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Simple Summary: Animal models of human and animal diseases have been studied for decades in
both experimental and clinical research with the findings applied to their management and therapy.
Today, molecular and genomic research has led to the gene editing and gene therapies of an increasing
number of these disorders. This review summarizes current knowledge about the molecular genetics
and therapeutic approaches applied to the heritable human and animal bleeding diseases.

Abstract: Animal models of human and animal diseases have long been used as the lynchpin of
experimental and clinical research. With the discovery and implementation of novel molecular and
nano-technologies, cellular research now has advanced to assessing signal transduction pathways,
gene editing, and gene therapies. The contribution of heritable animal models to human and animal
health as related to hemostasis is reviewed and updated with the advent of gene editing, recombinant
and gene therapies.
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1. Introduction

The identification of a group of mammalian genomes and their sequencing has led
to the current genomic revolution (Table 1) [1]. In 2021, the Alliance for Regenerative
Medicine published a review of the rare human diseases currently undergoing 61 different
clinical trials which included examples of applied gene therapy [2]. A plethora of articles
and opinions also has appeared in the recent global scientific literature [3–11]. These
include hematological, ophthalmological and metabolic conditions. Most are based upon
the CRISPR-Cas9 technology of Doudna and Charpentier and colleagues, along with the
parallel work of Zhang and colleagues at Harvard and MIT’s Broad Institute [2–12].

Table 1. Timeline of animal genome sequencing [1].

Species Date Sequence Published

Human 2001
Mouse 2002

Rat 2004
Chicken 2004

Non-Human Primate
Chimpanzee 2005

Rhesus macaque 2007
Orangutan 2011

Dog 2005
Cat 2007

Cow 2009
Horse 2009
Turkey 2010

Pig 2012
Goat 2017
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As recently described and summarized by author Walter Issacson, the 2020 Nobel
Prize winning genomic research of Jennifer Doudna and Emmanuelle Charpentier helped
catapult molecular research into the CRISPR gene-editing era [12]. Similar findings were
published by Virginijus Šikšnys and associates in Lithuania [12,13].

CRISPR is a genetic engineering technique that allows the genomes of living organisms
to be modified primarily with a simplified bacterial CRISPR-Cas9 antiviral defense system
that delivers the Cas9 nuclease complexed with a synthetic guide RNA (gRNA) into a cell.
The genome of the cell can be cut at any desired location, such as Cas9 or Cas12, thereby
permitting existing genes to be removed and/or new ones added in vivo [12–15].

Meanwhile, recombinant AAV vectors, based on nonpathogenic parvoviruses, have
been used or are currently in use in 264 Phase I/II/III human clinical trials for these dis-
eases [9–11,16–23]. While unexpected, remarkable clinical efficacy has also been achieved,
the use of such high doses has been shown to provoke host immune responses culminating
in serious adverse events including the deaths of four patients [9,10,16–23].

To address these limitations, scientists have developed capsid-modified next-generation
(NextGen) AAV serotype vectors [9,16–23]. These new recombinant AAV vectors are up to
80-fold more efficacious at reduced doses. Regulatory approval using AAV5 gene therapy
with valoctocogene roxaparvovec for hemophilia A was granted in the European Union in
August 2022 and is pending in the United States, Meanwhile, the US FDA in November
2022 approved the AAV vector use of etranacogene dezaparvovec for treatment of adults
with hemophilia B [16,24–35].

Additional data have derived from animal models to evaluate efficacy and safety,
including the mouse, ‘humanized’ mouse, dog, monkey, and other non-human primates
(Table 1). Viral vector characterization is also an important application in gene
therapy [9–11,16–24].

Regardless, therapeutic gene and cell therapy research and development no doubt will
progress when advanced technologies and services for viral vector design and manufactur-
ing are adopted. Such technologies, in combination with technologies for CRISPR-based
gene editing, RNA interference, base editing, and prime editing, will move innovative
therapeutics forward [12–35].

This review addresses the topic with respect to the heritable mammalian bleeding
disorders, the history of which is summarized below (Table 2). Please note that the ac-
quired human bleeding disorders also are seen in animals (e.g., thrombocytopenia and
thrombopathia, liver disease, rodenticide exposure and thrombosis with disseminated
intravascular coagulation) [36,37].

Table 2. Scientific history of blood coagulation [36,37].

Time Period Discoveries

1700s Long after Hippocrates, Aristotle, Celsus and Galen found freshly drawn blood to clot, blood clotting became
linked to hemostasis (the cessation of bleeding).

1800s Thrombosis first recognized by Virchow; platelets are discovered by Bizzozero; familial bleeding tendency in
males (hemophilia) is first recognized.

1900s Morawitz described the classical theory of blood coagulation.

1930–1940s Disputes arose between scientists about factors that form and dissolve clots; more clotting factor disorders are
recognized in people (von Willebrand Disease) and dogs (hemophilia).

1950s von Willebrand disease identified in Poland-China pigs; factor VII identified in dog plasma after coumarin
therapy prolonged the blood clotting in vitro.

1970–1980s
von Willebrand Disease described in German Shepherd Dogs imported to North America from Germany, and
then in many dog breeds, cats, and rabbits; hemophilia described in cats and horses; factors I, IX, X, XI and XII

deficiencies documented in dogs, cats, cattle, goats; and platelet defects described in dogs, rats, and mice.

1990s–today More of these bleeding disorders found in domestic and companion animals, including the documentation of
familial pre-kallikrein and kallikrein deficiencies.
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2. Inherited Hemostatic Disorders in People and Animals

For decades, studies of the role of blood cells, plasma, lymph, and the vascular endothe-
lium of humans have relied upon in vivo and in vitro animal models for their scientific
advancements and understanding [19,22,25,29,31,36–124]. In that regard, hemostatic disor-
ders that parallel those seen in people also have been recognized in companion animals for
decades, and recent studies have focused on their management with recombinant and gene
therapy [50,52,57] (Tables 2 and 3). These heritable bleeding diseases occur most often as a
consequence of inbreeding and line breeding—in rare breeds of dogs and cats, which by
necessity are inbred, and in breeds in which particular animals are popular competition
show winners and are used extensively for breeding [36–40,43–49] (Figure 1). Interestingly,
the most common of all canine heritable disorders are essentially the same or similar in
purebred and mixed breed dogs, as documented in a recent review that included more than
152 genetic disease variants in more than 100,000 dogs [84].

Table 3. Genome Wide Associations (GWAS) for heritable canine bleeding disorder traits.

Bleeding Disorder GWAS; Genes Breeds Affected References

Hemophilia A (Factor
VIII Deficiency)

Boxer, single nucleotide change C to G at nucleotide
1412 (1412 C>G)in Exon 10, results in arginine to
proline at amino acid 471 (P471R) in A2 domain

German Shepherd Dog,
single nucleotide change G to A at nucleotide 1643

(1643 G>A)in Exon 11, results in tyrosine to cysteine
at amino acid 548 (C548Y) in A2 domain

Many, also mixed breeds,
cats, horses [19,21,29,39,43,56]

Hemophilia B
(Christmas Disease;

Factor IX Deficiency)

Missense mutation G to nucleotide 1477, glycine
379-glutamic acid

Insertional mutation in line 1 of canine FIX gene
Nucleoside deletion of transcription factor binding

site of FIX gene
promotor

Cairn Terrier, Hovawart,
German Wired-Haired

Pointer
(Drathaar), 23 other

breeds, and cats

[16,20,33,58–63]

von Willebrand Disease,
Types 1, 2, 3

Type 1, Doberman, homozygous 157-base-pair
intragenic marker allele+ heterozygous 1 of 4

extragenic marker alleles
Type 2, GSHP nucleotide variant at Exon 28

Type 3, single nucleotide deletion in Exon coding
VWF prepeptide (Scottish Terrier), splice site

mutation Intron 16 (Dutch Kooiker)VWFc.4937A>G
A/A, G/G

Many, prevalent in
Doberman Pinscher,
Shetland Sheepdog,

Scottish Terrier, Golden
Retriever, Pembroke

Welsh Corgi,
Chesapeake Bay

Retriever, German
Short-Haired Pointer

(GSHP), German
Wire-Haired Pointer

(Drathaar), ~ 50 other
breeds, cats, Poland.

China swine

[76–78,81–84,88]

Factor VII Deficiency Missense G96E mutation at Exon 5. Glycine 26 to
Glutamic acid, 31% frequency in breed

Beagle, more than 14
other breeds [89]

Factor X Deficiency
(Stuart–Prower Disease) Homozygous deletion of factor X gene(s) is lethal

American Cocker
Spaniel, Jack Russell

Terrier
[91]

Factor XI Deficiency

Kerry Blue, mutation of F11 gene, homozygotes
affected,

90 bp insertion, Chr16:44477343-44477344, 10 bp
duplication (dup GCACAAAGCT)

Chr:44477344-44477353

English Springer Spaniel,
Kerry Blue Terrier, and

Holstein cattle
[95]

Factor XII Deficiency
(Hageman Trait)

Cats, novel mutation (c.1631 G >C) at Exon 13 of
feline F12 gene, results in amino acid change

(p.GS54A)

Miniature Poodle, cats,
reptiles, marine
mammals, birds

[96,97]
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Table 3. Cont.

Bleeding Disorder GWAS; Genes Breeds Affected References

Prekallikrein Deficiency G to A transversion at Exon 8
Shih Tzu. American

Hairless Terrier, others,
and Belgian horse

[99]

Thrombasthenia
(Glanzmann’s Disease);

Bernard-Soulier
Syndrome

Otterhounds, single nucleotide change at G1193
(1000) at Exon 12 of gene encoding for glycoprotein
GPIIb, substitution of histidine for aspartic acid at

398 (367) of calcium -binding domain of GPIIb
Single ITGA2B gene mutation on chromosome 9,

chr9:19054488-19054488: G>C
American Cockers, single glycoprotein 9 (GP9)

deletion at Exon coding on chromosome 20
Great Pyrenees, 14-base insertion in Exon 13 and a

splicing defect of Intron 13
Deletion of P2Y12 in Greater Swiss Mountain Dog

and Bichon Frise

Otterhounds American
Cocker Spaniel, Greater

Swiss Mountain Dog
(GSMD), Great Pyrenees,

Bichon Frise

[113,114,121,123,
124]

Thrombopathia

RASGRP-1; chr18:52417313-52417315: 3 bp deletion
(del TCT)

Autosomal recessive procoagulant deficiency at
canine chromosome 27

Basset Hound, Spitz,
and cats, Simmental
cattle, Greater Swiss

Mountain Dog, German
Shepherd Dog,

Fawn-Hooded (FHwjd)
rat

[103,106,108,111,
112,115,117,121,

122,124,125]

Thrombocytopenia
Associated with Hashimoto’s lymphocytic

thyroiditis (3-5 genes of major histocompatibility
complex, MHC, as in humans)

American Cocker
Spaniel, Old English
Sheepdog, Standard

Poodle, Vizsla,
Weimaraner, Akita,
Samoyed, Shih Tzu,

Long -Haired
Dachshund, Kerry Blue

Terrier, other
white/fawn and

dilute-color breeds and
hybrids

[118,120]

Macrothrombocytopenia

Norfolk Terrier, Cairn
Terrier, Chihuahua,

Danish-Swedish Farm
Dog, Kritikos Lagonikos,

Wesr Highland White
Terrier, Parson Russell
Terrier, Marenma and
Abruzees Sheepdog

[124]

Diagnosis of these hemostatic disorders is more accurate when age-and sex-matched
controls are used for coagulation studies [85,86,88,124], whereas for platelet function as-
sessment. Mucosal bleeding time, whole blood, platelet-rich plasma and washed platelets
have been the samples of choice [124] (Table 3).

The cloning of the factor VIII and factor IX genes occurred more than three decades
ago [15–35,39,53,57,59,61,81] (Table 3). Since then, major advances in the application
of molecular genetics and gene therapy to the diagnostics and clinical management of
hemophilia have led to the generation of novel bioengineered recombinant clotting factor
concentrates and the recent successes with AAV gene therapy for Factor VIII using AAV5,
AAV6, AAV8, AAV-LK03, and AAVhum37 and factor IX with AAV-2, AAVS3L, AAV5,
AAV6, AAV*, AAVSPK-100, and AAVrh10 ([16–26,31] (Table 1)).
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Figure 1. The Author and technician, the late Joanne Kull, with hemophilic dogs at Griffin Laboratory,
New York State Department of Health, 1975 [39].

Given these innovations and efforts, the clinical benefit of gene therapy in hemophilia
has been relatively recent following on the outcome of Phase 3 clinical trials [25,30,31,34].
Despite the very high cost of development ($ 2.5 million for hemophilia A and $3.5 million
for hemophilia B [34], these advances in gene therapy have clearly enhanced the safety and
efficacy of hemophilia clinical care, reduced the described ‘societal burden’ from their care,
and have vastly improved the quality of life of these patients [34].

The use of gene therapy has been and still is a major goal in hemostasis
research ([16–35,39,59,61,62,124] (Tables 2 and 3)). The first hemophilia gene therapy
products approved for clinical use, as stated above, have used AAV gene therapy with the
nonpathogenic parvoviruses, valoctocogene roxaparvovec for hemophilia A and etranaco-
gene dezaparvovec for treatment of adults with hemophilia B [24–28,30,34]

A review by Kerri Wachter in the AABB News of February 2022, reviewed the gene bio-
therapy trials for patients with blood disorders [35]. Specifically mentioned was progress
with sickle cell disease, and hemophilia A (Factor VIII deficiency) and B (Factor IX defi-
ciency), which are caused by single-gene mutations [34,35]. These patients no longer should
need prophylactic or therapeutic infusions of plasma or recombinant Factor VIII and IX,
respectively. These gene therapies use adenovirus-associated viral vectors to deliver the
missing DNAs to the patient’s liver for synthesis. This process of gene editing essentially
deletes the mutant section of their DNA and inserts the normal section of DNA. In addition
to gene editing. other genome approaches use gene addition, gene silencing and gene
correction [5–12,35].

A severely affected young hemophiliac born since the mid-1990s with access to recom-
binant factor VIII and IX replacement therapy, can anticipate a normal life expectancy with
little to no permanent complications from excessive bleeding [24–27,34,52]. This therapy
when given by necessity every other day is exceedingly expensive, and there are still seri-
ous treatment concerns [30,34]. Firstly, some patients will develop neutralizing antibodies
during the first 50 infusions of therapeutic factor VIII [30]. Secondly, placement of a central
venous access device is typically needed which has the life-threatening risks of infection
and thrombosis. Prolonging the biological efficacy of infused recombinant factor VIII has
been a goal in this field [50,52,57].
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Hemophilic boys receiving plasma-derived transfusion therapies in the early 1980s also
had a 75–95% risk of acquiring human immuno-deficiency virus (HIV) and /or hepatitis
C infection, respectively [34,50]. Since 1990, however, improved screening of plasma
donors and commercial plasma fractionation and production protocols have shown no
transmission of HIV, hepatitis C, or other virus associated with any of these modern
plasma-derived factor VIII preparations [27,28,34,35,50].

The availability of several commercial recombinant factor VIII, factor IX, and von
Willebrand factor products since the mid-1990s has largely supplanted the plasma-derived
products [30,34,50,52,57]. When recombinant von Willebrand protein is infused along
with recombinant factor VIII, the risk of developing a clotting factor inhibitor is reduced.
Similarly, the amount of human albumin that the cell lines need for stability in producing the
recombinant factor VIII has been reduced in each step, making the product safer [50,52,57].

Currently, a dozen or more gene transfer, gene editing and genetically modified cell
therapy trials for hemophilia have been performed and are ongoing [16–35].

2.1. Hemophilia A (Factor VIII: C Deficiency)

Hemophilia A is an X-chromosome-linked recessive disease carried by the female
and manifested in the male. In animals, female hemophiliacs can be produced, however,
by the mating of hemophilic males to carrier females [36,37]. This situation has occurred
with mild forms of the disease in inbred families of purebred dogs and cats where affected
males survive to sexual maturity and can reproduce. Hemophilia is the most commonly
reported, severe inherited coagulation defect of animals, and has been recognized in most
breeds of dogs, in mongrel dogs, in many breeds of cats and mixed breed cats, in horses
and cattle [36,37,39–46] (Table 3).

Recombinant human factor VIII produced by Genetech, Inc., was first infused in early
1970 into a Boxer dog with hemophilia A in this author’s clinic in rural Albany, NY [28].
The small volume of concentrated factor VIII took about five minutes and the toenail
bleeding time checked beforehand at over ten minutes was dramatically reduced to just
3 drops of serous-tinged fluid. Thus, this breakthrough study in a hemophilic dogs showed
clinical success of a commercial recombinant human factor VIII [27,36–38,50–52]. Parallel
infusion and gene therapy studies in hemophilic dogs included not only plasma-derived and
recombinant factor VIII but also recombinant factor VIIa to induce its sustained expression,
as therapy to help generate factor Xa and bypass the need for factor VIII [29,57,59,61,62,66].

2.2. Hemophilia B (Factor IX Deficiency; Christmas Disease)

An X-chromosomal-linked recessive disease like hemophilia A, hemophilia B has been
reported in at least 26 breeds of dogs and 3 breeds of cats [36–49,51] (Table 3). It was first
recognized in families of the Cairn Terrier and British Shorthair cat [36,37,40,43–45]. Results
of diagnostic screening tests are basically the same as those as described for hemophilia A
although specific tests are required to identify the defect factor IX deficiency rather than
factor VIII:C deficiency. Affected animals have very low circulating levels of factor IX and
carrier females have levels reduced to about half normal (40–60%) [36,37,45].

Treatment and management considerations for pets with hemophilia B are the same as
those for hemophilia A except that canine factor IX-rich plasma fractions are given [36,37].
In general, cats with either form of hemophilia are more easily managed as house pets than
are dogs with the same diseases. Cats tend to more agile and are lighter and can often
lead reasonably healthy, long lives maintained as house pets [40]. Recombinant human
factor VIIa and IX infusions and gene therapy have also have been successful with canine
hemophilia B [37,51,57,59,61,62,67].

2.3. von Willebrand Disease (vWD)

The multifaceted syndrome known as vWD was first described in humans in 1926 [38].
The first animal model of this disease was described in 1959 in a colony of Poland-China
swine, and in 1970, the canine form was discovered in members of a German Shepherd Dog
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family imported from Germany [39,64,65](Table 3). Their disorder, usually milder than
the hemophilias, causes bleeding from mucous membranes and skin, as well as epistaxis,
and gastrointestinal and urogenital bleeding. Affected dogs have a prolonged bleeding
time with resulting abnormal hemorrhage from surgery. While vWD is the most common
inherited bleeding disorder of humans, it also occurs in about five dozen canine breed types,
several families of cats, a quarter horse, and an inbred line of Flemish Giant/Chinchilla
laboratory rabbits [47,64–84]. A high prevalence of the gene for vWD is found in the Dober-
man Pinscher (~80% prevalence), German Shepherd Dog, Miniature Schnauzer, Golden
Retriever, Shetland Sheepdog, Basset Hound, Standard Poodle, Keeshond, Rottweiler,
Dachshund, Scottish Terrier, Manchester Terrier, and Pembroke Welsh Corgi. The disorder
is either less prevalent or the true prevalence is unknown in other breed types likely because
too few animals have been studied [64–84].

Type 1 vWD is by far the most common form in canines, and is inherited as an au-
tosomal, incompletely dominant trait with variable clinical and laboratory expression
depending upon the degree of penetrance of the mutant gene [36,37,76–84]. vWD is anal-
ogous to the autosomal recessive Type 3 vWD of humans in four dog breeds: Scottish
terriers, Chesapeake Bay retrievers, Shetland sheepdogs, and German wirehaired pointers,
in Himalayan cats, and Poland-China swine [35,68,71,73,76]. Homozygous affected indi-
viduals cannot produce measurable von Willebrand factor (vWF) and have a moderate to
severe bleeding tendency. vWD heterozygotes can be detected by laboratory tests as they
have reduced vWF antigen or activity, but are otherwise asymptomatic.

Many additional, less common variants of vWD exist and are classified as Type 2 vWD.
These include families of German shorthair pointer dogs, and quarter horses [36,70,82].
Concurrent hypothyroidism can exacerbate bleeding in canine vWD, resulting in the
situation where asymptomatic carriers of vWD may exhibit a bleeding tendency if they
develop autoimmune thyroiditis and become hypothyroid. This is a common situation
that is especially prevalent in Doberman pinschers [36,72]. Hypothyroid dogs also may
exhibit thrombocytopenia and mucosal surface bleeding (Table 3). As thyroid supplement
non-specifically shortens the bleeding time in animals with mild inherited or acquired
vWD and other platelet dysfunctions, clinical experience with its use supports the efficacy,
safety and low cost of this approach [36,37,72].

A reliable genetic screening test for identifying Scottish terriers with type 3 vWD is
available for this and several other breeds [76]. Strong associations were detected between
plasma von Willebrand factor concentration and von Willebrand factor marker genotype.
All were homozygous for a 157-base pair intragenic marker allele and homozygous or
compound heterozygous for 1 of 4 extragenic marker alleles. These marker genotypes
were exclusively detected in dogs with low plasma von Willebrand factor concentration,
although some dogs with these genotypes did not have abnormal bleeding [76].

2.4. Inherited Platelet Function Defects

Inherited disorders of platelet function were originally characterized in humans as
either being of the Glanzmann’s thrombasthenia or Bernard-Soulier syndrome types. Since
then, a wide variety of heritable and acquired platelet disorders called thrombopathias
have been identified in people and animals [36,37,39,101–125] (Table 3). Thrombasthenia
is an autosomal disorder where both sexes are affected and both sexes can carry the gene
for this disease. In animals, it was first recognized in a family of Otterhound dogs bred
by a veterinarian in upstate New York [36,37,101,108,114]. A similar disease has been
recognized in other hound breeds and in an occasional cat. The biochemical defect on the
membrane or surface of affected animals′ platelets is similar to that of human Glanzmann’s
disease, and is caused by a deficiency of platelet GPIIb/IIIa which results in reduced
platelet aggregation [113,114]. A deficiency of GPIB-IX-V in Bernard-Soulier Syndrome
cases a platelet adhesion defect [106,123]. In the otterhound disorder, the platelets are large
as well as dysfunctional; a similar disorder with large “Swiss-cheese”- like platelets was
identified in a human patient [101,102].
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Basically, the clinical signs of these disorders are similar to those of vWD because
patients have long bleeding times. Platelet numbers are usually normal in these diseases but
the function of the platelets is impaired. In the thrombopathic disorders, affected animals
are born with defective platelet function. These are of several biochemical types and have
been recognized in Basset Hounds, American Foxhounds, Spitz, Greater Swiss Mountain
Dogs, German Shepherd Dogs, Simmental cattle, several breeds of cats and in a family of
Fawn Hooded rats (strain named FH/Wjd) ([103,111–113,115–124] (Table 3)). The clinical
signs, again, are similar to those of vWD because the animals have long bleeding times.
The disease in Basset Hounds has been quite widespread among North American breeding
stock and is caused by an unique, platelet activation signaling defect problem following
injury to a blood vessel [106,108,109]. More recently, other platelet disorders have been
described in animals, including ADP storage pool deficiency, ADP receptor defect, signaling
pathway defects (CalDAG-DEFI and Kindlin-3) for GPIIb/IIIa activation, and a platelet
procoagulant defect (Scott Syndrome) resulting in an in vivo coagulopathy [104,117]. A
recent in-depth review summarized these findings [6,24] (Table 3).

2.5. Other Inherited Disorders
2.5.1. Factor VII Deficiency

Factor VII deficiency is a mild to moderate bleeding disorder in people characterized
by bruising, and soft tissue bleeding from gums, bowel and urinary tract [37,47,89]. It was
described in the 1960s in colonies of Beagles bred for biomedical research [37]. Since then,
dogs affected by this autosomal recessive trait have been useful for studies that require
monitoring liver function, as factor VII is synthesized in the liver and has a very short
half-life (~4 h). A novel missense mutation has been identified as causing the relatively
high prevalence of this defect in the breed [89].

2.5.2. Factor X Deficiency

Stuart–Prower factor (factor X) deficiency, an uncommon human coagulation disorder,
was first described in the 1970s in a family of American Cocker Spaniels [90]. This condition
has since been diagnosed in mongrel dogs and the Jack Russell terrier. Very low levels
of factor X (<6% to 35%) are present in homozygotes and some heterozygotes, and they
have a clinically expressed bleeding disease, whereas most heterozygotes (40–70% factor
X) are asymptomatic. When factor X activity is below 20%, the affected dogs usually do
not survive neonatal life. Severely affected pups are stillborn or fade and die in the first
week or two of life, thereby mimicking the ”fading puppy syndrome”. Necropsy of these
pups reveals massive internal bleeding. Signs in adults are mild and bleeding is seen from
mucosal surfaces [37,90,91].

2.5.3. Factor XI (PTA) Deficiency

Another rare disorder of humans, factor XI deficiency mostly affects individuals of
Jewish background [37,38]. Spontaneous bleeding episodes are mild (hematuria, bruising,
epistaxis, menorrhagia) except when patient undergoes surgical procedures. In this case,
bleeding usually starts 12–24 h after surgery and can be severe and protracted. Even after
minor procedures such as biopsies and tonsillectomy, lethal bleeding has been reported.
In animals, this disorder is clinically like the human equivalent and was first described in
English Springer Spaniels. It also has been reported in Holstein cattle, Great Pyrenees, and
Kerry Blue Terrier dogs [37,92–95].

2.5.4. Prekallikrein (Fletcher Factor) Deficiency

Prekallikrein is involved in the early surface contact phases of blood clotting. It is the
precursor of plasma kallikrein that activates small peptide kinins. In addition to humans,
deficiency of prekallikrein has been reported in a family of Belgian horses, and two dog
breeds [98–100]. In one affected dog, a point mutation was identified in Exon 8 leading to
an amino acid substitution in the fourth apple domain of the protein [99].
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2.5.5. Factor XII Deficiency (Hageman Trait)

An asymptomatic coagulation deficiency recognized in humans, Hageman Trait (factor
XII deficiency) occurs in dogs, and is quite often found in cats [37,96,97,100]. The absence
of detectable biological or immunological factor XII is a normal phenomenon of a variety of
other species, such as whales, birds (including the common domestic fowl and waterfowl),
reptiles, and possibly fish [37].

3. Discussion and Conclusions

Research on animal models has been pivotal essential to our understanding of basic
and applied sciences and has led to significant improvements in the management of both
human and animal diseases [36–40] (Tables 2 and 3). Veterinarians and animal scientists
have been at the forefront of biomedical research in comparative medicine over the last 50
years [38,39]. The study of naturally occurring or induced animal models of human disease
has led to tremendous growth of knowledge in many disciplines, including hematology,
immunology, vaccinology, virology and genetics and contributed significantly to new areas
of research, such as transplantation and gene therapy [34,36–40,55].

This era began with in vitro manual diagnosis using tilt tube timed assays with test
tubes and a 37 ◦C water bath along with skin and mucosal surface bleeding times [39].
Today, sophisticated genetic, genomic and molecular diagnostics plus the use of safe, blood
type compatible blood transfusion products, including blood concentrates, recombinant
and stem cell technology are available for humans and companion animals [36,37]. As
described above, the first early study with a recombinant human clotting Factor VIII
product was infused into a hemophilic boxer in our laboratory at the Griffin Laboratory,
NYS Department of Health in Albany, NY. His bleeding time normalized for 48 h and this
success help lead to human clinical trials with this technology [27–35].

These research animal models also benefitted other animals [37,39,48,49,88,110,116,124].
While information generated from animal-based research experiments has been used
primarily to benefit human health and well-being, parallel benefits have been accorded to
animals. A classical example is the inherited bleeding disorders discussed here. In fact, this
author was surprised how relatively easy it was over the last decades to search for and find
parallel animal models of the human diseases of interest [36,37]. The net effect of those
basic and comparative medical advances has been to improve diagnostic and treatment
modalities in clinical veterinary medicine [36,37,39,48,49].

4. Conclusions

Current molecular markers and gene editing research has yielded practical and in-
novative clinical applications. For decades, veterinary and comparative geneticists have
developed and relied upon biochemical markers of specific genetic traits to identify carrier
and affected animals that are used as models of human disease [39,85–88,124]. More recently,
molecular approaches have been developed that can be used to study gene therapeutic
approaches for advancing human and animal health and well-being [1–35,50–53,88,124],
Future technological developments, particularly in the areas of gene delivery and cell trans-
plantation, will be critical for the successful clinical implementation of this gene therapy.
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