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Simple Summary: The mitochondrial genome (mitogenome) recently has been extensively used in
evolutionary analyses. The superfamily Certhioidea is a highly diverse group within the passerine
clade, and the phylogeny of this group is still controversial. To date, few studies have focused on
the mitogenome evolution of Certhioidea. In the present study, we provided six new complete
mitogenomes of Certhioidea. Comprehensive analyses were carried out on the mitogenomes of
Certhioidea, including basic genomic characteristics, codon usage patterns, evolutionary rates, and
phylogenetic implications. Based on our analyses, we found the codon usage biases of genes were
asymmetrical. Most importantly, we suggested that Salpornis should be separated from family
Certhiidae and put into family Salpornithidae to maintain the monophyly of Certhiidae. The present
work may provide new insights on the mitogenome evolution of Certhioidea.

Abstract: The superfamily Certhioidea currently comprises five families. Due to the rapid diversifica-
tion, the phylogeny of Certhioidea is still controversial. The advent of next generation sequencing
provides a unique opportunity for a mitogenome-wide study. Here, we first provided six new
complete mitogenomes of Certhioidea (Certhia americana, C. familiaris, Salpornis spilonota, Cantorchilus
leucotis, Pheugopedius coraya, and Pheugopedius genibarbis). We further paid attention to the genomic
characteristics, codon usages, evolutionary rates, and phylogeny of the Certhioidea mitogenomes. All
mitogenomes we analyzed displayed typical ancestral avian gene order with 13 protein-coding genes
(PCGs), 22 tRNAs, 2 rRNAs, and one control region (CR). Our study indicated the strand-biased
compositional asymmetry might shape codon usage preferences in mitochondrial genes. In addition,
natural selection might be the main factor in shaping the codon usages of genes. Additionally, evolu-
tionary rate analyses indicated all mitochondrial genes were under purifying selection. Moreover,
MT-ATP8 and MT-CO1 were the most rapidly evolving gene and conserved genes, respectively.
According to our mitophylogenetic analyses, the monophylies of Troglodytidae and Sittidae were
strongly supported. Importantly, we suggest that Salpornis should be separated from Certhiidae and
put into Salpornithidae to maintain the monophyly of Certhiidae. Our findings are useful for further
evolutionary studies within Certhioidea.

Keywords: mitogenome; superfamily certhioidea; phylogeny; codon usage pattern

1. Introduction

The superfamily Certhioidea (5 families, 26 genera, and nearly 150 species) is a
highly diverse group within the passerine clade [1–3]. It was first erected by Cracraft et al.
and initially included four families (Certhiidae, Polioptilidae, Sittidae, and Troglodyti-
dae) that were removed from the superfamily Sylvioidea [4]. Subsequent studies sug-

Animals 2023, 13, 96. https://doi.org/10.3390/ani13010096 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani13010096
https://doi.org/10.3390/ani13010096
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0001-5158-2926
https://orcid.org/0000-0001-6834-502X
https://orcid.org/0000-0003-2353-1456
https://orcid.org/0000-0003-2915-7493
https://orcid.org/0000-0002-9225-407X
https://doi.org/10.3390/ani13010096
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani13010096?type=check_update&version=1


Animals 2023, 13, 96 2 of 16

gested that the wallcreeper (Tichodroma muraria) should be placed in the monotypic
family Tichodromidae [5].

Over the years, much molecular work has made best efforts to address the phylogeny
of superfamily Certhioidea; however, the deep relationships among families are still con-
troversial [1,5–13]. To date, a total of four topologies of superfamily Certhioidea had
been proposed: (1) the initial topology suggested by Sibley and Ahlquist [6] according
to DNA-DNA hybridization and then reconstructed by Zhao et al. [5] based on seven
genes (MT-CYB, MT-ND2, Myo, ODC, GAPDH, LDH, and RAG1) (Figure 1a); (2) the second
topology put forward by Barker [1] derived from six genes (MT-CYB, FGB-I4, FGB-I7, RAG1,
RAG2, and ZEB1) (Figure 1b); (3) the third was extracted from the overall phylogenetic tree
of Passeriformes by Oliveros et al. [7] on the basis of 4,060 ultra-conserved elements (UCE)
in nuclear loci (Figure 1c); and (4) the fourth was inferred by Päckert [8] based upon three
mitochondrial genes (MT-CYB, MT-CO1, MT-ND2) (Figure 1d).
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In contrast with the complex mitogenomes in plants [14–16], metazoan animals gen-
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evolutionary conservation, and the absence of introns, the mitogenome has been broadly 
considered as a valuable tool for avian evolutionary analyses [22–25]. Up to now, nearly 
1000 representative mitogenome sequences of birds are available from GenBank (accessed 
on 15 November 2022). However, only 16 mitogenomes representing 8 genera in the su-
perfamily Certhioidea have been reported. In a recent mitophylogenetic study, 
Mackiewicz et al. [22] tried their best to collect as many complete passerine mitogenomes 
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the mitogenome-wide scale is quite necessary. 

Figure 1. Four representative recently published topologies of superfamily Certhioidea. They
were derived from: (a) Sibley and Ahlquist (1990), and Zhao et al. (2016); (b) Barker (2017);
(c) Oliveros et al. (2019); (d) Päckert et al. (2020). The values at nodes are bootstrap percentage (BP)
calculated in RAxML and Bayesian posterior probability (PP) inferred by MrBayes; “*” indicates
100% BS or 1.00 PP.

In contrast with the complex mitogenomes in plants [14–16], metazoan animals gener-
ally have compacted mitogenomes [17–20]. With the advent of next-generation sequencing
(NGS), a growing number of avian mitogenomes have been sequenced and analyzed
since the first mitogenome of chicken was sequenced [21]. Owing to the small size, high
evolutionary conservation, and the absence of introns, the mitogenome has been broadly
considered as a valuable tool for avian evolutionary analyses [22–25]. Up to now, nearly
1000 representative mitogenome sequences of birds are available from GenBank (accessed
on 15 November 2022). However, only 16 mitogenomes representing 8 genera in the
superfamily Certhioidea have been reported. In a recent mitophylogenetic study, Mack-
iewicz et al. [22] tried their best to collect as many complete passerine mitogenomes as
possible; however, only three sequences from Troglodytidae and one sequence from Sitti-
dae were sampled. Hence, focusing on the phylogeny of superfamily Certhioidea at the
mitogenome-wide scale is quite necessary.

As is well known, genetic codes are degenerate and each amino acid residue is en-
coded by multiple synonymous codons. However, the synonymous codons are not equally
utilized, which is referred to as codon usage bias (CUB) [26–28]. The CUB is species- and
gene-specific and is mainly shaped by the balance force between mutation and natural
selection [29–32]. Therefore, analyzing CUB can be helpful to understand the genomic archi-
tectures and evolutionary characteristics of organisms. The CUB analyses were performed
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in some taxa at mitogenome-wide, such as silkworms [33,34], flies [35], and laughing
thrushes [36]. Unfortunately, to our knowledge, little or no scientific work on CUB of
mitochondrial genes across Certhioidea taxa has been reported. Thus, investigating the
CUB pattern might provide valuable insights in the phylogeny of Certhioidea.

In this study, we successfully assembled and annotated six new complete mitogenome
sequences of Certhioidea using the genome skimming approach. Based on our new mi-
togenome sequences, along with other available sequence data from NCBI database, we
tried to address: (1) general characterizations of Certhioidea mitogenomes; (2) codon usage
patterns of Certhioidea taxa; (3) rates and patterns of molecular evolution of mitogenomes
within Certhioidea; and (4) mitophylogenetic relationships within the Certhioidea.

2. Materials and Methods
2.1. Data Acquisition, Mitogenome Assembly, and Annotation

In this study, six new mitogenome sequences of superfamily Certhioidea were re-
trieved from NCBI SRA database by third-party annotation (TPA) (Table S1). The new data
contained four first mitogenomes from three genera (Salpornis, Cantorchilus, Pheugopedius)
and two from Certhia. The assembly and annotation of mitogenomes were performed using
GetOrganelle 1.7.1 [37] and GeSeq [38], respectively. Furthermore, the nomenclature of gene
names followed the criterion proposed by HUGO Gene Nomenclature Committee [39].

2.2. Nucleotide Compositions, Codon Usage Indices and Evolutionary Rates

Sixteen mitogenome sequences obtained from NCBI, along with six new data points
from this study, were used for further analyses. The nucleotide compositions for L-strands
or H-strands of whole mitogenome were calculated by using BioEdit 7.2.6 [40].

With exclusion of the termination codons (TAA, TAG, AGG, AGA, and T–), the
codon usage indices of PCGs, including the relative synonymous codon usage (RSCU),
effective number of codons (ENC), the GC content at codon sites 1 and 2 (GC12), 3 (GC3),
and synonymous 3 (GC3s), were measured. The RSCU value for a codon represents
the observed frequency divided by that expected (RSCU > 1 and implies a codon used
more frequently than expected and vice versa). In detail, RSCU, ENC, and GC3s were
estimated by CodonW 1.4.4 [41]. GC12 and GC3 were analyzed by MEGA X 10.0.5 [42]. The
percentage of variable sites (PV) and average pairwise nucleotide diversity (π) values were
measured with DnaSP v6.12 [43]. The nonsynonymous substitution rate (dN), synonymous
substitution rate (dS), and dN/dS ratio were inferred with PAML v4.9 under F3X4 and M0
models (the dN/dS ratio >1, =1, and <1 indicate positive, neutral, and purifying selection,
respectively) [44].

2.3. Statistical and Graphic Analyses

Statistical tests and linear regression analyses were computed with OriginPro® 2021
software (OriginLab Corporation, Northampton, MA, USA). The former included mean
and standard deviation (SD), while the latter involved slope and intercept. To better display
the main codon usage patterns of mitochondrial genes among Certhioidea birds, the parity
rule 2-bias (PR2) plots, neutrality plots, and ENC-GC3s plots were drawn with ggplots2
package [45] under R x64 4.0.2 (R Core Team, Vienna, Austria).

2.4. Mitophylogenetic Analyses

To better elucidate the evolutionary history of Certhioidea taxa, we conducted mi-
tophylogenetic analyses. Twenty-two Certhioidea species were regarded as ingroups.
Additionally, two species from the genus Regulus (R. regulus, NC_029837; R. calendula,
NC_024866) were selected as outgroups. All coding regions (13 PCGs without termination
codons, 2 rRNAs, and 22 tRNAs) were employed, and multiple sequence alignments were
carried out using MAFFT online [46].

The maximum-likelihood (ML) method was performed using RAxML 8.2.12 [47] with
100 ML search runs, 1000 thorough bootstrap replicates, and bootstrapping convergence
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criterion under the GTRGAMMA model. Prior to the Bayesian inference (BI) analyses, the
ModelTest-NG 0.1.6 [48] was used to infer the best-fit models according to Bayesian infor-
mation criterion (BIC). Subsequently, the BI analyses were conducted by using MrBayes
3.2.7a [49] with two simultaneous runs and four independent MCMC chains (100,000,000
generations, sampling every 10,000th generation). Convergence was checked with the
combined effective sample size (ESS) by using Tracer 1.7.1 [50].

3. Results and Discussion
3.1. General Features of Certhioidea Mitogenomes
3.1.1. Genome Sizes and Gene Contents

Our results provide six new complete mitogenomes of Certhioidea: C. americana,
C. familiaris, S. spilonota, P. coraya, P. genibarbis, and C. leucotis (accession numbers: BK016977-
BK016982). The accession numbers of the sequences investigated in this study are listed
in Table 1. Similar to our previous studies in birds [51–53], we detected 37 typical mi-
tochondrial genes from investigated data, including 13 PCGs, 2 rRNAs, and 22 tRNAs,
as well as one CR (Figure 2). The sizes of Certhioidea mitogenomes ranged from 16,713
(Pheugopedius genibarbis) to 16,920 bp (Certhia brachydactyla) (Table S2). It has been noted
that the unusual start codon GTG was observed in MT-CO1 from 7 Sittidae birds, which
might be an apomorphy of the family Sittidae (Table S3).

Table 1. Species of mitogenomes examined in this study.

Family Species Accession No. Reference

Certhiidae Certhia americana (Brown Creeper) BK016977 This study
Certhiidae Certhia brachydactyla (Short-toed Treecreeper) NC_053055 [54]
Certhiidae Certhia familiaris (Eurasian Treecreeper) BK016978 This study
Certhiidae Certhia himalayana (Bar-tailed Treecreeper) NC_053710 Duan et al. (2018) a

Certhiidae Salpornis spilonota (Indian Spotted Creeper) BK016979 This study
Polioptilidae Polioptila caerulea (Blue-grey Gnatcatcher) NC_051031 [54]

Sittidae Sitta carolinensis (White-breasted Nuthatch) NC_024870 [55]
Sittidae Sitta europaea (Wood Nuthatch) NC_053059 [54]
Sittidae Sitta himalayensis (White-tailed Nuthatch) NC_042730 Duan et al. (2018) a

Sittidae Sitta magna (Giant Nuthatch) MZ888773 Yuan et al. (2021) a

Sittidae Sitta nagaensis (Chestnut-vented Nuthatch) NC_042731 Duan et al. (2018) a

Sittidae Sitta villosa (Snowy-browed Nuthatch) NC_051513 [56]
Sittidae Sitta yunnanensis (Yunnan Nuthatch) MN052793 Duan et al. (2021) a

Tichodromidae Tichodroma muraria (Wallcreeper) NC_053081 [54]
Troglodytidae Campylorhynchus brunneicapillus (Cactus Wren) NC_029482 Zhao (2016) a

Troglodytidae Campylorhynchus zonatus (Band-backed Wren) NC_022840 [57]
Troglodytidae Cantorchilus leucotis (Buff-breasted Wren) BK016982 This study
Troglodytidae Henicorhina leucosticta (White-breasted Wood Wren) NC_024673 [58]
Troglodytidae Pheugopedius coraya (Coraya Wren) BK016980 This study
Troglodytidae Pheugopedius genibarbis (Moustached Wren) BK016981 This study
Troglodytidae Thryothorus ludovicianus (Carolina Wren) NC_051032 [54]
Troglodytidae Troglodytes mosukei (Eurasian Wren) LC541429 Yamamoto et al. (2020) a

Note: a. These data were directly submitted to NCBI nucleotide database.

In addition, mitogenomes in different avian lineages displayed diversified gene re-
combination. According to the mitochondrial gene orders, five rearrangement types were
proposed in birds: (1) ancestral avian; (2) duplicate CR; (3) remnant CR; (4) duplicate
MT-TT–CR; and (5) Hereafter MT-TP–CR [59,60]. In the current study, all investigated
mitogenomes of Certhioidea have a typical ancestral avian gene order which was first re-
ported in chicken [21]. The remaining four types could be observed in Amazona parrots [61],
Thalassarche albatrosses [62], Falco peregrinus [63], and Calidris pugnax [60], respectively. These
gene rearrangement events might result from the processes of tandem duplication and
random loss (TDRL) [64–66].
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3.1.2. Asymmetry in Nucleotide Compositions of Certhioidea Mitogenomes

As we know, animal mitochondrial DNA has two strands. Typically, the two mito-
chondrial DNA strands could be separated by CsCl density gradient centrifugation [67,68].
In this way, an animal mitochondrial genome could be divided into a H-strand (higher
G + T content) and L-strand (lower G + T content) [68–70]. Thus, the nucleotide composi-
tion of the two strands exhibits strand-biased compositional asymmetry (SCA).

In our current study, within 22 mitogenomes of the superfamily Certhioidea, the
overall G + T contents of L-strands (38.4% ± 1.0%) are far lower than those of H-strands
(61.7% ± 0.9%), which exhibits extreme SCA (Figure 3, Table S4). This asymmetry of
overall nucleotide compositions could be explained based on the strand displacement
model of mitochondrial DNA [69]. During the DNA replication process, the spontaneous
deamination of A and C could respectively bring I (hypoxanthine) and U mutation in
template strands; hence, the newly synthesized strand tends to accumulate more U→ C
and G→ A mutations (I:C pair replaced A:U pair, and U:A pair replaced C:G pair) [71–74].
Specifically, for most vertebrate mitochondrial genomes, H-strands become rich in G and T,
whereas L-strands comprise more A and C.
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However, paradoxically, many published studies for vertebrate mitochondrial genomes
have described the H-strand as the lower G + T content one with higher amounts of encoding
genes, such as humans (GT content = 37.8%) [20], tube-nosed bats (GT content = 42.3%) [75],
and Reeve’s turtles (GT content = 39.9%) [67]. These seemingly contradictory results have
been possibly explained by Lima and Prosdocimi [68]. They inferred that the phenomena
might be caused by the historical reasons that most researchers had neglected the cor-
rect assignment of mitochondrial strands since Taanman [20] proposed most vertebrate
mitochondrial genes were on the H-strand. Combining the results of this study and previ-
ous reports [68–70], we proposed that most vertebrate mitochondrial genes should be on
the L-strand.

3.2. Codon Usage Patterns of PCGs
3.2.1. Asymmetry in Codon Usages of Mitochondrial Genes

The detailed information on RSCU values could be seen in Table S5. Most surprisingly
of all, the RSCU analyses revealed that the over-represented (RSCUmean > 1.6) and preferred
(1.0 < RSCUmean ≤ 1.6) codons of all 12 PCGs encoded by L-strands predominantly end
with A or C (Table S6). In fact, some previous studies indicated that ATP genes (MT-ATP6
and MT-ATP8) [76], MT-CYB [77], CO genes (MT-CO1, MT-CO2, and MT-CO3) [78], and
MT-ND1 [79] of birds prefer to use A/C-ending codons. Our current study reconfirmed
these results among Certhioidea birds. In contrast, different from the codon usage pattern
of L-strand genes, the MT-ND6 encoded by H-strands preferred to use the G/T-ending
codons (Tables S5 and S6).

Furthermore, the GC bias [G3/(G3 + C3)] and AT bias [A3/(A3 + T3)] of each gene
among 22 birds were analysed. According to PR2 plot, the points were at the center
(GC bias = 0.5, AT bias = 0.5), meaning no bias for mutation and selection; however, the
off-centered points reflect the existence of bias [80]. In our analysis, the uniform PR2 pattern
(points almost lied on the second quadrant with GC bias < 0.5 and AT bias > 0.5) was



Animals 2023, 13, 96 7 of 16

observed among all L-strand genes (Figure 4). Most interestingly, the reversed PR2 pattern
(points lied on the fourth quadrant with GC bias > 0.5 and AT bias < 0.5) was detected in
MT-ND6 (Figure 4). These off-centered distributions confirmed that the role of mutation
pressure and natural selection in shaping the codon usage of mitochondrial genes among
Certhioidea birds. In addition, these results indicated again that the H-strand genes and
L-strand genes are inclined to employ G/T-ending and A/C-ending codons, respectively.
Our study indicated that the SCA might shape the codon usage pattern of both H-strand
and L-strand genes in avian mitogenomes. Notably, we found that two points representing
C. brachydactyla and C. familiaris were markedly different from other points in the PR2 plot
of MT-ATP8 compared with other Certhia species. As reported by Abdoli et al. [33], similar
asymmetric distributions of PR2 plots were observed in mitochondrial genes of silkworms.
In that work, four H-strand genes and nine L-strand genes obviously preferred to use
G/T-ending codons and C-ending codons (the preferences of A-ending codons were not
obvious), respectively [33]. In contrast, due to the differences in gene numbers in H-strands
and L-strands, the PR2 bias patterns of Certhioidea birds were quite different from those
of silkworms.
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To our knowledge, the asymmetrical codon usage patterns of PCGs were first found
in the mitogenome of Asterina pectinifera (echinoderm), where three mitochondrial genes
encoded by H-strands tend to use G/T-ending codons, whereas the remaining 10 genes on
the opposite strand prefer to use A/C-ending codons [81]. After that, the asymmetrical
codon usage patterns were found in some vertebrate mitogenomes, such as mammalian
mitogenomes, suggesting that L-strand genes are fond of A/C-ending codons [82]. In
addition, similar phenomena were also be found in several bacterial genomes, such as
Borrelia burgdorferi [83], Tropheryma whipplei [84] and Lawsonia intracellularis [85], that the
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genes encoded by leading strand favored G/T-ending codons, whereas those on the lagging
strand preferred to use A/C-ending codons. Most interestingly, these phenomena were
only found in circular genomes.

3.2.2. Main Driving Factor in Codon Usages of Mitochondrial Genes

The ENC and GC3s values of 13 genes among Certhioidea birds were calculated
by CodonW. Consequently, the analysis results showed huge variations among genes
and species, with the ENC values ranging from 27.85 (MT-ND4L in Sitta nagaensis) to
50.38 (MT-ND1 in Certhia familiaris) (Table S7), and the GC3s values extending from
0.327 (MT-ATP8 in Polioptila caerulea) to 0.704 (MT-ND4L in C. familiaris) (Table S8). Gen-
erally, the ENC value ≤ 35 indicates significant codon usage bias (CUB) [86,87]. Among
a total of 286 sequences (13 genes from 22 species), 54 (18.88%) exhibited significant CUB,
while the remaining 232 (81.12%) exhibited relatively weak CUB.

ENC-GC3s plot analysis is an efficient tool for verifying the main driving factor of
codon usage bias (mutational bias or natural selection) [36,88,89]. If the codon usage is
only influenced by mutational bias, the points are expected to lie on or just below the
expected ENC curve; alternatively, if one gene is under pure natural selection, it is far
away from the expected curve [36,88,89]. As can be seen from Figure S1, the points of all
13 PCGs from Certhioidea mitogenomes are distributed well below the curve, illuminating
the predominance of natural selection pressure over mutational bias. Interestingly, the
ENC-GC3s point distributions of 13 PCGs presented in this report were found highly
similar to those of Laughing thrushes [36].

Neutrality plots of the 13 PCGs were drawn to estimate the extent of influence of
mutation pressure and natural selection on the CUB. The regression coefficient (slope) of
neutrality plot is regarded as the mutation–selection equilibrium frequency. Here, a slope
of 1 represents complete neutrality, while 0 shows complete selective constraint [90,91].
Furthermore, a slope of less than 0.5 could reflect that selection might have played a major
role in shaping CUB, with greater than 0.5 and less than 1 indicating dominant influence
of mutation pressure [33]. Previous studies indicated the CUB of MT-ATP8 (0.063) [76]
and MT-CYB (0.024) [92] of birds were mainly shaped by selection. In this study, as shown
in Figure 5, the absolute values of the slopes of 13 PCGs ranged from 0.0052 (MT-ND6)
to 0.1364 (MT-ND5). All these values were much lower than 0.5, suggesting that natural
selection played a more important role than mutation in shaping the CUB of mitochondrial
genes among Certhioidea taxa. In addition, these regression coefficients showed that the
contributions of mutation pressure were 0.52%, 1.68%, 2.53%, 4.30%, 5.08%, 5.47%, 7.10%,
8.18%, 8.22%, 11.13%, 11.49%, 12.24%, and 13.64% for MT-ND6, MT-CO1, MT-CYB, MT-
ND1, MT-ATP8, MT-ND4L, MT-ND4, MT-ND3, MT-CO3, MT-ATP6, MT-CO2, MT-ND2,
and MT-ND5, respectively.

As we know, natural selection on codon usage can increase translation accuracy and
efficiency, resulting in a reduction in global translation costs [93]. Through comprehensive
analyses of ENC-GC3s and neutrality plots, we demonstrate the major role of natural
selection in evolution of codon usage for Certhioidea mitogenomes. In order to better
investigate the CUB of mitochondrial genes among birds, more endeavors are needed for
further studies.

3.3. Evolutionary Rates and Patterns

To better understand the evolutionary patterns of mitochondrial PCGs, some in-
dices, including PV, π, dN, dS, and dN/dS values, were evaluated within the superfamily
Certhioidea. Among the 13 mitochondrial PCGs, MT-ATP8 is the most divergent gene by
PV value (53.94%), followed by MT-ND2 (52.31%), and MT-ND6 (51.55%). By contrast, the
lowest two are MT-CO1 (36.05%) and MT-CO3 (39.21%). The π values of PCGs ranged from
0.13119 to 0.18695 (Table 2).
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Table 2. Evolutionary rates of mitochondrial PCGs of Certhioidea species.

Gene Length (bp) PV (%) π dN dS dN/dS

MT-ATP6 681 48.75 0.17522 0.4205 18.2467 0.02304
MT-ATP8 165 53.94 0.17885 1.0157 5.7834 0.17562
MT-CO1 1548 36.05 0.13119 0.073 12.0922 0.00604
MT-CO2 681 42.29 0.15738 0.2975 11.3325 0.02625
MT-CO3 783 39.21 0.14331 0.213 14.1762 0.01503
MT-CYB 1140 42.28 0.14973 0.3024 12.8224 0.02358
MT-ND1 975 47.69 0.18030 0.3747 17.8404 0.021
MT-ND2 1038 52.31 0.18656 0.5995 15.1289 0.03963
MT-ND3 348 49.14 0.17068 0.532 14.9662 0.03555
MT-ND4 1377 47.79 0.17211 0.4603 19.1301 0.02406

MT-ND4L 294 47.62 0.16185 0.2867 19.4011 0.01478
MT-ND5 1815 48.15 0.16907 0.4818 16.3115 0.02954
MT-ND6 516 51.55 0.18695 0.6426 10.4749 0.06135

The dN values varied between 0.073 and 1.0157. Surprisingly, the dS values dis-
played relatively wide ranges (5.7834–19.4011) compared to dN values, which resulted in
significantly lower dN/dS ratios (0.00604–0.17562) (Table 2). These results indicated the
mitochondrial PCGs of Certhioidea species appear to be evolving under purifying selection.
In this study, the MT-ATP8 (dN/dS = 0.17562) and MT-CO1 (dN/dS = 0.00604), respectively,
are the most rapidly evolving gene and most conserved gene among the 13 PCGs, which
is congruent with our previous studies in Accipitriformes [94], Passeriformes [51], and
Piciformes [95].

Mitochondrial genes play a pivotal role in the process of oxidative phosphoryla-
tion [96–98]. Nonsynonymous substitutions are generally harmful in respiratory-chain
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activity, which might limit the energy biosynthesis [99,100]. To maintain functional require-
ments, most genes (dN/dS < 0.1), especially for MT-CO1, experienced strong evolutionary
constraints [101,102], whereas MT-ATP8 (dN/dS > 0.1) has evolved more quickly than
others. It is interesting why MT-ATP8 evolved so fast. The probable reason is that fix-
ation of advantageous mutations in MT-ATP8 might result in accelerated evolution of
other mitochondrial genes by compensation-draft feedback (CDF) process [103,104]. There-
fore, these findings confirm that MT-ATP8 might play important roles in the evolution of
avian mitogenomes.

3.4. Phylogenetic Implications

Currently, there is a paucity of research focusing on the phylogeny of superfamily
Certhioidea at the mitogenome-wide level. Our study sampled all the families of superfam-
ily Certhioidea to reconstruct the mitophylogenetic tree. The best-fit models of partitioned
analyses can be seen in Table S9. The bootstrap convergence assessment checked by RAxML
showed that the ML analysis converged after 150 replicates. The ESS checked by Tracer was
2843.7 (>200), indicating the BI analyses were also convincible. The trees derived from ML
and BI methods displayed the same topology (Figure 6). The mitophylogenetic tree inferred
by our study is similar with the initial topology proposed by Sibley and Ahlquist [6].
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Troglodytidae is monophyletic and sister to Polioptilidae (represented by P. caerulea)
with high supports (BS = 100 and PP = 1.00), which agrees with many previous re-
ports [1,5,7,8,13,105]. We further divided Troglodytidae into two distinct clades (clade
A and clade B). Within clade A, two species of the genus Pheugopedius (P. coraya and
P. genibarbis) are sister to (H. leucosticte and C. leucotis) (BS = 100 and PP = 1.00). Mean-
while, within clade B, T. ludovicianus and two Campylorhynchus species (C. zonatus and
C. brunneicapillus) were generally identified as sister taxa (BS = 65 and PP = 1.00), with
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T. troglodytes mosukei in a basal position. Notably, three species (C. leucotis, P. coraya,
P. genibarbis) in clade A were formerly treated as members of Thryothorus but have been
classified into two novel genera (Cantorchilus and Pheugopedius) by Mann et al. [106]. As
is seen in Figure 6, Henicorhina leucosticte is embedded in these three species. Therefore,
our results support the above taxonomic revisions.

In addition, the genus Salpornis (represented by S. spilonota) might have a relatively
closer relationship to the genus Certhia with much lower support values (BS = 33 and
PP = 0.59). According to the Clements Checklist 2022 [2] and IOC World Bird List v. 12.1 [3],
these two genera (Certhia and Salpornis) make up the current family Certhiidae. How-
ever, Oliveros et al. [7] put Salpornis into a novel family Salpornithidae to maintain the
monophyly of Certhiidae (Figure 1c). Moreover, in contrast with the study of Zhao et al.
(Figure 1a) [5], obviously decreased support values at the node of (Salpornis and Certhia)
were observed in our study (BS: 51→ 33; PP: 0.99→ 0.59). Therefore, in order to keep the
monophyly of Certhiidae, we also suggest Salpornis should be classified into the Salpornithi-
dae family. Furthermore, Sittidae, including seven Sitta species, is sister to Tichodromidae
(represented by T. muraria) with a low BS value but a high PP value (BS = 48 and PP = 1.00)
in our study. These results were similar to those of Zhao et al. (Figure 1a) [5].

According to our analyses, the monophylies of Troglodytidae and Sittidae were
strongly supported. However, there are still many unsolved phylogenetic problems within
superfamily Certhioidea, especially the relationships among families of Certhioidea, which
are not entirely clear. In order to better understand the phylogeny of these taxa, more data
are needed for the further detailed analyses.

4. Conclusions

In the present study, six new mitogenomes of superfamily Certhioidea were reported.
The sizes of mitogenomes within Certhioidea ranged from 16,713 to 16,920 bp. It has been
noted that the unusual start codon GTG was observed in MT-CO1 from seven Sittidae birds,
which might be an apomorphy of the family Sittidae. Within mitogenomes of Certhioidea,
the overall G + T contents of L-strands (38.4% ± 1.0%) are far lower than those of H-
strands (61.7% ± 0.9%). Additionally, RSCU values and PR2 plots analyses indicated that
H-strand genes preferred to use G/T-ending codons, while L-strand genes tend to utilize
A/C-ending codons. These differences might be caused by strand-biased compositional
asymmetry. The ENC-GC3s plot and neutrality plot analyses illustrated that natural
selection might play a critical role on shaping the codon usages of mitochondrial genes.
Furthermore, the regression coefficients of neutrality plots indicated that the effect degrees
of mutation pressure ranged from 0.52% to 13.64% for 13 mitochondrial PCGs within
Certhioidea. Evolutionary rate analyses indicated all mitochondrial genes of Certhioidea
were under purifying selection. Furthermore, MT-ATP8 (dN/dS = 0.17562) and MT-CO1
(dN/dS = 0.00604) were the most rapidly evolving gene and conserved gene, respectively.
According to our mitophylogenetic analyses, the monophylies of Troglodytidae and Sittidae
were strongly supported. Importantly, we suggest that Salpornis should be separated from
Certhiidae and put into Salpornithidae to maintain the monophyly of Certhiidae.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ani13010096/s1, Figure S1: ENC-GC3s plots of mitochondrial genes
among superfamily Certhioidea species; Table S1: The SRA accession numbers of six superfamily
Certhioidea species; Table S2: The size and GC content of each part of mitogenomes among super-
family Certhioidea species; Table S3: The start and stop codons used in mitogenomes of superfamily
Certhioidea species; Table S4: The detailed nucleotide compositions of mitogenomes among super-
family Certhioidea species; Table S5: The detailed RSCU values of 13 mitochondrial genes among
superfamily Certhioidea species; Table S6: The overall over-represented codons and preferred codons
in the mitochondrial genes among superfamily Certhioidea species; Table S7: The detailed ENC
values of 13 mitochondrial genes among superfamily Certhioidea species; Table S8: The detailed
GC3s values of 13 mitochondrial genes among superfamily Certhioidea species; Table S9: The best-fit
models of each partition.

https://www.mdpi.com/article/10.3390/ani13010096/s1
https://www.mdpi.com/article/10.3390/ani13010096/s1


Animals 2023, 13, 96 12 of 16

Author Contributions: Writing—original draft and methodology, H.D.; software and data curation,
S.H., R.Y. and Y.Y.; formal analysis, J.G.; validation, J.Y.; investigation, S.Z. and D.B.; conceptualization,
supervision, funding acquisition, project administration, and writing—review and editing, X.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Opening Foundation of Anhui Provincial Key Laboratory
of the Conservation and Exploitation of Biological Resources (Grant No. swzy202002).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The sequence data generated in this study are available in Gen-
Bank of the National Center for Biotechnology Information (NCBI) under the access numbers:
BK016977–BK016982.

Acknowledgments: We kindly acknowledge three anonymous reviewers for the fruitful and criti-
cal comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Barker, F.K. Molecular phylogenetics of the wrens and allies (Passeriformes: Certhioidea), with comments on the relationships of

Ferminia. Am. Mus. Novit. 2017, 2017, 1–28. [CrossRef]
2. Clements, J.F.; Schulenberg, T.S.; Iliff, M.J.; Fredericks, T.A.; Gerbracht, J.A.; Lepage, D.; Billerman, S.M.; Sullivan, B.L.; Wood, C.L.

The eBird/Clements Checklist of Birds of the World: v2022. Available online: https://www.birds.cornell.edu/clementschecklist/
(accessed on 15 November 2022).

3. Gill, F.; Donsker, D.; Rasmussen, P. IOC World Bird List (v12.1). Available online: https://www.worldbirdnames.org/new/
(accessed on 15 November 2022).

4. Cracraft, J.; Barker, F.K.; Braun, M.; Harshman, J.; Dyke, G.J.; Feinstein, J.; Stanley, S.; Cibois, A.; Schikler, P.; Beresford, P.
Phylogenetic relationships among modern birds (Neornithes): Toward an avian tree of life. In Assembling the Tree of Life;
Cracraft, J., Dononghue, M.J., Eds.; Oxford University Press: Oxford, UK, 2004; pp. 468–489.

5. Zhao, M.; Alström, P.; Olsson, U.; Qu, Y.; Lei, F. Phylogenetic position of the Wallcreeper Tichodroma muraria. J. Ornithol. 2016, 157,
913–918. [CrossRef]

6. Sibley, C.G.; Ahlquist, J.E. Phylogeny and Classification of Birds: A Study in Molecular Evolution; Yale University Press: New Haven,
CT, USA, 1990.

7. Oliveros, C.H.; Field, D.J.; Ksepka, D.T.; Barker, F.K.; Aleixo, A.; Andersen, M.J.; Alström, P.; Benz, B.W.; Braun, E.L.; Braun, M.J.
Earth history and the passerine superradiation. Proc. Natl. Acad. Sci. USA 2019, 116, 7916–7925. [CrossRef] [PubMed]

8. Päckert, M.; Bader-Blukott, M.; Künzelmann, B.; Sun, Y.-H.; Hsu, Y.-C.; Kehlmaier, C.; Albrecht, F.; Illera Cobo, J.C.; Martens, J. A
revised phylogeny of nuthatches (Aves, Passeriformes, Sitta) reveals insight in intra-and interspecific diversification patterns in
the Palearctic. Vertebr. Zool. 2020, 70, 241–262.

9. Barker, F.K.; Cibois, A.; Schikler, P.; Feinstein, J.; Cracraft, J. Phylogeny and diversification of the largest avian radiation. Proc. Natl.
Acad. Sci. USA 2004, 101, 11040–11045. [CrossRef]

10. Reddy, S.; Cracraft, J. Old World Shrike-babblers (Pteruthius) belong with New World Vireos (Vireonidae). Mol. Phylogenet. Evol.
2007, 44, 1352–1357. [CrossRef]

11. Barker, F.K. Monophyly and relationships of wrens (Aves: Troglodytidae): A congruence analysis of heterogeneous mitochondrial
and nuclear DNA sequence data. Mol. Phylogenet. Evol. 2004, 31, 486–504. [CrossRef]

12. Zuccon, D.; Cibois, A.; Pasquet, E.; Ericson, P.G. Nuclear and mitochondrial sequence data reveal the major lineages of starlings,
mynas and related taxa. Mol. Phylogenet. Evol. 2006, 41, 333–344. [CrossRef]

13. Johansson, U.S.; Fjeldså, J.; Bowie, R.C. Phylogenetic relationships within Passerida (Aves: Passeriformes): A review and a new
molecular phylogeny based on three nuclear intron markers. Mol. Phylogenet. Evol. 2008, 48, 858–876. [CrossRef]

14. Kan, S.-L.; Shen, T.-T.; Gong, P.; Ran, J.-H.; Wang, X.-Q. The complete mitochondrial genome of Taxus cuspidata (Taxaceae): Eight
protein-coding genes have transferred to the nuclear genome. BMC Evol. Biol. 2020, 20, 10. [CrossRef]

15. Wu, Z.Q.; Liao, X.Z.; Zhang, X.N.; Tembrock, L.R.; Broz, A. Genomic architectural variation of plant mitochondria—A review of
multichromosomal structuring. J. Syst. Evol. 2022, 60, 160–168. [CrossRef]

16. Ding, H.; Bi, D.; Zhang, S.; Han, S.; Ye, Y.; Yi, R.; Yang, J.; Liu, B.; Wu, L.; Zhuo, R.; et al. The Mitogenome of Sedum plumbizincicola
(Crassulaceae): Insights into RNA Editing, Lateral Gene Transfer, and Phylogenetic Implications. Biology 2022, 11, 1661. [CrossRef]
[PubMed]

17. Boore, J.L. Animal mitochondrial genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [CrossRef] [PubMed]
18. Pons, J.; Bover, P.; Bidegaray-Batista, L.; Arnedo, M.A. Arm-less mitochondrial tRNAs conserved for over 30 millions of years in

spiders. BMC Genom. 2019, 20, 665. [CrossRef] [PubMed]

http://doi.org/10.1206/3887.1
https://www.birds.cornell.edu/clementschecklist/
https://www.worldbirdnames.org/new/
http://doi.org/10.1007/s10336-016-1340-8
http://doi.org/10.1073/pnas.1813206116
http://www.ncbi.nlm.nih.gov/pubmed/30936315
http://doi.org/10.1073/pnas.0401892101
http://doi.org/10.1016/j.ympev.2007.02.023
http://doi.org/10.1016/j.ympev.2003.08.005
http://doi.org/10.1016/j.ympev.2006.05.007
http://doi.org/10.1016/j.ympev.2008.05.029
http://doi.org/10.1186/s12862-020-1582-1
http://doi.org/10.1111/jse.12655
http://doi.org/10.3390/biology11111661
http://www.ncbi.nlm.nih.gov/pubmed/36421375
http://doi.org/10.1093/nar/27.8.1767
http://www.ncbi.nlm.nih.gov/pubmed/10101183
http://doi.org/10.1186/s12864-019-6026-1
http://www.ncbi.nlm.nih.gov/pubmed/31438844


Animals 2023, 13, 96 13 of 16

19. Prada, C.F.; Hazzi, N.A.; Hormiga, G.; Cabarcas, F.; Franco, L.M. Complete mitochondrial genome of Phoneutria depilata (Araneae,
Ctenidae): New insights into the phylogeny and evolution of spiders. Gene 2023, 850, 146925. [CrossRef] [PubMed]

20. Taanman, J.-W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta 1999, 1410,
103–123. [CrossRef]

21. Desjardins, P.; Morais, R. Sequence and gene organization of the chicken mitochondrial genome: A novel gene order in higher
vertebrates. J. Mol. Biol. 1990, 212, 599–634. [CrossRef]

22. Mackiewicz, P.; Urantówka, A.D.; Kroczak, A.; Mackiewicz, D. Resolving phylogenetic relationships within Passeriformes based
on mitochondrial genes and inferring the evolution of their mitogenomes in terms of duplications. Genome Biol. Evol. 2019, 11,
2824–2849. [CrossRef]

23. Zhong, Y.; Zhou, M.; Ouyang, B.; Zeng, C.; Zhang, M.; Yang, J. Complete mtDNA genome of Otus sunia (Aves, Strigidae) and the
relaxation of selective constrains on Strigiformes mtDNA following evolution. Genomics 2020, 112, 3815–3825. [CrossRef]

24. Wu, T.; Ma, X.; Wang, F.; Xie, L.; Lv, Q.; Zeng, M.; Xu, Y.; Qin, S.; Chang, Q. First Description of the Mitogenome Features of
Neofoleyellides Genus (Nematoda: Onchocercidae) Isolated from a Wild Bird (Pyrrhocorax pyrrhocorax). Animals 2022, 12, 2854.
[CrossRef]

25. Huang, Z.; Tu, F.; Ke, D. Complete mitochondrial genome of blue-throated bee-eater Merops viridis (Coraciiformes: Meropidae)
with its taxonomic consideration. Pakistan J. Zool. 2017, 49, 79–84. [CrossRef]

26. Hershberg, R.; Petrov, D.A. Selection on codon bias. Annu. Rev. Genet. 2008, 42, 287–299. [CrossRef] [PubMed]
27. Chakraborty, S.; Mazumder, T.H.; Uddin, A. Compositional dynamics and codon usage pattern of BRCA1 gene across nine

mammalian species. Genomics 2019, 111, 167–176. [CrossRef] [PubMed]
28. Ikemura, T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in

its protein genes: A proposal for a synonymous codon choice that is optimal for the E. coli translational system. J. Mol. Biol. 1981,
151, 389–409. [CrossRef]

29. Duret, L. tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed
genes. Trends Genet. 2000, 16, 287–289. [CrossRef]

30. Stoletzki, N.; Eyre-Walker, A. Synonymous codon usage in Escherichia coli: Selection for translational accuracy. Mol. Biol. Evol.
2007, 24, 374–381. [CrossRef] [PubMed]

31. Yi, S.; Li, Y.; Wang, W. Selection shapes the patterns of codon usage in three closely related species of genus Misgurnus. Genomics
2018, 110, 134–142. [CrossRef]

32. Yang, J.; Ding, H.; Kan, X. Codon usage patterns and evolution of HSP60 in birds. Int. J. Biol. Macromol. 2021, 183, 1002–1012.
[CrossRef] [PubMed]

33. Abdoli, R.; Mazumder, T.H.; Nematollahian, S.; Zanjani, R.S.; Mesbah, R.A.; Uddin, A. Gaining insights into the compositional
constraints and molecular phylogeny of five silkworms mitochondrial genome. Int. J. Biol. Macromol. 2022, 206, 543–552.
[CrossRef]

34. Wei, L.; He, J.; Jia, X.; Qi, Q.; Liang, Z.; Zheng, H.; Ping, Y.; Liu, S.; Sun, J. Analysis of codon usage bias of mitochondrial genome
in Bombyx moriand its relation to evolution. BMC Evol. Biol. 2014, 14, 262. [CrossRef]

35. Guan, D.-L.; Qian, Z.-Q.; Ma, L.-B.; Bai, Y.; Xu, S.-Q. Different mitogenomic codon usage patterns between damselflies and
dragonflies and nine complete mitogenomes for odonates. Sci. Rep. 2019, 9, 678. [CrossRef] [PubMed]

36. Sarkar, I.; Dey, P.; Sharma, S.K.; Ray, S.D.; Kochiganti, V.H.S.; Singh, R.; Pramod, P.; Singh, R.P. Turdoides affinis mitogenome
reveals the translational efficiency and importance of NADH dehydrogenase complex-I in the Leiothrichidae family. Sci. Rep.
2020, 10, 16202. [CrossRef] [PubMed]

37. Jin, J.-J.; Yu, W.-B.; Yang, J.-B.; Song, Y.; Depamphilis, C.W.; Yi, T.-S.; Li, D.-Z. GetOrganelle: A fast and versatile toolkit for accurate
de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [CrossRef] [PubMed]

38. Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq–versatile and accurate annotation
of organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11. [CrossRef] [PubMed]

39. Tweedie, S.; Braschi, B.; Gray, K.; Jones, T.E.; Seal, R.L.; Yates, B.; Bruford, E.A. Genenames. org: The HGNC and VGNC resources
in 2021. Nucleic Acids Res. 2021, 49, D939–D946. [CrossRef]

40. Hall, T.; Biosciences, I.; Carlsbad, C. BioEdit: An important software for molecular biology. GERF Bull Biosci 2011, 2, 60–61.
41. Peden, J.F. Analysis of Codon Usage; University of Nottingham: Nottingham, UK, 2000. Available online: http://codonw.

sourceforge.net/ (accessed on 15 November 2022).
42. Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing

platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [CrossRef]
43. Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6:

DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [CrossRef]
44. Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [CrossRef]
45. Wilkinson, L. Ggplot2: Elegant graphics for data analysis by WICKHAM, H. Biometrics 2011, 67, 678–679. [CrossRef]
46. Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and

visualization. Brief Bioinform. 2019, 20, 1160–1166. [CrossRef] [PubMed]
47. Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30,

1312–1313. [CrossRef]

http://doi.org/10.1016/j.gene.2022.146925
http://www.ncbi.nlm.nih.gov/pubmed/36191823
http://doi.org/10.1016/S0005-2728(98)00161-3
http://doi.org/10.1016/0022-2836(90)90225-B
http://doi.org/10.1093/gbe/evz209
http://doi.org/10.1016/j.ygeno.2020.02.018
http://doi.org/10.3390/ani12202854
http://doi.org/10.17582/journal.pjz/2017.49.1.79.84
http://doi.org/10.1146/annurev.genet.42.110807.091442
http://www.ncbi.nlm.nih.gov/pubmed/18983258
http://doi.org/10.1016/j.ygeno.2018.01.013
http://www.ncbi.nlm.nih.gov/pubmed/29395657
http://doi.org/10.1016/0022-2836(81)90003-6
http://doi.org/10.1016/S0168-9525(00)02041-2
http://doi.org/10.1093/molbev/msl166
http://www.ncbi.nlm.nih.gov/pubmed/17101719
http://doi.org/10.1016/j.ygeno.2017.09.004
http://doi.org/10.1016/j.ijbiomac.2021.05.017
http://www.ncbi.nlm.nih.gov/pubmed/33971236
http://doi.org/10.1016/j.ijbiomac.2022.02.135
http://doi.org/10.1186/s12862-014-0262-4
http://doi.org/10.1038/s41598-018-35760-2
http://www.ncbi.nlm.nih.gov/pubmed/30679466
http://doi.org/10.1038/s41598-020-72674-4
http://www.ncbi.nlm.nih.gov/pubmed/33004841
http://doi.org/10.1186/s13059-020-02154-5
http://www.ncbi.nlm.nih.gov/pubmed/32912315
http://doi.org/10.1093/nar/gkx391
http://www.ncbi.nlm.nih.gov/pubmed/28486635
http://doi.org/10.1093/nar/gkaa980
http://codonw.sourceforge.net/
http://codonw.sourceforge.net/
http://doi.org/10.1093/molbev/msy096
http://doi.org/10.1093/molbev/msx248
http://doi.org/10.1093/molbev/msm088
http://doi.org/10.1111/j.1541-0420.2011.01616.x
http://doi.org/10.1093/bib/bbx108
http://www.ncbi.nlm.nih.gov/pubmed/28968734
http://doi.org/10.1093/bioinformatics/btu033


Animals 2023, 13, 96 14 of 16

48. Darriba, D.; Posada, D.; Kozlov, A.M.; Stamatakis, A.; Morel, B.; Flouri, T. ModelTest-NG: A new and scalable tool for the selection
of DNA and protein evolutionary models. Mol. Biol. Evol. 2020, 37, 291–294. [CrossRef] [PubMed]

49. Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P.
MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542.
[CrossRef] [PubMed]

50. Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using Tracer
1.7. Syst. Biol. 2018, 67, 901. [CrossRef] [PubMed]

51. Ren, Q.; Yuan, J.; Ren, L.; Zhang, L.; Zhang, L.; Jiang, L.; Chen, D.; Kan, X.; Zhang, B. The complete mitochondrial genome of the
yellow-browed bunting, Emberiza chrysophrys (Passeriformes: Emberizidae), and phylogenetic relationships within the genus
Emberiza. J. Genet. 2014, 93, 699–707. [CrossRef]

52. Kan, X.; Yuan, J.; Zhang, L.; Li, X.; Yu, L.; Chen, L.; Guo, Z.; Yang, J. Complete mitochondrial genome of the Tristram’s Bunting,
Emberiza tristrami (Aves: Passeriformes): The first representative of the family Emberizidae with six boxes in the central conserved
domain II of control region. Mitochondrial DNA 2013, 24, 648–650. [CrossRef]

53. Zhang, L.; Wang, L.; Gowda, V.; Wang, M.; Li, X.; Kan, X. The mitochondrial genome of the Cinnamon Bittern, Ixobrychus
cinnamomeus (Pelecaniformes: Ardeidae): Sequence, structure and phylogenetic analysis. Mol. Biol. Rep. 2012, 39, 8315–8326.
[CrossRef]

54. Feng, S.; Stiller, J.; Deng, Y.; Armstrong, J.; Fang, Q.; Reeve, A.H.; Xie, D.; Chen, G.; Guo, C.; Faircloth, B.C. Dense sampling of
bird diversity increases power of comparative genomics. Nature 2020, 587, 252–257. [CrossRef]

55. Barker, F.K. Mitogenomic data resolve basal relationships among passeriform and passeridan birds. Mol. Phylogenet. Evol. 2014,
79, 313–324. [CrossRef]

56. Zhang, Z.; Mi, S.; Guo, Q.; Zhang, Z.; Yan, P.; Liu, Z.; Teng, L. The complete mitochondrial genome of the Sitta villosa (Passeriformes:
Sittidae) from China. Mitochondrial DNA Part B 2020, 5, 2328–2329. [CrossRef] [PubMed]

57. Barker, F.K.; Oyler-McCance, S.; Tomback, F.D. Blood from a turnip: Tissue origin of low-coverage shotgun sequencing libraries
affects recovery of mitogenome sequences. Mitochondrial DNA 2015, 26, 384–388. [CrossRef] [PubMed]

58. Aguilar, C.; De Léon, L.F.; Loaiza, J.R.; McMillan, W.O.; Miller, M.J. Extreme sequence divergence between mitochondrial
genomes of two subspecies of White-breasted Wood-wren (Henicorhina leucosticta, Cabanis, 1847) from western and central
Panama. Mitochondrial DNA Part A 2016, 27, 956–957. [CrossRef] [PubMed]

59. Gibb, G.C.; Kardailsky, O.; Kimball, R.T.; Braun, E.L.; Penny, D. Mitochondrial genomes and avian phylogeny: Complex characters
and resolvability without explosive radiations. Mol. Biol. Evol. 2007, 24, 269–280. [CrossRef]

60. Verkuil, Y.I.; Piersma, T.; Baker, A.J. A novel mitochondrial gene order in shorebirds (Scolopacidae, Charadriiformes). Mol.
Phylogenet. Evol. 2010, 57, 411–416. [CrossRef] [PubMed]

61. Eberhard, J.R.; Wright, T.F.; Bermingham, E. Duplication and concerted evolution of the mitochondrial control region in the parrot
genus Amazona. Mol. Biol. Evol. 2001, 18, 1330–1342. [CrossRef]

62. Abbott, C.L.; Double, M.C.; Trueman, J.W.; Robinson, A.; Cockburn, A. An unusual source of apparent mitochondrial hetero-
plasmy: Duplicate mitochondrial control regions in Thalassarche albatrosses. Mol. Ecol. 2005, 14, 3605–3613. [CrossRef]

63. Mindell, D.P.; Sorenson, M.D.; Dimcheff, D.E. Multiple independent origins of mitochondrial gene order in birds. Proc. Natl. Acad.
Sci. USA 1998, 95, 10693–10697. [CrossRef]

64. Zhou, X.; Lin, Q.; Fang, W.; Chen, X. The complete mitochondrial genomes of sixteen ardeid birds revealing the evolutionary
process of the gene rearrangements. BMC Genom. 2014, 15, 573. [CrossRef]

65. Boore, J.L. The duplication/random loss model for gene rearrangement exemplified by mitochondrial genomes of deuterostome
animals. In Comparative Genomics; Springer: Dordrecht, The Netherlands, 2000; pp. 133–147.

66. San Mauro, D.; Gower, D.J.; Zardoya, R.; Wilkinson, M. A hotspot of gene order rearrangement by tandem duplication and
random loss in the vertebrate mitochondrial genome. Mol. Biol. Evol. 2006, 23, 227–234. [CrossRef]

67. Shin, H.W.; Jang, K.H.; Ryu, S.H.; Choi, E.H.; Hwang, U.W. Complete mitochondrial genome of the Korean reeves’s turtle
Mauremys reevesii (Reptilia, Testudines, Geoemydidae). Mitochondrial DNA 2015, 26, 676–677. [CrossRef] [PubMed]

68. Barroso Lima, N.C.; Prosdocimi, F. The heavy strand dilemma of vertebrate mitochondria on genome sequencing age: Number of
encoded genes or G+ T content? Mitochondrial DNA Part A 2018, 29, 300–302. [CrossRef] [PubMed]

69. Lin, Q.; Cui, P.; Ding, F.; Hu, S.; Yu, J. Replication-associated mutational pressure (RMP) governs strand-biased compositional
asymmetry (SCA) and gene organization in animal mitochondrial genomes. Curr. Genom. 2012, 13, 28–36. [CrossRef] [PubMed]

70. Alexeyev, M. Mitochondrial DNA: The common confusions. Mitochondrial DNA Part A 2020, 31, 45–47. [CrossRef] [PubMed]
71. Lindahl, T. DNA repair enzymes. Annu. Rev. Biochem. 1982, 51, 61–87. [CrossRef]
72. Sancar, A.; Sancar, G.B. DNA repair enzymes. Annu. Rev. Biochem. 1988, 57, 29–67. [CrossRef]
73. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 1993, 362, 709–715. [CrossRef]
74. Tanaka, M.; Ozawa, T. Strand asymmetry in human mitochondrial DNA mutations. Genomics 1994, 22, 327–335. [CrossRef]
75. Yoon, K.B.; Kim, H.R.; Kim, J.Y.; Jeon, S.H.; Park, Y.C. The complete mitochondrial genome of the Ussurian tube-nosed bat Murina

ussuriensis (Chiroptera: Vespertilionidae) in Korea. Mitochondrial DNA 2013, 24, 397–399. [CrossRef]
76. Uddin, A.; Mazumder, T.H.; Barbhuiya, P.A.; Chakraborty, S. Similarities and dissimilarities of codon usage in mitochondrial ATP

genes among fishes, aves, and mammals. IUBMB Life 2020, 72, 899–914. [CrossRef]

http://doi.org/10.1093/molbev/msz189
http://www.ncbi.nlm.nih.gov/pubmed/31432070
http://doi.org/10.1093/sysbio/sys029
http://www.ncbi.nlm.nih.gov/pubmed/22357727
http://doi.org/10.1093/sysbio/syy032
http://www.ncbi.nlm.nih.gov/pubmed/29718447
http://doi.org/10.1007/s12041-014-0428-2
http://doi.org/10.3109/19401736.2013.772165
http://doi.org/10.1007/s11033-012-1681-1
http://doi.org/10.1038/s41586-020-2873-9
http://doi.org/10.1016/j.ympev.2014.06.011
http://doi.org/10.1080/23802359.2020.1773341
http://www.ncbi.nlm.nih.gov/pubmed/33457778
http://doi.org/10.3109/19401736.2013.840588
http://www.ncbi.nlm.nih.gov/pubmed/24117189
http://doi.org/10.3109/19401736.2014.926503
http://www.ncbi.nlm.nih.gov/pubmed/24938093
http://doi.org/10.1093/molbev/msl158
http://doi.org/10.1016/j.ympev.2010.06.010
http://www.ncbi.nlm.nih.gov/pubmed/20601013
http://doi.org/10.1093/oxfordjournals.molbev.a003917
http://doi.org/10.1111/j.1365-294X.2005.02672.x
http://doi.org/10.1073/pnas.95.18.10693
http://doi.org/10.1186/1471-2164-15-573
http://doi.org/10.1093/molbev/msj025
http://doi.org/10.3109/19401736.2013.840603
http://www.ncbi.nlm.nih.gov/pubmed/24102604
http://doi.org/10.1080/24701394.2016.1275603
http://www.ncbi.nlm.nih.gov/pubmed/28129726
http://doi.org/10.2174/138920212799034811
http://www.ncbi.nlm.nih.gov/pubmed/22942673
http://doi.org/10.1080/24701394.2020.1734586
http://www.ncbi.nlm.nih.gov/pubmed/32148154
http://doi.org/10.1146/annurev.bi.51.070182.000425
http://doi.org/10.1146/annurev.bi.57.070188.000333
http://doi.org/10.1038/362709a0
http://doi.org/10.1006/geno.1994.1391
http://doi.org/10.3109/19401736.2013.763243
http://doi.org/10.1002/iub.2231


Animals 2023, 13, 96 15 of 16

77. Uddin, A.; Chakraborty, S. Synonymous codon usage pattern in mitochondrial CYB gene in pisces, aves, and mammals.
Mitochondrial DNA Part A 2017, 28, 187–196. [CrossRef] [PubMed]

78. Uddin, A.; Mazumder, T.H.; Chakraborty, S. Understanding molecular biology of codon usage in mitochondrial complex IV genes
of electron transport system: Relevance to mitochondrial diseases. J. Cell Physiol. 2019, 234, 6397–6413. [CrossRef] [PubMed]

79. Uddin, A.; Choudhury, M.N.; Chakraborty, S. Factors influencing codon usage of mitochondrial ND1 gene in pisces, aves and
mammals. Mitochondrion 2017, 37, 17–26. [CrossRef] [PubMed]

80. Frank, A.; Lobry, J. Asymmetric substitution patterns: A review of possible underlying mutational or selective mechanisms. Gene
1999, 238, 65–77. [CrossRef]

81. Asakawa, S.; Kumazawa, Y.; Araki, T.; Himeno, H.; Miura, K.-i.; Watanabe, K. Strand-specific nucleotide composition bias in
echinoderm and vertebrate mitochondrial genomes. J. Mol. Evol. 1991, 32, 511–520. [CrossRef]

82. Reyes, A.; Gissi, C.; Pesole, G.; Saccone, C. Asymmetrical directional mutation pressure in the mitochondrial genome of mammals.
Mol. Biol. Evol. 1998, 15, 957–966. [CrossRef]

83. McInerney, J.O. Replicational and transcriptional selection on codon usage in Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA 1998,
95, 10698–10703. [CrossRef]

84. Das, S.; Paul, S.; Dutta, C. Evolutionary constraints on codon and amino acid usage in two strains of human pathogenic
actinobacteria Tropheryma whipplei. J. Mol. Evol. 2006, 62, 645–658. [CrossRef]

85. Guo, F.-B.; Yuan, J.-B. Codon usages of genes on chromosome, and surprisingly, genes in plasmid are primarily affected by
strand-specific mutational biases in Lawsonia intracellularis. DNA Res. 2009, 16, 91–104. [CrossRef]

86. Comeron, J.M.; Aguadé, M. An evaluation of measures of synonymous codon usage bias. J. Mol. Evol. 1998, 47, 268–274.
[CrossRef]

87. Powell, J.R.; Moriyama, E.N. Evolution of codon usage bias in Drosophila. Proc. Natl. Acad. Sci. USA 1997, 94, 7784–7790.
[CrossRef] [PubMed]

88. Wright, F. The ‘effective number of codons’ used in a gene. Gene 1990, 87, 23–29. [CrossRef] [PubMed]
89. Zheng, B.; Han, Y.; Yuan, R.; Liu, J.; van Achterberg, C.; Tang, P.; Chen, X. Comparative Mitochondrial Genomics of 104 Darwin

Wasps (Hymenoptera: Ichneumonidae) and Its Implication for Phylogeny. Insects 2022, 13, 124. [CrossRef] [PubMed]
90. Sueoka, N. Directional mutation pressure and neutral molecular evolution. Proc. Natl. Acad. Sci. USA 1988, 85, 2653–2657.

[CrossRef]
91. Sueoka, N. Two aspects of DNA base composition: G+ C content and translation-coupled deviation from intra-strand rule of

A = T and G = C. J. Mol. Evol. 1999, 49, 49–62. [CrossRef]
92. Uddin, A.; Chakraborty, S. Codon usage trend in mitochondrial CYB gene. Gene 2016, 586, 105–114. [CrossRef]
93. Yannai, A.; Katz, S.; Hershberg, R. The codon usage of lowly expressed genes is subject to natural selection. Genome Biol. Evol.

2018, 10, 1237–1246. [CrossRef]
94. Jiang, L.; Chen, J.; Wang, P.; Ren, Q.; Yuan, J.; Qian, C.; Hua, X.; Guo, Z.; Zhang, L.; Yang, J. The mitochondrial genomes of Aquila

fasciata and Buteo lagopus (Aves, Accipitriformes): Sequence, structure and phylogenetic analyses. PLoS One 2015, 10, e0136297.
[CrossRef]

95. Bi, D.; Ding, H.; Wang, Q.; Jiang, L.; Lu, W.; Wu, X.; Zhu, R.; Zeng, J.; Zhou, S.; Yang, X. Two new mitogenomes of Picidae (Aves,
Piciformes): Sequence, structure and phylogenetic analyses. Int. J. Biol. Macromol. 2019, 133, 683–692. [CrossRef]

96. Shen, Y.-Y.; Shi, P.; Sun, Y.-B.; Zhang, Y.-P. Relaxation of selective constraints on avian mitochondrial DNA following the
degeneration of flight ability. Genome Res. 2009, 19, 1760–1765. [CrossRef]

97. Yang, H.; Li, T.; Dang, K.; Bu, W. Compositional and mutational rate heterogeneity in mitochondrial genomes and its effect on the
phylogenetic inferences of Cimicomorpha (Hemiptera: Heteroptera). BMC Genom. 2018, 19, 264. [CrossRef] [PubMed]

98. Wang, Q.; Lu, W.; Yang, J.; Jiang, L.; Zhang, Q.; Kan, X.; Yang, X. Comparative transcriptomics in three Passerida species provides
insights into the evolution of avian mitochondrial complex I. Comp. Biochem. Physiol. Part D 2018, 28, 27–36. [CrossRef] [PubMed]

99. Taylor, R.W.; Turnbull, D.M. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 2005, 6, 389–402. [CrossRef]
[PubMed]

100. Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary
medicine. Annu. Rev. Genet. 2005, 39, 359. [CrossRef] [PubMed]

101. Schmidt, T.R.; Wu, W.; Goodman, M.; Grossman, L.I. Evolution of nuclear-and mitochondrial-encoded subunit interaction in
cytochrome c oxidase. Mol. Biol. Evol. 2001, 18, 563–569. [CrossRef] [PubMed]

102. Zsurka, G.; Kudina, T.; Peeva, V.; Hallmann, K.; Elger, C.E.; Khrapko, K.; Kunz, W.S. Distinct patterns of mitochondrial genome
diversity in bonobos (Pan paniscus) and humans. BMC Evol. Biol. 2010, 10, 270. [CrossRef] [PubMed]

103. Oliveira, D.C.; Raychoudhury, R.; Lavrov, D.V.; Werren, J.H. Rapidly evolving mitochondrial genome and directional selection in
mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). Mol. Biol. Evol. 2008, 25, 2167–2180. [CrossRef]
[PubMed]
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