in red pandas in Sichuan province, China, and contribute to our
knowledge of the genetic diversity and transmission of microsporidia in red pandas.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ani13111864/s1, Figure S1: Sequence variation in the ITS region
between the new SCR1 genotype and the known FJL genotype of Enterocytozoon bieneusi; Table S1:
All primers, annealing temperatures and amplicon sizes of PCR amplification. References [22–24] are
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