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Simple Summary: Myotis pilosus is a globally “Vulnerable” species. As the only known fishing bat in
East Asia, M. pilosus is mainly distributed in China, and the protection of Chinese M. pilosus is of great
significance for its persistence. Therefore, we collected species distribution data of M. pilosus from
China and applied MaxEnt to assess its habitat suitability, recognize the important environmental
variables, predict future distribution changes, and identify the potential future climate refugia. The
results showed that temperature and precipitation, especially the minimum temperature, could be
important environmental factors affecting the distribution of M. pilosus. The current suitable habitats
of M. pilosus are located primarily in southwest and southeast China. Under future climate scenarios,
the suitable habitats were expected to expand and shift toward higher latitudes and altitudes, but the
area of predicted suitable habitats that M. pilosus could disperse and successfully colonize will be
reduced in 2050 and 2070. Thus, five regions were identified as potential future climate refugia and
suggested to be under priority protection and long-term monitoring. This study provides helpful
information on the possible distribution changes of M. pilosus under current and future climate
scenarios, which is important for the conservation of this vulnerable piscivorous bat.

Abstract: Climate change and biodiversity loss are two severe challenges that the world is facing.
Studying the distribution shifts of species in response to climate change could provide insights
into long-term conservation and biodiversity maintenance. Myotis pilosus is the only known fishing
bat in East Asia, whereas its population has been decreasing in recent years and it is listed as a
“Vulnerable” species. To assess the impact of climate change on the distribution of M. pilosus, we
obtained 33 M. pilosus occurrence records within China where they are mainly distributed, and
extracted 30 environmental variables. MaxEnt was applied to assess the habitat suitability, recognize
the important environmental variables, predict future distribution changes, and identify the potential
future climate refugia. The prediction result based on eleven dominant environmental variables was
excellent. The Jackknife test showed that the “minimum temperature of coldest month”, “precipitation
of wettest quarter”, “percent tree cover”, and “precipitation of driest month” were the main factors
affecting the distribution of M. pilosus. The current suitable areas were predicted to be mainly located
in southwest and southeast China with a total area of about 160.54 × 104 km2, accounting for 16.72%
of China’s land area. Based on the CCSM4, it was predicted that the future (2050 and 2070) suitable
areas of M. pilosus will expand and shift to high latitudes and altitudes with global warming, but
the area of moderately and highly suitable habitats will be small. Considering the dispersal capacity
of M. pilosus, the area of colonized suitable habitats in 2050 and 2070 was predicted to be only ca.
94 × 104 km2 and 155 × 104 km2, respectively. The central and southern parts of Hainan, southern
Guangdong, central Guizhou, and southern Beijing were identified as potential climate refugia
and could be considered as priority conservation areas for M. pilosus. Thus, we suggest long-term
monitoring of the priority conservation areas, especially the areas at high latitudes and altitudes.
These results contribute to our knowledge of the possible spatial distribution pattern of M. pilosus
under current and future climate scenarios, which is important for the population protection and
habitat management of this special piscivorous bat species.
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1. Introduction

Two severe challenges that the world is facing are climate change and biodiversity
loss [1]. The Living Planet Report 2022, published by the World Wide Fund for Nature,
showed that the relative abundance of global wildlife populations declined by an average
of 69% between 1970 and 2018 [2]. Climate change is likely to be the leading cause of
species loss or extinction over the past century [3]. With the accelerating rate of species
extinction, the conservation of biodiversity has become the focus of biological research [4].

Bats are one of the most sensitive mammals to climate change [5,6]. As the only
mammals with true powered flight, bats are widely distributed, have extremely high
species diversity, and play important roles in ecosystems. However, because of the slow
reproductive rate, high metabolism and longevity, as well as habitat specialization, bats
are particularly sensitive to the effects of climate change [7–9]. According to the study of
Tadarida teniotis, years of drought largely impaired the reproduction of T. teniotis in the
Mediterranean region and led to a significant reduction in pregnant or lactating females and
juveniles [10]. A similar situation was reported by a study of vespertilionid bats in western
North America; when the temperature was greater than average and the precipitation
was less than average, the reproductive output of bat populations reduced [11]. The
study of Myotis daubentonii found that the increased rainfall could also lead to reduced
reproductive success, especially when extreme weather events (such as excessive summer
rainfall) occur [12]. These studies indicated that climate change affects bat populations,
while the specific impacts may vary by species and environmental factors. To date, over
16% of bats are listed as threatened species in the IUCN Red List [13], and more than half of
the bat populations have declined dramatically due to climate change, habitat degradation,
habitat destruction, etc. [14].

Rickett’s big-footed bat, Myotis pilosus, is mainly distributed in China and very scat-
tered in Laos and Vietnam [13]. This species is the only known fishing bat in East Asia [15],
preying on both insects and freshwater fishes [16–19], and has a relatively large body size
with well-developed feet and claws [16]. Myotis pilosus generally inhabits forested hills,
mountains, and wetlands [19–21], and forages from the water surface of nearby reservoirs,
ponds, and rivers [17,22,23]. In addition, hibernation was observed in the Beijing pop-
ulation of this species from November to mid-March of the following year [17]. Many
researchers focused on this species and made significant progress in understanding the
genetic basis of echolocation system specialization [24], the role of paleoclimate in shaping
the current population genetic structure [25], the reason for dietary niche expansion from
insects to fish [18], and the evolution of taste receptor genes [26]. However, according to
the IUCN Red List, M. pilosus is globally “Vulnerable” and its population is declining year
by year [19]. For species conservation and ongoing research, there is an urgent need to
assess the survival potential and habitat suitability of M. pilosus.

Species distribution model (SDM), also known as ecological niche model, is a math-
ematical model based on species existence records and environmental data [27]. SDM
associates the information of species occurrence records and the environmental character-
istics on the occurrence sites, and infers the relationship between species occurrence and
environmental data. Based on the relationship, the SDM can further predict the potential
distribution areas that meet the ecological requirements of the species [28,29]. SDMs play
an important role in conservation biology research [30] and have been widely used to study
species’ responses to climate change [31,32], potential distribution area predictions [33], im-
pacts of local climate change on species richness and community stability [34,35], protected
area delineation for endangered species, and impacts of human activities on endangered
species [36,37]. Among the different species distribution models, maximum entropy mod-
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eling (MaxEnt) is widely used in the study of species suitable habitat assessment because
of its high prediction accuracy and stability [38–41].

In this study, we collected the distribution data of M. pilosus in China and predicted
the potentially suitable habitats using MaxEnt. The aims of this study were: (1) to recognize
important environmental variables that influence the distribution of M. pilosus; (2) to predict
the spatial distribution pattern of M. pilosus under current and future climate scenarios; and
(3) to identify the potential future climate refugia. Our results will demonstrate the likely
distribution of M. pilosus under current and future climate scenarios, help to understand the
effects of environmental factors on the distribution and survival of this species, and provide
fundamental data for the protection and management of this ecologically important species.

2. Materials and Methods
2.1. Species Distribution Data

The distribution data of M. pilosus was collected from the Global Biodiversity Informa-
tion Agency (https://www.gbif.org/, accessed on 10 October 2022), scientific literature,
and field survey data (2006–2022). The distribution points were loaded into ArcGIS v.10.4,
and ENMTools was used to eliminate the autocorrelation and ensure that there was only
one distribution point in each 2.5 min grid cell (about 4.5 km × 4.5 km). Finally, a total of
33 distribution points were kept for subsequent analyses (Figure 1; Table S1).
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No. GS (2019) 1822 downloaded from the Standard Mapping Service website of the Natural 
Figure 1. The distribution points of M. pilosus in China. The map was based on the standard map No.
GS (2019) 1822 downloaded from the Standard Mapping Service website of the Natural Resource of
the People’s Republic of China (http://bzdt.ch.mnr.gov.cn/, accessed on 10 October 2022). The base
map has no modifications, and the geographical coordinate is WGS-84.

2.2. Environmental Variables

A total of 30 environmental variables were collected and divided into six categories:
climate, land cover and vegetation, terrain, light index, human disturbance, and river
(Table 1). Nineteen climate variables were downloaded from the WorldClim database
(http://www.worldclim.org, accessed on 10 October 2022). Percent tree cover and nor-

https://www.gbif.org/
http://bzdt.ch.mnr.gov.cn/
http://www.worldclim.org
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malized vegetation index were downloaded from the Earth Science Data and Information
System Engineering website (https://earthdata.nasa.gov/, accessed on 10 October 2022).
Land use, light index, settlements, roads, and river data were obtained from the Re-
source and Environmental Science and Data Center of the Chinese Academy of Sciences
(https://www.resdc.cn/, accessed on 26 April 2023). Three terrain variables were ex-
tracted from DEM digital elevation data, which was obtained from the Computer Network
Information Center of the Chinese Academy of Sciences and the International Scientific
Data Website (http://www.gscloud.cn/, accessed on 10 October 2022). The human in-
fluence index data was downloaded from Socioeconomic Data and Applications Center
(https://sedac.ciesin.columbia.edu/, accessed on 28 April 2023). Based on the CCSM4
which has a high accuracy for climate simulation and prediction [42], future (2050 and 2070)
climate projections were reconstructed under three representative concentration pathway
(RCP) scenarios, i.e., RCP2.6, RCP4.5, and RCP8.5, with increasing atmospheric concentra-
tions of carbon dioxide and other greenhouse gases and aerosols [43]. The spatial resolution
of all environmental variables was adjusted to 2.5 min by ArcGIS, and the environmental
variables were cut by the Chinese administrative map downloaded from the Standard
Mapping Service website of the Natural Resource of the People’s Republic of China (GS
(2019) 1822, http://bzdt.ch.mnr.gov.cn/, accessed on 10 October 2022). All the maps in this
study represent the authors’ views and are not used for political purposes.

Table 1. Environmental variables used in MaxEnt.

Category of Environmental Variables Environmental Variables Abbreviation

Climate Annual Mean Temperature Bio1
Mean Diurnal Range Bio2

Isothermality Bio3
Temperature Seasonality Bio4

Maximum Temperature of Warmest Month Bio5
Minimum Temperature of Coldest Month Bio6

Temperature Annual Range Bio7
Mean Temperature of Wettest Quarter Bio8
Mean Temperature of Driest Quarter Bio9

Mean Temperature of Warmest Quarter Bio10
Mean Temperature of Coldest Quarter Bio11

Annual Precipitation Bio12
Precipitation of Wettest Month Bio13
Precipitation of Driest Month Bio14

Precipitation Seasonality Bio15
Precipitation of Wettest Quarter Bio16
Precipitation of Driest Quarter Bio17

Precipitation of Warmest Quarter Bio18
Precipitation of Coldest Quarter Bio19

Land cover and vegetation Land Use Type Landuse
Normalized Vegetation Index NDVI

Percent Tree Cover TREE
Terrain Altitude

Slope
Aspect

Light index Night Light Brightness Light
Human disturbance Human Influence Index Hii

Distance to Settlements Dis_set
Distance to Roads Dis_roa

River Distance to Freshwater Dis_riv

The distribution data and environmental variables were imported into MaxEnt v.3.4.4
for simulation. All the simulations were repeated ten times, and the environmental variables
with a contribution rate of less than 1% were eliminated (Table S2). High spatial correlations
between environmental variables will reduce the accuracy of MaxEnt. Thus, ENMTools was

https://earthdata.nasa.gov/
https://www.resdc.cn/
http://www.gscloud.cn/
https://sedac.ciesin.columbia.edu/
http://bzdt.ch.mnr.gov.cn/
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used to examine the correlations between environmental variables. For the environmental
variables with an absolute value of correlation coefficient greater than 0.75, only those with
higher contribution rates were retained (Figure S1). Finally, eleven environmental variables
(Aspect, Bio6, Bio14, Bio15, Bio16, Dis_riv, Dis_set, Landuse, Light, Slope, and TREE) were
kept for subsequent model reconstruction.

2.3. MaxEnt Procedures

Distribution data and eleven environmental variables were imported into MaxEnt.
Seventy-five percent of the distribution data was used for model training, and the remaining
25% was used for testing. The model was repeated ten times, and the replicate runs were
subsampled for model accuracy. The model results were outputted in logistic format.

The Jackknife test was used to evaluate the importance of each environmental variable.
The influence of the environmental variable on the distribution was visualized by an
environmental variable response curve. The accuracy of the model prediction was measured
using AUC (the area value under the receiver operating characteristic curve). The value of
AUC ranged from zero to one. The higher the AUC, the better the model’s performance,
with the prediction considered failed (AUC 0.5–0.6), poor (0.6–0.7), fair (0.7–0.8), good
(0.8–0.9), or excellent (0.9–1) [44].

2.4. Classification of Suitable Habitats

Habitat suitability is typically represented by a value from zero to one, where the
higher the value is, the greater probability of occurrence (p). According to the maximum
test sensitivity plus specificity threshold (MTSPS), the prediction results were divided
into suitable habitat and unsuitable habitat [45]. There were four grades of suitability:
unsuitable habitat (p < MTSPS), lowly suitable habitat (MTSPS < p < 0.5), moderately
suitable habitat (0.5 < p < 0.7), and highly suitable habitat (0.7 < p < 1). The SDM Toolbox
tool was used to calculate the changes in centroid positions under different scenarios.

2.5. Dispersal Simulations

We used the “MigClim” package [46] in R v.4.2.3 [47] to simulate the dispersal of M.
pilosus and incorporate species dispersal limits into the species distribution predictions. The
species’ initial distribution points and habitat suitability maps in 2050 and 2070 generated
from the MaxEnt models were used as input files. The reclassification threshold was
set to 208 according to the MTSPS, and environmental change step number was set to
2. We assumed that our species can disperse once a year, so the dispersal step number
was adjusted to 20. According to Ma et al. [17], M. pilosus can forage about 8 km away
from its roosts, almost twice that of the grid cell used in this analysis, so we modified
the dispersal kernel to c(1.0, 1.0, 0.4, 0.16, 0.06). We defined the maximum long-distance
dispersal distance as 15 km based on the research of congenus species, Myotis bechsteinii
and Myotis emarginatus [48]. The remaining parameters were set using the default values.

2.6. Identification of Climate Refugia

A conservative prediction of future climate refugia was obtained by merging the maps
of highly suitable habitats under current and future climate scenarios. In this study, two
types of refugia were identified [49–51]: (1) in situ refugia, which are the most important
areas for species and highly suitable under all climate scenarios, (2) ex situ refugia, which
are un-highly suitable areas for the species under current climate conditions, but highly
suitable under all future scenarios. Although in situ refugia are crucial for the survival and
reproduction of species, ex situ refugia are important for promoting resilience in the future.
The intersection of climate refugia under three climate scenarios was obtained in 2050 and
2070 and projected to the range of M. pilosus, which was downloaded from the IUCN Red
List (https://www.iucnredlist.org/, accessed on 10 October 2022) to determine the priority
conservation areas.

https://www.iucnredlist.org/


Animals 2023, 13, 1784 6 of 16

3. Results
3.1. Model Verification and Environmental Variables

The average AUC value of ten replications was higher than 0.9 (Figure 2a), indicating
that MaxEnt had an excellent predictive ability and was able to accurately predict the
potential distribution of M. pilosus. According to the results of the Jackknife test (Figure 2b),
minimum temperature of coldest month (Bio6) contributed most to the distribution of M.
pilosus, followed by precipitation of wettest quarter (Bio16), percent tree cover (TREE), and
precipitation of driest month (Bio14), with the cumulative contribution totaling up to 72.4%
(Table 2).
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Table 2. Dominant environmental variables and their contributions.

Environmental Variable Percent Contribution (%) Permutation Importance (%)

Bio6 25.9 52
Bio16 16.1 0.6
TREE 15.8 14.4
Bio14 14.6 0.9
Slope 7.1 10.9
Light 6.5 3.8

Landuse 6.2 1.3
Dis_riv 2.5 6.1
Bio15 2 4.2

Aspect 1.7 1.5
Dis_set 1.6 4.4

The response curves of these four environmental variables show a marked increase
in the occurrence probability with increasing levels of temperature, precipitation, and
tree cover (Figure 3). According to the response curves and MTSPS threshold (0.2806),
M. pilosus prefers habitats with warm temperatures (Bio6 > −8.9 ◦C), humid climates
(Bio14 > 5.33 mm and Bio16 > 384.48 mm), and high percent tree cover (TREE > 5.68%).
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3.2. Current Potential Suitable Habitats

Under the current climatic condition, the suitable habitats of M. pilosus were predicted
to be mainly distributed in southwest and southeast China (Figures 4a and S2), at an
average altitude of 648.19 m, and covered a total area of 160.54 × 104 km2 accounting
for 16.72% of China’s land area (Table 3). The habitats with high, moderate, and low
suitability were predicted to be 5.74 × 104 km2, 34.82 × 104 km2, and 119.98 × 104 km2,
respectively (Table 3). The moderately and highly suitable habitats were predicted to be
mainly distributed in southern coastal areas and Beijing (Figure 4a).

Table 3. Altitude and area of M. pilosus suitable habitats under current and future climate scenarios.

Years Climate
Scenario

Altitude (m) Area (×104 km2)

Average
Altitude

Highly Suitable
Habitats

Moderately
Suitable Habitats

Lowly Suitable
Habitats Total Area Suitable Habitats with

Limited Dispersal

Current - 648.19 5.74 34.82 119.98 160.54 -
2050 RCP2.6 681.94 6.87 39.15 123.55 169.58 94.00

RCP4.5 698.58 6.92 40.71 123.86 171.48 95.00
RCP8.5 692.79 7.49 38.00 124.25 169.74 94.14

2070 RCP2.6 678.94 6.97 41.15 123.35 171.47 154.16
RCP4.5 687.75 7.67 41.14 124.86 173.67 155.16
RCP8.5 708.56 9.70 41.43 127.87 179.00 156.99
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3.3. Future Potential Suitable Habitats

Compared with the current distribution, the average altitude and area of suitable
habitats estimated under the unlimited dispersal assumption were both increased in the
future climate scenarios (Table 3). The most obvious changes were observed under the
RCP8.5 scenario in 2070, with an average altitude increase of 60.37 m and the total area
of suitable habitats expanded by 18.46 × 104 km2 (Figure 4; Table 3). More specifically,
the areas of highly and moderately suitable habitats increased to 9.70 × 104 km2 and
41.43 × 104 km2, and the area of habitats with low suitability markedly expanded with an
increase of 6.58% compared with the current value (Table 3).

However, when considering the dispersal capacity of M. pilosus, the area of colonized
suitable habitats in the future was decreased (Table 3). In 2050, the average area of colonized
suitable habitats under three RCPs was 94.38 × 104 km2 and accounted for 58.78% of the
current suitable habitat area. In 2070, the area of colonized suitable habitats increased
the most to 156.99 × 104 km2 under the RCP8.5 scenario and reduced by 3.55 × 104 km2

compared to the current suitable habitats. Myotis pilosus could disperse to most areas of
southern China, and the northernmost regions could spread to the north of Heibei Province
in 2050 and the center of Liaoning Province in 2070 (Figure 5).
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3.4. Shift in Centroid Position

The current centroid of M. pilosus is located in Anhua County of Hunan Province. In
the future climatic context, the centroid position was predicted to slightly shift to higher
latitudes but was still located in the same county (Figure 6). Under the RCP2.6 climate
scenario, the center of the potential suitable habitat shifted to the northwest by 15.50 km
in 2050, and to the southeast by 15.14 km in 2070. Under the RCP4.5 climate scenario, the
centroid position shifted to the northwest by 23.18 km in 2050, and to the northeast by
25.11 km in 2070. Under the RCP8.5 climate scenario, the centroid position shifted to the
northeast by 25.83 km in 2050, and to the northeast by 20.13 km in 2070.
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3.5. Future Climate Refugia

The area of in situ refugia was slightly reduced with the increase in greenhouse gas
concentrations in 2050 and 2070 (Figure S3; Table 4). The area of ex situ refugia markedly
increased under each scenario; the area under the RCP8.5 scenario was more than one and
a half times that of RCP2.6 in 2050, and almost three times that in 2070 (Figure S3; Table 4).

Table 4. The area of climate refugia under different climate scenarios for M. pilosus.

Climate Scenario
In Situ Refugia Area/(×104 km2) Ex Situ Refugia Area/(×104 km2)

2050 2070 2050 2070

RCP2.6 3.87 4.77 0.86 1.22
RCP4.5 3.80 4.76 0.92 1.74
RCP8.5 3.77 4.51 1.36 3.55

Several large patches of climate refugia were identified as priority conservation areas,
including the central and southern Hainan Island, southern Guangdong Province, central
Guizhou Province, and southern Beijing (Figure 7).
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4. Discussion

Understanding the potential distribution of threatened species under current and
future climate scenarios is critical to biological conservation and strategic planning formu-
lation [52,53]. Occurrence data of threatened species are often insufficient, which hinders
the design of appropriate conservation strategies [54]; thus, the species distribution model
has been widely applied to fill the gap of insufficient data in species conservation. In
this study, MaxEnt was used to predict the potential distribution of M. pilosus based on
the data of 33 occurrence records within China. Although the data set of distribution is
small, our simulation shows a high accuracy (Figure 2a). Similarly, Jiang et al. (2020) used
MaxEnt to predict the suitable habitat of Stachyris nonggangensis with 33 occurrence records
with a model accuracy of 0.99 [55], indicating that the model performed well with limited
data. Silva et al. (2014) used only 17, 25, and 6 occurrence points to estimate the potential
distribution of endemic lizard species Tropidurus montanus, Cercosaura albostrigata, and
Bachia oxyrhina in the Brazilian Cerrado hotspot; the model accuracies were 0.99, 0.94, and
0.99, respectively [56], also suggesting that MaxEnt can obtain accurate simulation results
with small data sets [57,58].

Bats are sensitive to changes in temperature and precipitation, as evidenced by the studies
of Pipistrellus kuhlii in Europe [59] and 17 bat species in China over the past 50 years [60].
Similarly, in this study, we also found that the distribution of M. pilosus was mainly associated
with four main environmental variables, including minimum temperature, percent tree cover,
and minimum and maximum precipitation. Moreover, the minimum temperature was found
to be the most important environmental variable (Figure 2b; Table 2), consistent with the study
of Hypsugo savii, Pipistrellus pipistrellus, and P. kuhlii, suggesting that the lowest temperature
may be an important environmental factor affecting the distribution of bats [59,61].

Temperature changes may affect the food resource availability, duration and intensity
of hibernation, and thermal requirements during reproduction, which may lead to strong
alterations of population demographics and distribution [59,61,62]. Myotis pilosus is both
a piscivore and an insectivore; when fish resources become limited, it will shift its diet to
insects [18]. However, the activity of insects is affected by ambient temperature [63]. Low
ambient temperatures reduce the activity of volant insects, and long-term low temperatures
will delay the development of insects [64]. Thus, the temperature may influence the
distribution of bats by acting on their food resources. Indeed, according to Park et al. (2000),
Rhinolphus ferrumequinum increased its activity duration when the ambient temperature
was higher than 10 ◦C, which is related to the thermal threshold of insect activity [65].
In addition, temperature may affect the hibernation and reproduction of bats. Many
bats hibernate to survive harsh environments, such as low temperatures [66]. However,
frequent hibernation of male bats would lead to sperm production delayed, which affects
reproduction in the autumn [66]. For female bats, frequent hibernation leads to pregnancy
prolongation and developmental delay of the fetal organs [67]. This is unfavorable as a
short summer may not be enough for pups to learn how to fly and forage, and they may
not be able to accumulate enough fat for migration or hibernation [63].

Climate-driven habitat shifts might influence the distribution of species. According to
the IUCN Red List, the population of M. pilosus has been declining in recent years due to
environmental degradation, habitat destruction, and other factors [19]. Our study predicts
that the suitable habitat of M. pilosus will expand in the future. This may be because the
temperature will increase under future warming scenarios and more areas will reach the
temperature suitable for the survival of M. pilosus (Figure 4). A similar conclusion was
drawn from the study of Pipistrellus nathusii in the UK where the areas suitable for P. nathusii
were projected to triple by 2050, and the minimum temperature contributed most to the
expansion [68]. However, when we considered the dispersal ability of M. pilosus, almost
half of the predicted suitable habitats cannot be reached by 2050 and about 11% of predicted
suitable habitats are unreachable by 2070 (Figure 5; Table 3). In addition, the total area of
moderately and highly suitable habitats of M. pilosus under the current climate is likely to
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be just 40.56 × 104 km2 (accounting for 4.23 % of China’s land area) or even smaller if we
considered their dispersal ability (Table 3).

In the face of global climate change, organisms may respond to climate change by
migrating to new regions, adapting to new environments, or going extinct [69]. Fortu-
nately, there are no reports of bat extinction due to climate change [69]. Studies show that
climate warming has caused many species to migrate and spread to high altitudes and
latitudes [70,71]. Our results suggested that M. pilosus is likely to shift slightly to higher lati-
tudes and altitudes in the future (Figures 4 and 5; Table 3). The migration process predicted
in our study seems to have occurred or is progressing, as Wu found that bats in China,
including M. pilosus, mainly shifted northward in the past 50 years (1960s–2000s), and
most of these changes were related to thermal indices [60]. The same trend was observed
in Lasiurus seminolus in the United States [72] and P. nathusii in Europe [73]; both species
expanded rapidly to high latitudes in response to climate change in recent decades. In
recent years, there have been many studies on local adaptation. It has been reported that R.
ferrumequinum in Italy may adapt to new environments by changing its body size (such
as increasing forearm length) [74]. Another study has confirmed that bats can respond
quickly to climate change by changing their phenology. Twenty-two years of monitoring at
Bracken Cave showed that the spring migration and summer breeding cycles of bats were
approximately two weeks ahead, which could be the bats’ responses to climate changes [75].
However, we still know little about whether there are phenotypic, genetic, or behavioral
changes in M. pilosus associated with environmental adaptation.

China is the concentrated distribution area of M. pilosus, and the protection of M.
pilosus in China is of great significance for its global conservation and persistence. Ac-
cording to the results of this study, several regions were identified as potential highly
suitable habitats, such as southern Beijing, central and southern parts of Hainan, and
other priority conservation areas (Figure 7). These areas are both the current distribution
areas and probably the most suitable habitats for the survival of M. pilosus in the future,
and should be given more attention when developing protection strategies. Our results
showed that “TREE” is an important environmental factor affecting the distribution of
M. pilosus (Table 2); thus, the contiguous forests around these areas should be protected.
Although the predicted variables related to human disturbance, including “Light” and
“human disturbance,” have relatively small effects on the distribution of M. pilosus, the
anthropogenic impacts, such as night light, noise, and hunting, should still be restricted
around these areas. In addition, given the particular foraging behavior of M. pilosus,
we could conduct long-term monitoring of several M. pilosus populations and nearby
freshwater resources in future studies, and integrate the transcriptomic and metabolomic
technologies, to demonstrate the effects of freshwater quality on the growth, development,
reproduction, and metabolism of M. pilosus.

5. Conclusions

Our results indicate that climate change might have an important influence on the
distribution of M. pilosus. Temperature and precipitation are important environmental
factors affecting its distribution. Minimum temperature of coldest month was predicted
to be the most important environmental variable. With the increase in temperature in the
future, the suitable habitats will probably expand and shift toward higher latitudes and
altitudes, but the area of suitable habitats that M. pilosus could disperse and successfully
colonize is likely to be reduced in 2050 and 2070. Five priority conservation areas in central
and southern Hainan Province, southern Guangdong Province, central Guizhou Province,
and southern Beijing were identified as potential future refugia. We suggest long-term
monitoring of these areas, which could be important for the population persistence of M.
pilosus and biodiversity conservation.
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