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Simple Summary: Feather coverage reflects the production efficiency and animal welfare of poultry.
Monitoring the feather-cover condition of chickens is of great significance. Infrared thermography
can be used to evaluate the probable existence of inflammatory or tissue damage processes due to the
variation in skin temperature, which can be used to objectively determine the depth of the feather
damage. In this study, a 3D reconstruction pipeline of chicken monitoring was developed, with color,
depth and thermal information for the comprehensive feather damage monitoring of chickens. The
results demonstrated that the proposed method can better assess the feather damage compared to a
2D color image or thermal infrared image. The depth of chicken feather damage can be assessed by
the 3D model. The method provided ideas for automation and intelligent feather-damage monitoring
in poultry farming.

Abstract: Feather damage is a continuous health and welfare challenge among laying hens. Infrared
thermography is a tool that can evaluate the changes in the surface temperature, derived from an
inflammatory process that would make it possible to objectively determine the depth of the damage
to the dermis. Therefore, the objective of this article was to develop an approach to feather damage
assessment based on visible light and infrared thermography. Fusing information obtained from
these two bands can highlight their strengths, which is more evident in the assessment of feather
damage. A novel pipeline was proposed to reconstruct the RGB-Depth-Thermal maps of the chicken
using binocular color cameras and a thermal infrared camera. The process of stereo matching based
on binocular color images allowed for a depth image to be obtained. Then, a heterogeneous image
registration method was presented to achieve image alignment between thermal infrared and color
images so that the thermal infrared image was also aligned with the depth image. The chicken image
was segmented from the background using a deep learning-based network based on the color and
depth images. Four kinds of images, namely, color, depth, thermal and mask, were utilized as inputs to
reconstruct the 3D model of a chicken with RGB-Depth-Thermal maps. The depth of feather damage can
be better assessed with the proposed model compared to the 2D thermal infrared image or color image
during both day and night, which provided a reference for further research in poultry farming.

Keywords: poultry; feather damage monitoring; 3D reconstruction; RGB-D; infrared thermography;
deep learning

1. Introduction

Poultry welfare influences the performance and disease rate of poultry flocks [1].
Feather cover condition is an important indicator of poultry welfare [2]. Intact feather cover
ensures normal moving, flying, thermoregulation and skin protection for the chickens [3,4].
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However, poultry may lose their feathers due to feather pecking in flocks [4] or abrasion
and molting [5]. Feather pecking is closely associated with feather loss and skin injuries,
particularly on the rump and back [6,7]. Experimental studies have identified several
factors influencing feather pecking, such as genotype, nutritional factors, group size and
stocking density, light, the frequency of resting and dust bathing, flooring (wire or substrate
and type of litter), fear and stress. [8-11]. When chickens cannot perch inside their cages [12]
or the substrate does not permit dust bathing in hens, chickens are more likely to perform
severe feather pecking [13]. Therefore, convective heat loss from poorly feathered chickens
is increased. This leads to an increase in heat loss and feed consumption, and a decrease
in egg production [14], which may cause economic losses for the farmer [15]. The causes
of feather pecking are mainly associated with the lack of enrichment [16], high and low
feather-pecking lines [17], which are sometimes not taken into account in production
units. Therefore, it is important to develop objective and practical tools that can evaluate
feather damage.

The commonly utilized method for feather-cover assessment was traditional feather
scoring (FS) [18], which was a visual evaluation of the feather on different parts of the
body. However, this method is relatively subjective and less repeatable [19]. Feathers
act as thermal insulation and affect the heat exchange between the hen’s body and the
surroundings [20]. A hen with poor feather coverage loses more body heat compared
to that with good feather coverage, therefore, requires thermoregulation [21]. Infrared
thermography (IRT) detects the heat radiation emitted from the surface of an organism. [22]
IRT can quantify and evaluate surface temperatures in the external skin of animals, which
are dependent on blood circulation [23]. As circulation increases, it is possible to observe
the condition of the internal organs using IRT. This allows for an evaluation of the probable
existence of inflammatory or tissue damage processes due to the variation in skin tempera-
ture [24]. The featherless region, with heat loss in the infrared spectrum, can be detected
by IRT, manifested as different thermal images [25]. IRT has been increasingly applied to
monitor the physiological and health status of animals [26]. The acquisition of hen surface
temperature by the IRT allows for a feather damage assessment, which is more objective,
accurate and repeatable [27]. Cook et al. [19] compared a feather cover assessment of
laying hens using IRT with the feather scoring method. The IRT method was confirmed to
provide a more objective and accurate measurement with continuous variables. However,
the defined temperature ranges for the featherless area were subjective. Nads et al. [28]
reported a significant relationship between the radiated temperature and feather cover.
They found that featherless areas are more sensitive to air temperature than feathered areas.
Zhao et al. [23] showed that the IRT is a promising tool compared with FS. Based on the 2D
thermal infrared images, the body surface temperature ranges were analyzed to discern
excellent feather, fair feather, and no feather coverage of different body parts of laying hens.
Pichova et al. [29] utilized IRT to assess feather damage in four body parts. The difference
between body surface temperature and ambient temperature was positively correlated
with feather score. However, the assessment process was non-automatic.

Recently, many scholars have conducted health monitoring and inflammation eval-
uations of poultry using machine vision technology [30-33]. Nevertheless, these studies
are mainly based on 2D RGB or thermal infrared images. Feather damage assessments
could not assess the depth of feather damage or comprehensively evaluate the extent of
the feather damage. Tissue pecking in denuded areas involves forceful pecking directed at
exposed skin and may cause bleeding, which may attract even more pecking with other
birds joining in, leading to severe skin damage and possibly death [4]. It is crucial to
assess the depth of feather damage. To more accurately and automatically monitor the
feather damage condition of chickens, an effective and automated multi-data fusion model
including RGB, depth and thermal information would be a better solution. RGB images
are provided with a rich texture and color features with high resolution. Thermal imaging
allows for detection in a low illumination at night. The fusing information obtained from
these two bands can highlight their strengths, which is more evident in the assessment of
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feather damage. Additionally, if the fused images contain depth information, the depth of
feather damage can be determined.

Generally, the 3D data can be obtained by binocular, time-of-flight (TOF), structured
light cameras or light detection and ranging (LiDAR) [34]. The current techniques to
reconstruct the 3D model with multi-source information rely on merging data from different
sensors. These techniques can be divided into two categories: (i) The first method is to map
the RGB and thermal information to a 3D point cloud. Susperregi et al. [35] presented a
multi-sensor fusion approach that combined an RGB-D camera, a laser and a thermal sensor
on a mobile platform for pedestrian detection and tracking. In addition to RGB-D cameras,
LiDAR was also used for depth data acquisition [36]. Subsequently, some scholars also
studied RGB-Depth-Thermal (RGB-D-T) reconstruction in human medicine. A multimodal
sensor system including RGB, 3D depth, thermal, multispectral and chemical sensing
was presented for wound assessment and pressure ulcer care [37]. An infrared thermal
camera was combined with an RGB-D sensor to necrotize enterocolitis detection in preterm
human infants [38]. Although depth cameras and range sensors could provide accurate
point clouds, their precision and range were still affected during operation outdoors.
(ii) The second method is an image-based point cloud reconstruction. Lagtiela et al. [39]
proposed a semi-automatic pipeline to generate an RGB-D-T model by image-stitching
and surface reconstruction. An operator is still needed to verify the matches between
RGB and thermal images. Ham and Golparvar-Fard [40] solved the image registration
problem (the process of transforming different sets of data into one coordinate system to
achieve image alignment) by simultaneously capturing RGB and thermal images. However,
the multi-view stereo process [41] used for 3D reconstruction would take much more
time. Several RGB-thermal point cloud registration approaches were assessed by Hoegner
et al. [42]. The most accurate proposed method was based on the Iterative Closest Point
(ICP) algorithm [43]. Generally, the key to the image-based point cloud reconstruction is to
align the RGB and thermal images.

Although much progress was achieved in previous studies on 3D reconstruction with
multi-source information, the following problems need improvements: (i) Traditional stereo
matching algorithms suffered in challenging situations, such as in weak texture regions
and repetitive patterns, which led to considerable errors in estimated depth data [44].
(ii) Typically, an RGB image is of high resolution and has rich texture information, while
the thermal infrared image is of low resolution and has poor texture details. Traditional
feature-based image registration methods [45] calculate the optimal homography matrix
by establishing a correspondence between the two sets of key points [46]. However, the
accuracy of these methods depends on the numbers of detected key points and the correct
key points correspondences, which may be difficult to apply and cannot guarantee the
fusion of heterogeneous images. (iii) The segmentation process of the RGB images for
chickens is important for the accuracy of the reconstruction. The fully convolutional
networks (FCN) [47], U-Net [48] and other fully convolutional-based networks, such as
SegNet [49] and DeepLab [50], have shown great potential in semantic segmentation tasks.
Nevertheless, the chicken’s claws are very thin and the feathers are easily confused with
the surrounding background, which increases the complexity of the task.

To overcome these limitations, three improvements were made in our research: (i) A
deep learning-based stereo matching network was utilized to predict the depth image
based on binocular RGB images, supporting the generation of more robust and accurate
depth data. (ii) A heterogeneous image registration method was presented to achieve
image alignment between thermal infrared and RGB images so that the thermal infrared
image was also aligned with the depth image. (iii) Studies have shown that the recognition
of object classes with a similar depth appearance and location is improved by combining
depth information [51]. In our research, the depth image was added to the semantic
segmentation network to improve the accuracy.

In summary, the objective of this article was to develop an approach for feather damage
assessment based on visible light and infrared thermography. Fusing the information
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obtained from these two bands permitted a more reliable assessment of feather damage.
The main contributions are as follows: (i) A novel pipeline was proposed to reconstruct
the RGB-Depth-Thermal maps of chickens using binocular color cameras and a thermal
infrared camera. (ii) A depth extraction algorithm for feather damage assessment was
developed to determine the depth of feather damage from the RGB-Depth-Thermal model.
(iii) The performance of the feather damage monitoring system was evaluated, for both
day and night.

2. Materials and Methods
2.1. Experiment Materials and Image Acquisition

A binocular vision system was constructed in this experiment (Figure 1). Two dual-
spectral thermography cameras (Hikvision, DS-2TD2636-10, 8~14 pum, uncooled core,
China) were suspended 145 cm above the floor. The field of view was 87 cm x 47 cm on the
ground. An RGB camera (6 mm, 1920 x 1080 pixels) and a thermal infrared camera (10 mm,
384 x 288 pixels) were included in a dual-spectral thermography camera. The baseline
distance b between the binocular RGB cameras was 11.1 cm. The binocular RGB images and
the left thermal infrared images were adopted for a 3D reconstruction of chicken images.

RGB camera €,
Thermal camera T RGB camera €,
'b‘ Network cable
Cage
—
—
o
o ﬁ-
Drinker Computer
Chicken ’(@ﬁ:l"
O b K?/ﬁ Perch pad
Feed trough — | T
Iy 1 i Manure collection trough

Figure 1. Experimental setup.

The image acquisition system was connected to a computer (AMD Ryzen 9 4900HS,
3.00 GHz per core, NVIDIA GeForce RTX 2060 GPU, 16GB RAM) for collecting images.
The model was trained and inferred with a server equipped with a NVIDIA TITAN RTX
GPU. “Python” was used as the programming language and “PyCharm” as the integrated
development environment for image processing.

The experiment was conducted in Huzhou City, Zhejiang Province, PR China,
on 8 January 2022 (moderate cold, 7-16 °C) and from 25 June 2022 to 3 July 2022 (moderate
heat, 28-35 °C). Two batches of Chinese local yellow-feathered laying hen breed, including
eight 24-week-old and twenty 20-week-old chickens, were collected separately. Usually,
these hens were kept free-range on a thickly bedded floor. Only when collecting data were
they placed in a separate cage, with dimensions of 145 cm x 97 cm x 130 cm (L x W x H).
The cage was equipped with a drinker, a feed trough and a manure collection trough.

A total of 1000 sets of images (binocular RGB images and left thermal infrared images)
of twenty 20-week-old chickens were chosen as a dataset for the evaluation of the disparity
prediction and semantic segmentation performance. A total of 60%, 20% and 20% of the
dataset were divided for training, validation and testing, respectively. To evaluate the
performance of 3D reconstruction, the body length and body width of twenty 20-week-old
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chickens were measured manually and using our method, respectively. The ground truth
of all the body sizes were measured using a measuring tape.

To simulate the feather damage of chickens, the feathers of 15 chickens (eight 24-week-old
and seven 20-week-old chickens) were cut on the back area. The ground truth of damage
depth was measured by a caliper. A total of 20 images for each chicken in different positions
were selected for the evaluation of feather damage detection. The mean values of estimated
damaged depth from 20 images were calculated as the predicted values of damaged depth for
each chicken.

2.2. Methodology

The overall pipeline of 3D reconstruction of chicken images for feather damage moni-
toring is shown in Figure 2. It consisted of the following steps:

1. Image acquisition (binocular RGB images and thermal infrared images);

2 Camera calibration of binocular RGB cameras and a thermal infrared camera;

3.  Stereo matching for disparity prediction based on binocular RGB images;

4. RGB-D semantic segmentation based on the left RGB image and the predicted depth

image;

Image registration of the left RGB image and the thermal infrared image;

6.  Point clouds fusion between the color point clouds and the thermal infrared point
clouds. The color point clouds were reconstructed by the left RGB image and the
depth image, and the thermal infrared point clouds were reconstructed by the thermal
infrared image and the depth image.
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Figure 2. The pipeline of 3D reconstruction of chickens with RGB-D-T maps for feather damage
monitoring. RGB-D-T: RGB-Depth-Thermal.

The following sections explain each step in more details.

2.2.1. Camera Calibration

The position relationships between the binocular RGB cameras and a thermal infrared cam-
era were determined through camera calibration (Figure 3). The Zhang Zhengyou calibration
method [52] was utilized. A 15 x 16 black-white planar checkerboard (25 mm x 25 mm each
cell) made of soda glass (white area) and chrome film (black area), was used as a calibration
board. A heating plate (750 mm x 450 mm, set to 42 °C) was attached to the bottom of the
calibration board. The white and black areas of the board were clearly distinguished due to
the difference in the thermal properties of the two materials. The chrome film has a higher
transmission and lower emissivity compared with the soda glass. Twenty-three groups
of checkboard images from the three cameras were captured to calculate the internal and
external parameters of the three cameras utilizing the MATLAB calibration toolbox [53].
The camera coordinate systems of RGB camera C;, RGB camera C, and thermal camera T;
are 091 — X Y€ zG 06 — XGY©%27Z% and O — XT1YT1 ZTh, respectively. The rotation
matrix R and translation vector ¢ between two camera coordinate systems were calculated
as external parameters. The overall mean error of binocular cameras’ calibration was
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0.33 pixels. The intrinsic parameters obtained from the camera calibration step were used
as a reference for subsequent heterogenous image alignment and disparity prediction.

Heating pad
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Figure 3. Camera calibration. O¢ — X1 Y©1 Z& 0C — X©Y© 7% and OTr — XT1YTi ZTh refer to the
camera coordinate systems of RGB camera C;, RGB camera C; and thermal camera Tj, respectively.
“R” means the rotation matrix between two camera coordinate systems. “t” means the translation
vector between two camera coordinate systems.

2.2.2. Disparity Prediction

Adaptive aggregation network (AANet) is a state-of-art and efficient stereo matching
network proposed in the 2020’s conference on computer vision and pattern recognition [54],
which balances a fast inference speed and comparable accuracy. AANet was used for the
disparity prediction of chicken images.

Figure 4 provides the overview structure of AANet for disparity prediction of chicken
images. Given a rectified RGB image pair of a chicken, we first extracted the down-sampled
feature pyramid at 1/3, 1/6 and 1/12 resolutions by a shared feature extractor. The multi-
scale 3D cost volumes [55] were constructed by correlating the features of the left and right
images at corresponding scales (1/3, 1/6 and 1/12 resolutions). The cost volumes were
aggregated with six stacked Adaptive Aggregation Modules (AA Modules). Each AA Mod-
ule consisted of three Intra-Scale Aggregation (ISA) and a Cross-Scale Aggregation (CSA).
The multi-scale disparity predictions were regressed by the soft argmin mechanism [56].
The final disparity prediction was hierarchically up-sampled and refined to the original
resolution [57].

Feature Pyramid
J )
= L = | K
‘ Correlation -

Multi-Scale
Cost Volumes |

Figure 4. Overview structure of AANet for disparity prediction of chicken images. AANet: adaptive
aggregation network. ISA: Intra-Scale Aggregation. CAS: Cross-Scale Aggregation. AA Module:
Adaptive Aggregation Module. Each AA Module consisted of three ISA and a CSA.
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The dataset was augmented by random color augmentations and vertical flipping.
The pre-trained AANet model for Scene Flow dataset [54] was used for direct inference
on our dataset. The initial learning rate of the pre-trained AANet model was 0.001 and
decreased by half at 400th, 600th, 800th and 900th epochs. Adam [58] was used to optimize
the parameters of the network to minimize the average loss of the model on the training
data. The disparity range was from 0 to 192 pixels.

2.2.3. RGB-D Semantic Segmentation

Residual encoder-decoder network (RedNet) is a semantic segmentation network
of excellent performance proposed by Jiang et al. [59]. It was utilized to improve the
segmentation results by complementing the depth information to RGB signals. The RedNet
structure is illustrated in Figure 5. The encoder—decoder network structure [48] was
utilized in the RedNet network and the residual block was used as the building module.
A pyramid supervision training scheme [59] was proposed to optimize the network. The
pyramid supervision training scheme applied supervised learning over different layers
in the decoder to avoid the gradients vanishing. Two convolutional branches, the RGB
branch and the depth branch were included in the encoder structure, which had the same
network configuration, except for the feature channel number of the convolution kernel.
The element-wise summation was used for feature fusion.
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Figure 5. Overview structure of RedNet (ResNet-50) for semantic segmentation of chicken. RedNet
(ResNet-50): residual encoder-decoder network using ResNet-50 as the basic feature extractor.
ResNet-50: residual network with 50 layers.

During training, the dataset was augmented from 600 to 60,000 groups by applying
random scale and crop, followed by random hue, brightness and saturation adjustment.
When the epoch reached to approximately 100, the model had been converged. Stochastic
gradient descent (SGD) was used to optimize the parameters of the network. The initial
learning rate of SGD was set to 0.002. The target mask image could be segmented from the
background by inferring.

2.2.4. Thermal-RGB Image Registration

A method was proposed to achieve the thermal-RGB image registration within a fixed
range distance based on checkerboard images. In general, the thermal infrared image
was registered to RGB image through two steps: (i) scale and position adjusting and
(ii) projection transformation. As the high-resolution RGB image would be time-consuming
to reconstruct, it was resized from 1920 x 1080 to 960 x 540 pixels using the bilinear
interpolation algorithm [60]. The focal length and principal point of the thermal infrared
image were adjusted to be the same as that of the RGB image. In this way, the difference in
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image resolution and the principal point of the thermal infrared and the RGB images can
be eliminated [61].

Then, the same corner points of the checkerboard pattern in the thermal infrared and
RGB images were extracted for image pairing. The M-Estimate Sample Consensus (MSAC)
algorithm [62] was utilized to eliminate incorrect matching pairs and select the optimal
corresponding pairs. The projection matrix applied to convert the thermal infrared image
coordinates (£, ) to the RGB image coordinates (X, Y) was as follows:

X a1 ap as| |X
Y| =|as as ag| |7 @
1 az as 1 1

where 4;(i =1, 2, ..., 8) are the parameter values to be calculated. Four corresponding
pairs of (x, y) and (X, Y) must be known to solve Equation (1). Specifically, 4830 pairs
of points extracted from checkerboard images were used to calculate the transformation
matrix within a fixed-range distance, about 1.2~1.8 m.

The scale and position of the original thermal infrared image (Figure 6a) were adjusted
to obtain the first transformation image (Figure 6b). Through projection transformation,
the final thermal infrared image was achieved (Figure 6d). To better display the effect of
image registration between the RGB and thermal infrared images, 18 green parallel lines
were drawn on the RGB image (Figure 6¢) and thermal infrared image (Figure 6d). The
key points of the RGB image and thermal infrared image were row-aligned. The fused
red-cyan anaglyph from the RGB image and the thermal infrared image are shown in
Figure 6e. Each pixel of two images basically overlapped. Additionally, the reprojection
errors of image registration were calculated based on 4830 pairs of corner points extracted
from the checkerboard images. The results showed that the mean absolute error of the
image registration was 1.25 pixels, while the root mean square error was 1.76 pixels, which
demonstrates the effectiveness of the proposed image registration method.

(e

Figure 6. The process of the image registration between RGB and thermal infrared images: (a) original
thermal infrared image; (b) thermal infrared image after scale and position adjusting of image (a);
(c) original RGB image; (d) thermal infrared image after projection transformation of image (b);
(e) red-cyan anaglyph of images (c) and (d).
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2.2.5. Three-Dimensional Reconstruction

The 3D point cloud of a chicken was reconstructed using the information obtained in
the previous steps. An example of a 3D reconstruction with RGB-D-T maps of the chicken
is shown in Figure 7. Four kinds of images, including the left RGB image, depth image,
registered thermal infrared image and mask image, were utilized as inputs. The following
steps were implemented for 3D reconstruction:

(i) The RGB and the mask images, the depth and the mask images, and the registered ther-
mal infrared and the mask images, were processed using bitwise and operations [63],
respectively;

(i) The RGB image was combined with the depth image to obtain the target color point
clouds, and the registered thermal infrared image was combined with the depth image
to obtain the target temperature point clouds;

(iii) The color point clouds and the temperature point clouds were fused to obtain the
final RGB-D-T model of chicken by dimensional expansion.

RGB image (left) Depth image
X Mask image X Mask image X Mask image "

Depth image Registered thermal

RGB image (left)

I'

L -

wh

i
RGBD Point cloud DT Point cloud
XY.ZRGB XY.Z.T

3503 359 3884

aLre : &)
[y —
" -
L \:
49

RGBDT Point cloud

XYZ. RGBT

Figure 7. The example of 3D reconstruction with RGB-D-T maps for chicken. RGB-D-T: RGB-Depth-
Thermal. The matrix @ showed the temperature value of each pixel of area (D).

A multi-dimensional vector was created to store this model. One point of the RGB-D-T
point cloud can be described as: P {x, y, z, 1, g, b, t}, where {x, y, z} represent the spatial
coordinates at the point P, {r, g, b} represent the color values of the three channels at the
point P, and ¢ represents the temperature at the point P. For a better display, the z-coordinate
value of each point of the thermal point cloud was increased by 300 mm and merged these
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two point clouds. The matrix ) in Figure 7 showed the temperature value of each pixel of

area (D).

2.3. Feather Damage Detection and Depth Estimation

To better display the feather damage region, all the thermal infrared images were
acquired in a pseudo-color mode and processed based on the mask images in Section 2.2.5.
The feather of a chicken was judged whether it was damaged or not. If the feather was
damaged, the feather damage region was extracted and the damage depth was estimated.
The total pipeline can be divided into the following two steps:

Step 1: Feather damage detection and extraction

The algorithm for the feather damage detection and extraction is described in Figure 8.
Firstly, the three channels of the thermal infrared image I;, in RGB color space were
extracted and processed with the Ostu segmentation algorithm [64] to obtain segmented
binary images Ry, Gy, and By, respectively. Secondly, the image Gy, was processed with
bitwise or operation [63] to obtain image G,. The images G, and Ry, were processed with
bitwise and operation to obtain image M;. The images M; and By, were processed with
bitwise and operation to obtain image M. The images M; and M, were processed with
bitwise exclusion-or (XOR) operation [65], which returns a true value when either but
not both of its operands is true, to obtain image Mj3. Thirdly, the number of the contours
in potential target regions was used as the criterion to judge whether the feather of the
chicken was damaged or not. Since the head region of chicken was also featherless, the
temperature of the head region was very close to the damaged region, which disturbed the
detection of the damaged region. According to the number of the contours in image Ms3,
the results of feather damage detection can be divided into the following three situations:
(i) If the number of contours in image M3 was 0, the feather of the chicken was judged as
not damaged. (ii) If the number of contours in image M3 was 1 and the pixel area of the
contour was more than 300, the feather of the chicken was judged as damaged and the
region of the contour in binary image Ms was the target feather-damaged zone. Otherwise,
the feather of the chicken was judged as not damaged. (iii) If the number of contours in
image M3 was 2 or more, the centroid points of the top two largest contours in image M3
were extracted, which labeled as ¢y and c3, respectively. The centroid point of the contour
in image I;, was also extracted and labeled as c¢1. By comparing the Euclidean distance
between ¢ and ¢, and the Euclidean distance between c; and c3, the potential target region
in image My can be obtained by choosing the contour with the shorter distance. If the pixel
area of potential target region in image M4 was more than 300, the feather of the chicken
was judged as damaged and the region of the contour in binary image Ms was the target
damaged zone. Otherwise, the feather of the chicken was judged as not damaged.
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Figure 8. The flow diagram of feather damage detection and extraction. I;;: the thermal infrared
image of a chicken. Ry, Gy, and By,: the three channels of the thermal infrared image I;, processed
with the Ostu segmentation algorithm. G,: the image processed with bitwise or operation from the
image Gy,. My: the image processed with bitwise and operation from the images G, and Ry;,. Mjy: the
image processed with bitwise and operation from the images M; and By,. M3: the image processed
with bitwise exclusion-or (XOR) operation from the images M; and M,. Mjy: the schematic diagram
of the contours and centroid points extraction from the images I;, and M3. The centroid points of the
top two largest contours in image M3 were extracted, which labeled as c; and c3, respectively. The
centroid point of the contour in image I;, was also extracted and labeled as c;. Ms: the target binary
image with feather-damaged zone. Mg: the image processed with bitwise and operation from the
images [;; and Ms. The image Mg was projected to a 3D coordinate system. A clean point cloud of
the damaged region could be acquired after denoising. The difference value d between the minimum
and the maximum z coordinate values of the target point clouds was calculated as the predicted
depth of the feather-damaged region.

Step 2: Feather damage depth estimation

After obtaining the target binary image Ms, the images [;, and Ms were processed
with bitwise and operation to obtain image Mg, which only contained the feather-damaged
region with color information. Since the 3D point cloud was reconstructed from 2D images,
every 2D mask on the 2D images can be projected to a unique 3D patch on the 3D point
clouds. Therefore, the image Mg was projected to a 3D coordinate system. To eliminate the
influence of segmented edge points on depth extraction, the sparse points were removed by
the Radius-Outlier-Removal filter [66]. A clean point cloud of the damaged region could be
acquired after denoising. The difference value d between the minimum and the maximum
z coordinate values of the target point clouds was calculated as the predicted depth of the
feather-damaged region.

2.4. Performance Metrics

To evaluate the effect of feather damage depth estimation, the coefficient of determina-
tion (R?) and the root mean square error (RMSE) of feather damage depth were calculated
based on the proposed model and manual measurement method.

Additionally, the pixel accuracy (PA), intersection-over-union (IoU), model size and
inference speed were used to evaluate the performance of the segmentation network. The
PA was the ratio of the number of pixels correctly identified to the total number of pixels in
the test set. The IoU was the ratio of the intersection and the concatenation of the two sets,
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which refers to the ground truth and the predicted segmentation. The PA and IoU were
calculated as: .
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where k is the number of categories containing empty classes (here k = 1), p;; is the number

of true values of i and predicted to be i, pij is the number of true values of i that are predicted
to be j, and pj; is the number of true values of j that are predicted to be i.

IoU =

®)

3. Results and Discussion
3.1. 3D Reconstruction Results of Chicken

To evaluate the reconstruction effect of chickens, the 3D reconstruction results for
chickens were divided into five postures: “standing”, “bowing head”, “walking”, ”spread-
ing wings” and “grooming” (Figure 9). The reconstructed model displayed the color
and thermal information of chickens in different postures with great accuracy and low
noise. The edges of the chicken were well recognized and segmented from the background.
Figure 10 shows the comparison of the manual measurement method and our method
for the body length and body width. The manual body size measurement was used as
the reference to evaluate the measurement results in our method. The selected chicken
images using in our method were in “standing” posture. From the data in Figure 10, it
can be calculated that the mean relative errors of body length and body width between
the manual measurement method and our method for 20 chickens were 2.20% and 2.39%,
respectively. The results of Figures 9 and 10 demonstrated that the RedNet-based semantic
segmentation method and the AANet-based stereo matching method were effective for the
reconstruction of feathers.
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Figure 9. RGB-D-T point clouds for five postures of chicken generated by the proposed 3D recon-
struction method: (a,b) “standing” posture; (c,d) “bowing head” posture; (ef) “walking” posture;
(g/h) “spreading wings” posture; (i,j) “grooming” posture. RGB-D-T: RGB-Depth-Thermal.
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Figure 10. Comparison of the manual measurement method and our method for the: (a) body length;
and (b) body width.

Table 1 lists the mean values of temperatures for the head, back and tail areas of chick-
ens under different ambient temperatures. Two different ambient environments, including
moderate heat (MoH, 28-35 °C) and moderate cold (MoC, 7-16 °C), were considered. The
highest surface temperature of the chickens was the head area, which was featherless, and
the lowest surface temperature of the chickens was the back or tail area, which was fully
feathered. The results were consistent with the previous studies [67].

Table 1. Mean values of temperatures for the head, back and tail areas of chickens under different

ambient temperatures.

Environment Head Area (°C) Back Area (°C) Tail Area (°C)
MoH * 43.6 + 0.9 3924+1.2 38.8 +1.0
MoC * 395+19 354+15 346 =13

* MoH refers to moderate heat (28-35 °C), and MoC refers to moderate cold (7-16 °C).

When there was a significant increase in the body surface temperature (feather damage
or inflammation process), this could be identified by our developed method and measures
can be taken to avoid economic losses. If the system detected a body abnormality, the
developed system could serve as a monitoring tool.

3.2. Evaluation of Feather Damage Depth Estimation

Linear regression for feather damage depth was conducted on predicted values re-
gressed with manual measurements of 15 feather-damaged chickens (Figure 11). The results
showed that the R? was 0.946 with an RMSE of 2.015 mm. Overall, the depth of feather
damage from the proposed method was highly correlated with manual measurement
method. However, there were still some reasons for errors in depth estimation. First,
the error of disparity prediction based on binocular RGB images may have a significant
effect on depth estimation of feather damage. If the color and texture of the damaged
region and the non-damaged region in the RGB image were similar, the predicted depth
of feather damage would be underestimated. Second, the posture of the target chicken
was another uncertain factor for damage depth estimation. For example, if the chicken
was in the posture of “bowing head”, “spreading wings” or “grooming”, the estimated
depth of feather damage would be affected. Future work could focus on the ideal posture
recognition of chicken for precise feather damage monitoring.
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Figure 11. Linear regression for feather damage depth based on the predicted results with
manual measurements.

3.3. Feather Damage Monitoring Based on the Proposed Method vs. 2D Thermal Infrared Image or
RGB Image

The point clouds of sample chicken with feather damage on the back were recon-
structed (Figure 12). The thermal infrared image was acquired in a pseudo-color mode.
The experimental data showed that, compared with 2D RGB image (Figure 12a) or thermal
infrared image (Figure 12b), the depth of the damage region can be measured from the
proposed RGB-D-T model (Figure 12¢c), which was more intuitive and comprehensive for
feather damage assessment. The feather damage was difficult to observe from an RGB
image (Figure 12a) when the depth of the damage region was not deep. Additionally, the
depth of feather damage was uncertain from the thermal infrared image (Figure 12b), even
though the feather damage could be identified.

Figure 12. Sample of chicken point clouds with feather damage: (a) RGB image with feather damage;
(b) thermal infrared image with feather damage; (c) RGB-D-T point clouds with feather damage.
RGB-D-T: RGB-Depth-Thermal.

In addition to the detection effect of feather damage in the daytime, the situation of
darkness at night was also validated (Figure 13). It can be found that the detection of feather
damage was affected by the weak texture and low contrast of the RGB image (Figure 13a),
which made it difficult to distinguish the region and size of feather damage. However,
the depth image at night can also be predicted by our model (Figure 13c). Additionally,
through image registration, the thermal infrared image (Figure 13d) can be fused with the
RGB image to obtain the RGB-D-T model. A clean 3D model of chickens was obtained
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(Figure 13e) after utilizing distance filtering. There was a significant high-temperature
region on the back of the reconstructed RGB-D-T model, and the depth of the feather
damage can be obtained.

43.7°C

27.8°C

L]
-

Figure 13. Example of chicken point clouds with feather damage at night: (a) RGB image with
feather damage at night; (b) thermal infrared image with feather damage at night; (c) depth image
predicted by binocular RGB images at night; (d) thermal infrared image with feather damage at
night after image registration; (e) RGB-D-T point clouds with feather damage at night. RGB-D-T:
RGB-Depth-Thermal.

The results demonstrated that the RGB-D-T 3D model was a promising tool for the
feather damage assessment of chickens. In contrast to previous works [19,23], the approach
was no longer limited to 2D thermal infrared images, but mapped the thermal images to
3D point clouds to extract the depth of the damage region. The combined video data from
the binocular RGB camera and thermal imaging camera provided a method for an almost
complete monitoring of chickens during both day and night.

3.4. Evaluation of Chicken Disparity Prediction

The AANet algorithm was compared with three classical stereo algorithms: semi-
global block matching (SGBM) [68], absolute differences measure and census transform
(AD-Census) [69] and PatchMatch stereo (PMS) [70]. The disparity map of different al-
gorithms (Figure 14) was obtained through the left rectified RGB image (Figure 14a) and
the right rectified RGB image (Figure 14b). All the disparity maps were transformed into
pseudo-color images to compare the disparity prediction accuracy. The disparity map
obtained by the AANet model was the best compared to the other three algorithms, with
more accurate contour details and better predictions of the objects, especially towards the
railing. Referring to the inference speed, the four algorithms were all tested on the remote
server with a NVIDIA TITAN RTX GPU. The inference speeds of the SGBM, AD-Census,
PMS and AANet model were 4.000 fps, 0.157 fps, 0.007 fps and 2.037 fps, respectively. The
fastest inference speed was the SGBM algorithm, but this had the worst disparity map
effect. The PMS algorithm required the longest inference time, which was mainly due to
the huge computation required to estimate the individual 3D plane at each pixel. It can be
easily found that the deep learning-based AANet model achieved a better balance between
accuracy and inference speed compared with SGBM, AD-Census and PMS methods. It
was fully feasible to utilize the AANet algorithm for the stereo matching and disparity
prediction of chicken images.
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Figure 14. Effect comparison of different stereo matching algorithms: (a) left rectified RGB image;
(b) right rectified RGB image; (c¢) SGBM; (d) AD-Census; (e) PMS; (f) AANet. SGBM: semi-global
block matching. AD-Census: absolute differences measure and census transform. PMS: PatchMatch
stereo. AANet: adaptive aggregation network.

3.5. Evaluation of Chicken Semantic Segmentation Based on Color and Depth Images

The FCN and U-Net were used as comparison networks to verify the effectiveness of
the RedNet used in our pipeline. The segmented ground truth for each image at the pixel
level was obtained using the LabelMe toolbox [71]. A comparison of segmentation results
for FCN, U-Net and RedNet is shown in Figure 15.

Ground
Truth

Standing Bowing head Walking Spreading wings Grooming

Figure 15. Qualitative comparison of the RedNet (ResNet-50) and the recent competitive semantic
segmentation methods. RedNet (ResNet-50): residual encoder—decoder network using ResNet-50
as the basic feature extractor. ResNet-50: residual network with 50 layers. FCN: fully convolutional
network. U-Net: a network that the architecture looks like the letter “U”.

To evaluate the robustness of segmentation for different postures, the testing set was
classified into five poses, including “standing”, “bowing head”, “walking”, “spreading
wings” and “grooming”. The segmentation effect of RedNet was the best compared to FCN

and U-Net, especially in the darker region of the feather and contour details (Figure 15). The
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results suggested that the RedNet algorithm was more robust to different poses compared
to FCN and U-Net.

The comprehensive performance metrics for the dataset of 1000 images on three
semantic segmentation algorithms are listed in Table 2. In addition to IoU, the metric of PA,
model size and inference time were also calculated. The PA and IoU of RedNet both had
the highest values compared to FCN and U-Net, with 0.997 and 0.978, respectively. It was
confirmed that the segmentation accuracy was significantly improved by complementing
disparity images. In addition, three algorithms were all tested on the remote server with a
NVIDIA TITAN RTX GPU to compare the inference speed. It was found that RedNet had
the slowest inference speed (17.857 fps) and the largest model size (313 MB) among the
three models. This was mainly due to the combination of RGB and depth branches used
for training. Nevertheless, the inference speed of RedNet exceeded 15 fps, which indicated
that utilizing RedNet could already meet the real-time requirements.

Table 2. Quantitative comparison of PA, IoU, model size and inference speed on three semantic
segmentation methods.

Methods PA IoU Model Size (MB) Inference Speed (fps)
FCN 0.840 0.839 77 21.277
U-Net 0.921 0.919 30 21.739
RedNet 0.997 0.978 313 17.857

3.6. Time Efficiency Analysis

For daily monitoring of poultry, time efficiency was necessary to be taken into account.
The time efficiency was analyzed on the test set and shown in Table 3. The longest subtask
time was disparity prediction based on binocular RGB images, which was mainly due to
the complexity of the AANet model. The average run-time and the standard deviation of
a set of images were 0.627 s and 0.149 s, respectively. This demonstrates the feasibility of
real-time monitoring and the stability of the method.

Table 3. Time cost statistics for each step of the overall pipeline.

Subtasks Average Time (s) Standard Deviation (s)
Disparity prediction 0.491 0.122
Semantic segmentation 0.056 0.008
Image registration 0.020 0.005
3D reconstruction 0.060 0.014
Total 0.627 0.149

3.7. Limitations and Future Works

The results of our experiments demonstrated that the RGB-D-T model provides a
potential tool for feather damage monitoring and assessment. Limitations can be found
in our method. Since the experimental scenario in this paper was a simulated flat-rearing
condition, only single chicken was shown in each image. If the proposed approach was
applied in an actual commercial environment, multiple chickens will be involved and
chickens may be occluded from each other, or by feeding or drinking equipment [72]. This
would result in some chickens having incomplete point clouds when reconstructed, so that
their feather cover condition could not be effectively assessed. In addition, the chickens’
postures may affect the feather damage recognition. For various poses, the size and the
depth of the feather damage area identified from the images were different (Figure 16). In
this paper, the chicken dataset was selected with ideal postures (“standing” posture).
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Figure 16. Thermal infrared images of chicken in different postures. (a) “standing” posture;
(b) “spreading wings” posture; (c) “bowing head” posture; (d) “grooming” posture.

Therefore, future works should focus on the robustness of the proposed model for
the occlusion of multiple chickens and posture variation. An algorithm for multi-target
video-tracking [73] could be finetuned to detect the posture of each moving chicken in
a frame-by-frame tracking mode. If the posture of a chicken is judged as “standing”
posture, the subsequent feather damage assessment can be conducted. This research will
be implemented in a further study. Our system needs to solve the above problems to suit
the practical environment and commercial applications.

4. Conclusions

In this study, a novel approach to feather damage monitoring was proposed based
on visible light and infrared thermography. The results demonstrated that the proposed
RGB-D-T model could detect the region of feather damage and assess the depth of feather
damage. The main conclusions were as follows:

(1) A feather damage monitoring system was proposed using binocular RGB cameras and
a thermal infrared camera. The depth image of the chicken was predicted using the
AANet network based on binocular RGB images. The chicken image was segmented
from the background utilizing the RedNet network based on the RGB image and
depth image. The RGB image and thermal infrared image were registered by the
proposed heterogenous image registration method. Four kinds of images, namely
RGB, depth, thermal and mask, were utilized as inputs to reconstruct the 3D model of
chicken with RGB-Depth-Thermal maps. The results showed that the deep learning-
based AANet network was more efficient than the other three traditional stereo
matching algorithms.

(2) Based on the obtained RGB-D-T model, an automated assessment algorithm for the
depth of feather damage was developed. The feather damage region was extracted
by image pre-processing based on the thermal infrared image. The feather damage
region on the 2D images was projected to a unique 3D patch on the 3D point clouds.
The depth value was calculated by the difference value between the minimum z-value
and the maximum z-value of the target point clouds after filtering. The results showed
that the R? was 0.946, with an RMSE of 2.015 mm between the predicted depth of
feather damage and manual measurement.

(3) The feather damage monitoring system for chickens was tested during both day
and night. This indicated that the proposed RGB-D-T model was more effective for
feather damage detection than the 2D RGB image or thermal infrared image. The
results provide ideas for future research on automation and intelligent feather damage
monitoring in poultry farming.
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Abbreviations

FS Feather scoring

IRT Infrared thermography

TOF Time-of-flight

LiDAR Structured light cameras or light detection and ranging
RGB-D-T RGB-Depth-Thermal

1cp Iterative Closest Point

FCN Fully convolutional networks
AANet Adaptive aggregation network

AA Modules Adaptive Aggregation Modules
ISA Intra-Scale Aggregation

CSA Cross-Scale Aggregation

RedNet Residual encoder—decoder network
ResNet-50 Residual network with 50 layers
SGD Stochastic gradient descent

MSAC M-Estimate Sample Consensus
XOR Exclusion-or

R? Coefficient of determination

RMSE Root mean square error

PA Pixel accuracy

TIoU Intersection-over-union

MoH Moderate heat

MoC Moderate cold

SGBM Semi-Global Block Matching
AD-Census Absolute differences measure and census transform
PMS PatchMatch Stereo
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