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Simple Summary: Since the use of antibiotics as growth promoters has been banned, the poultry
sector is searching for alternatives to support production efficiency. Synbiotics, which consist of a
mixture of prebiotics and probiotics, appear to be a promising way to do so by sustaining chickens’
gut health. In this study, the synbiotic PoultryStar® sol was tested on three broiler flocks, reared
in separate farms under typical field conditions. Compared to control chickens, those fed with the
synbiotic throughout the productive cycle generally exhibited less histopathological lesions and
had higher villi at intestinal level, and ultimately performed better in terms of body weight gain,
feed conversion efficiency and liveability. The composition of the caecal microbial ecosystem was
also studied, proving that synbiotic supplementation influenced the abundance of several bacterial
populations. To fully understand the exact implications of these changes, further studies are required,
which will be informed and facilitated by the present data.

Abstract: In recent years, the applicability of prebiotics, probiotics and their mixtures, defined as
synbiotics, in poultry production has received considerable attention. Following the increasing
regulation of antibiotic use, these nutraceuticals are seen as an alternative way to sustain production
efficiency and resistance to pathogens and stressors by modulating birds’ gut health. The aim of this
study was to evaluate the benefits provided under field conditions by administering the multi-species
synbiotic PoultryStar® sol to broilers in drinking water. To this purpose, three Ross 308 broiler flocks,
representing separate progenies of a breeder flock which was treated with the same synbiotic, were
housed in separate farms, divided into treatment and control groups, and followed throughout the
productive cycle. Synbiotic administration was shown to improve gut health even in absence of a
challenge, with limited changes in terms of macroscopic intestinal lesions and more overt differences
related to histopathological scores and villi length. Synbiotic-fed chickens performed consistently
better in terms of body weight gain, feed conversion ratio and survivability. Lastly, the evaluation
of the caecal microbiome through next-generation sequencing highlighted the effects of synbiotic
supplementation on the composition of the bacterial population, the implications of which will,
however, require further studies to be better comprehended.
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1. Introduction

For decades, antibiotics have been utilized in the poultry industry to prevent and treat
diseases and promote growth. Despite the significant improvements in technology and
hygienic practices made at all stages of poultry production, bacterial diseases remain a
persistent threat not only to animal health, but also to humans, with recent reports showing
that Salmonella spp. and Campylobacter spp. are the most common causes of human
foodborne bacterial diseases linked to poultry [1,2]. Due to the increasing awareness
towards antimicrobial resistance, stricter regulations have been imposed on antibiotic use,
and antibiotic-free poultry production has grown more and more popular. Nonetheless,
several issues related to food safety and chicken welfare still need to be addressed to ensure
the viability of such production systems, and there is an increasing need for alternative
strategies to support production efficiency [3].

Since antibiotic growth promoters (AGPs) were crucial to controlling dysbacteriosis
and enteropathogens [4], novel alternatives must be found following their ban to support
gut health, which has several implications for the birds’ overall health, production effi-
ciency, food safety and environmental impact [5]. Promoting eubiosis and minimizing
enteric diseases is therefore essential to ensure the sustainability of poultry production.
Several feed additives have been explored as natural alternatives to AGPs, including pro-
biotics, prebiotics, synbiotics, organic acids, essential oils, enzymes, immunostimulants
and phytobiotics [6]. Many of these products demonstrated beneficial effects similar to
antibiotics in modulating the gut microbiome and improving the health and growth of the
animals [7].

The studies conducted on synbiotics, which rely on a synergism between probiotics
and prebiotics, have shown particularly promising results. The supplementation of different
synbiotics to broilers was demonstrated to improve body weight (BW) gain and feed
efficiency [8], reduce mortality [9], increase the resistance to heat stress [10], stimulate the
development of the gut-associated lymphoid tissue (GALT) [11] and decrease the intestinal
and carcass load of coliforms [12], Clostridium perfringens [13], Campylobacter spp. [14] and
Salmonella spp. [15].

The benefits of synbiotics in terms of performance and intestinal health, along with
their modulatory action on the microbial enteric composition [16], appear therefore well
documented. Nonetheless, different formulations may have diverse features and modes
of action and require a dedicated assessment of their efficacy and safety, including the
risk of carrying antimicrobial resistance and producing deleterious metabolites [17]. In
the present study, a commercial multi-species synbiotic product was administered to three
broiler flocks, which were progenies of a breeder flock treated with the same synbiotic and
were reared in three separate farms in typical field conditions, evaluating its effects on
productive performance, gut health and caecal microbiota.

2. Materials and Methods
2.1. Experimental Setup

The present study was conducted on the broiler progenies of a broiler breeder flock
that was treated with the synbiotic product PoultryStar® sol (PS) (BIOMIN GmbH, Herzo-
genburg, Austria), as detailed in Prentza et al. [18]. Day-old chicks from eggs laid at 30,
35 and 40 weeks of age were placed into three different commercial farms (named 1, 2 and
3) and raised under typical field conditions until slaughter at 42 days of age (doa). In each
farm, the chicks were divided between two different houses, observing a stocking density
of 15 birds/m2. PS was administered in one of the two, while the other acted as control.
In detail, depending on the house size, 8160 chicks were housed in the treatment house of
farm 1, while 14,280 were placed in the control house; for farm 2, 11,730 and 10,200 birds
were set up in the treatment and control houses, respectively; in farm 3, 15,198 chicks were
placed in each of the houses.
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2.2. Management

To ensure flock health and welfare and achieve good flock performance, management
conditions followed the official guidelines for broiler birds [19]. Wheat straw and rice
hulls were used as litter materials in cleaned and disinfected houses. The basal diet was
formulated using maize, wheat and soybean meal in accordance with the official genetic
line guidelines [20]. Feed and water were provided ad libitum. The lighting program started
at 7 days of age, providing 4 hours of darkness and 20 hours of light. Birds were vaccinated
against infectious bursal disease (IBD), infectious bronchitis (IB) and Newcastle disease
(ND) at the hatchery following the local vaccination program.

2.3. Synbiotic Administration

PS, which is a synbiotic containing patented probiotic strains plus prebiotic fruc-
tooligosaccharides, was administered in one of the two houses in each of the three broiler
farms, based on the manufacturer’s guidance. Specifically, a daily dosage of 20 g/1000 birds
was administered in clean drinking water consecutively for the first three days of age, as
recommended following the chicks’ placement, and then once a week till slaughter age
was reached.

2.4. Bacterial Enteritis (BE) Scoring

To evaluate the chickens’ intestinal health and the presence of dysbiosis, the integrity
of the intestinal wall was visually evaluated at three different time points (10, 28 and 38 doa)
on ten birds randomly picked from different points of each house of each farm by applying
a macroscopic lesion scoring system consisting of ten different parameters, which were
scored 0 when absent and 1 when present. The individual scores were summed and divided
by 2.5, yielding a total score ranging between 0 and 4 [21,22].

2.5. Histology

Specimens from different intestinal tract segments were collected at 38 doa from ten
birds randomly picked from different points of each house of each farm for histopatho-
logical and morphometrical evaluations. In detail, 3 cm long segments were collected
from the duodenum, jejunum, ileum and caecum, keeping the collection sites consistent
for each tract, and placed in 10% neutral buffered formalin as described by Hoerr [23].
One mm thick transversal sections were cut after 48 hours, then sections of 3–5 µm were
taken, stained with hematoxylin and eosin and evaluated. The histopathological scoring
system proposed by Kraieski et al. [24] was adopted to assess the degree of inflammation in
each section, grading the severity of the lesions on a 0–3 scale (0: absent or rare leukocytic
infiltration; 1: leukocytic infiltration up to 5% of a ×400 field; 2: approximately 25% leuko-
cytic infiltration of a ×400 field; 3: leukocytic infiltration in the range of 50% or more of a
×400 field).

The morphometry of the intestinal villi and crypts were examined in each section,
performing optical capture and measurement with Image Pro-Plus v.6.0 software (Media
Cybernetics, Silver Spring, MD, USA). The selection of the villi followed the criteria pro-
posed by Gava et al. [25], namely the embedment of the base into the submucosa, the
absence of any discontinuity or folding in the length of the villus, and the presence of intact
epithelium at the tip.

2.6. Recording of Performance Parameters

To evaluate potential growth differences, 100 randomly selected chickens from each
house of each farm were weighed longitudinally from 0 to 30 doa. The final BW was
recorded when birds were loaded onto the trucks at 42 doa, and the feed conversion ratio
(FCR) was calculated by dividing feed intake by the total BW gain. In addition, the carcass
weight of 100 randomly selected birds from each group was measured at the slaughterhouse.
Mortality was recorded daily throughout the whole cycle.
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2.7. Evaluation of Enteric Microbiota

To evaluate the caecal microbial composition, Next Generation Sequencing (NGS) was
performed on 60 caecal content samples taken at 38 doa from 10 randomly selected birds
of each of the two houses of the three farms. The analyses, conducted using an Illumina
MiSeq System (Illumina, San Diego, CA, USA) at LGC Genomics GmBH (Berlin, Germany),
targeted the V3 region of the 16s rRNA gene, generating 2 × 300 paired-end sequences.
Following a preliminary quality evaluation with FastQC 0.11.9, the forward and reverse
sequences were trimmed at 195 bp and 220 bp, guaranteeing a minimal Phred score of
28 and allowing for a maximum expected error of 2 bases for each read. DADA2 [26] was
used to infer the best fitting Amplicon Sequence Variants (ASVs), then the forward and
reverse sequences were merged, and chimeric sequences were discarded. Finally, ASVs
were converted to taxa using the SILVA 138 database [27,28] as a reference.

Alpha diversity was evaluated using the Simpson, Shannon, Chao1, and Observed
species indexes. Permutational ANOVAs on the euclidean distances among samples were
performed for significance testing between groups, after verifying that group dispersions
were adequately homogeneous using the betadisper function of the vegan R package [29]. The
absence of systematic biases was also confirmed by calculating the Spearman correlation
between the treatment effect and all the other variables. Finally, the isolated treatment effect,
along with the potential effect of other factors, was assessed by performing a differential
abundance analysis with DESeq2.

2.8. Statistical Analyses

The existence of significant differences in terms of BE score, histopathological lesion
score, villi and crypts height which may have been ascribed to treatment, farm effect or
sampling age (in case of longitudinal sampling) were investigated using the non-parametric
Kruskal–Wallis test followed by post-hoc Mann–Whitney test with Bonferroni correction.
The treatment and farm effects on the carcass weight was investigated with a two-way
ANOVA followed by post-hoc Tukey’s test. Log-rank test was used to compare the Kaplan–
Meier survival curves with the survival package. All statistical analyses were performed in
R (version 3.3.2) [30] setting the significance level to p < 0.05, with the sole exception of the
differential abundance analysis of microbial populations, for which the significance level
was set to p < 0.01.

3. Results
3.1. Bacterial Enteritis and Histopathological Lesion Scores

The results obtained in terms of BE score (Figure 1) showed that the macroscopic
signs of dysbacteriosis were limited in all treatment and control groups, whose scores
were always below or around 1 on a scale from 0 to 4, where 0 corresponds to a normal
gastrointestinal tract and 4 to a status of severe dysbacteriosis. However, the BE score
was shown to increase significantly with age (p < 0.0001). Significant differences between
PS-fed and control birds were found at 10 (p = 0.0228) and 38 doa (p = 0.0495) and when
considering all ages together (p = 0.0162). Since the farm effect was also shown to be
significant (p = 0.009), each farm was also assessed individually. The differences between
synbiotic-treated and control groups were found to be limited to farm 3, where they were
again significant at 10 (p = 0.0077) and 38 doa (p = 0.0108) and when considering all ages
together (p = 0.0009). No statistically significant differences were observed in farm 1 and 2.

More overt differences were found in terms of histopathological lesions scores (Table 1).
The average scores measured in each group mostly corresponded to a mild to moderate
grade of inflammation in all intestinal tracts, with treated birds scoring significantly better
in most of the comparisons. Significant between-farm differences were found at jejunum
level (p = 0.0023), with farm 2 scoring worse than both farm 1 (p = 0.0005) and farm
3 (p = 0.04265), and at caecum level (p = 0.01499), which seemed mostly ascribable to
differences between farm 2 and farm 3 (p = 0.03127).
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Figure 1. BE score measured in treatment (PS) and control (CTRL) groups at different time points by
considering all farms together and then each one separately. BE scores are expressed on a scale from
0 (normal gastrointestinal tract) to 4 (severe dysbacteriosis).

Table 1. Mean ± standard deviation of the histopathological lesion scores measured at duodenum,
jejunum, ileum and caecum level of treated (PS) and control (CTRL) birds. Scores are reported on a
scale from 0 (absent or rare leukocytic infiltration) to 3 (leukocytic infiltration in the range of 50% of a
×400 field). p-values below 0.05, marking the statistical significance of a difference observed when
comparing treatment and control groups across all farms or in each farm individually, are underlined.

Farm Intestinal Tract
Histopathological Lesion Score

CTRL PS p-Value

All farms

Duodenum 1.667 ± 0.480 1.367 ± 0.490 0.0211

Jejunum 1.833 ± 0.379 1.3 ± 0.466 <0.0001

Ileum 1.8 ± 0.407 1.233 ± 0.430 <0.0001

Caecum 2.067 ± 0.691 1.5 ± 0.630 0.0081

Farm 1

Duodenum 1 ± 0.000 1.6 ± 0.516 0.005

Jejunum 1.5 ± 0.527 1.1 ± 0.316 0.06362

Ileum 1.5 ± 0.527 1 ± 0.000 0.0137

Caecum 2.3 ± 0.675 1.2 ± 0.483 0.0017

Farm 2

Duodenum 2 ± 0.000 1.3 ± 0.483 0.0016

Jejunum 2 ± 0.000 1.7 ± 0.483 0.0767

Ileum 1.9 ± 0.316 1.4 ± 0.516 0.0251

Caecum 1.6 ± 0.516 1.5 ± 0.527 0.6934

Farm 3

Duodenum 2 ± 0.000 1.2 ± 0.133 0.0004

Jejunum 2 ± 0.000 1.1 ± 0.100 <0.0001

Ileum 2 ± 0.000 1.3 ± 0.157 0.0016

Caecum 2.3 ± 0.213 1.8 ± 0.249 0.1557

3.2. Evaluation of Intestinal Villi and Crypts

The average villi and crypts lengths measured at 38 doa in PS-treated and control
flocks, along with the villi/crypts (V/C) ratio, are shown in Table 2. Significant differences
in villi length were observed in most of the enteric tracts, both at overall level and when
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considering each farm separately. On the other hand, the differences in terms of crypt
length appeared more limited (Table 2). The farm effect proved significant for both villi
(p < 0.0001 for all intestinal tracts) and crypts (p < 0.00001 for all intestinal tracts) length.

Table 2. Mean ± standard deviation of villi and crypts length (measured in µm) in each intestinal
tract of synbiotic-treated (PS) and control (CTRL) birds. p-values below 0.05, marking the statistical
significance of a difference observed when comparing treatment and control groups across all farms
or in each farm individually, are underlined.

Farm Intestinal Tract
Villi Length Crypt Length

CTRL PS p-Value CTRL PS p-Value

All farms

Duodenum 725.7 ± 150.2 760.6 ± 125.6 0.0221 160.8 ± 62.7 155.9 ± 70.2 0.1343

Jejunum 446.7 ± 117.0 498.0 ± 109.0 <0.0001 114.8 ± 50.0 121.9 ± 57.0 0.5289

Ileum 255.7 ± 90.2 304.4 ± 85.9 <0.0001 107.2 ± 55.6 109.4 ± 43.6 0.2507

Caecum 114.3 ± 46.2 146.0 ± 81.8 0.0113 91.7 ± 34.7 94.0 ± 38.1 0.764

Farm 1

Duodenum 709.8 ± 136.2 710.9 ± 178.7 0.9478 216.4 ± 73.1 234.9 ± 63.1 0.2385

Jejunum 518.4 ± 94.8 525.6 ± 98.0 0.6969 165.1 ± 53.2 184.4 ± 50.4 0.0589

Ileum 345.3 ± 64.6 382.9 ± 94.0 0.046 158.4 ± 67.9 163.2 ± 29.9 0.0189

Caecum 152.0 ± 42.2 224.3 ± 93.4 0.0002 123.1 ± 29.2 132.2 ± 37.3 0.2482

Farm 2

Duodenum 791.6 ± 109.9 804.0 ± 72.3 0.8795 147.4 ± 31.0 118.3 ± 28.4 <0.0001

Jejunum 344.0 ± 87.9 484.6 ± 92.1 <0.0001 88.5 ± 18.9 88.2 ± 22.3 0.5372

Ileum 199.0 ± 46.5 276.9 ± 40.3 <0.0001 80.5 ± 17.8 82.5 ± 13.9 0.5259

Caecum 78.8 ± 29.4 112.3 ± 31.9 <0.0001 81.2 ± 23.7 70.6 ± 19.8 0.0329

Farm 3

Duodenum 659.7 ± 170.2 766.8 ± 79.4 0.0025 118.7 ± 22.4 114.6 ± 24.8 0.6075

Jejunum 477.8 ± 88.9 483.8 ± 129.9 0.5837 90.87 ± 23.3 93.0 ± 29.0 0.855

Ileum 222.6 ± 76.3 254.3 ± 49.9 0.0383 82.9 ± 21.5 82.3 ± 16.1 0.9341

Caecum 112.1 ± 33.2 101.5 ± 34.3 0.0926 70.5 ± 25.7 79.5 ± 19.1 0.0141

3.3. Performance Parameters

Throughout the cycle, the average live BW measured in synbiotic-treated flocks was
consistently higher than in control ones (Figure 2). The comparison of average carcass
weights and FCRs, shown in Table 3, proves a significant treatment effect at overall level
(p < 0.0001) and in each individual farm, while the farm effect and the interaction between
treatment and farm effect were not.

Table 3. Average carcass weights and feed conversion ratios (FCRs) measured in treated and control
houses of the three farms. p-values below 0.05, marking the statistical significance of a difference
observed when comparing treatment and control groups, are underlined.

Farm
Average Carcass Weight (FCR)

CTRL PS p-Value

Farm 1 1948 g (1.85) 2021 g (1.79) 0.0094

Farm 2 2001 g (1.70) 2095 g (1.64) 0.0052

Farm 3 1979 g (1.76) 2087 g (1.70) 0.0079
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Mortality rates observed in treated and control birds at overall level were 3.5% and
5.3%, respectively (p < 0.0001). Since the farm effect was found to be significant (p < 0.0001),
each farm was also considered separately. In detail, mortality was 4.8% in the control group
and 2.5% among treated birds in farm 1 (p < 0.0001); 3.7% and 2.8% in farm 2 (p = 0.0002);
6.9% and 4.7% in farm 3 (p < 0.0001) (Figure 3).
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Figure 3. Kaplan–Meier survival estimates showing the mortality rates observed throughout the
productive cycle in treated (PS) and control (CTRL) groups of each of the three farms.

3.4. Evaluation of Enteric Microbiota

As shown in the dendrogram based on euclidean distances provided in Figure 4,
samples clustered according to the farm in which they were collected. Samples from farm 2,
which housed the progeny from eggs from 35-week-old layers, clustered more closely with
farm 3 (progeny from 40-week-old layers) than with farm 1 (progeny from 30 weeks-old
layers). Within farms, samples tended to cluster according to treatment, albeit with a
few exceptions.
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Figure 4. Dendrogram of caecal content samples, clustered on the euclidean distance between their
taxonomic count data. Samples are color-coded by treatment (green for synbiotic-treated chickens,
blue for control ones).

The differences between treatments within the same farm was also made visible by
some of the alpha diversity measures, namely the Observed species and the Chao1 indexes,
although were less evident according to the Shannon and Simpson indexes (Figure 5).
The effect appeared particularly noticeable in samples from farm 2, with synbiotic-treated
chickens showing a lower species richness than control birds.
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Figure 6. Relative microbial composition measured in individual caecal content samples, shown at
Phylum (top), Order (centre) and Family (bottom) level.



Animals 2023, 13, 113 10 of 15

Since the beta dispersion within treatment group proved adequately homogeneous
(p = 0.228) a permutational ANOVA test was subsequently performed, revealing siginificant
differences between synbiotic-treated and control chickens at overall level (p = 0.002) and
in each of the three farms (p < 0.001 in all three cases).

Intercorrelation analysis revealed a significant Spearman correlation between the
treatment and the length of caecal villi (ρ = −0.6195; p < 0.0001), but not with any other
considered parameter. Considering the design of the study, these results allowed us to
isolate the effect of the synbiotic treatment on bacterial composition. Out of 9530 ASVs,
65 had a significant differential abundance on an alpha level of 0.01 (after Benjamini–
Hochberg multiple testing correction). By setting out the obtained adjusted p-values for
each ASV against the respective fold changes (Figure 7), 40 ASVs were shown to be less
abundant in synbiotic-treated than in control chickens, while 25 ASVs were overrepresented.
The top 10 ASVs with the lowest adjusted p-values are shown in Table 4.
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Figure 7. Volcano plot showing the differential abundance of ASVs due to the treatment effect.
The statistical significance value was set to p-value < 0.01 (horizontal line), while, to be considered
biologically significant, the effect size in terms of Fold Change (FC) should have had an absolute
value higher than 3 (vertical lines at log2FC = 1.5).



Animals 2023, 13, 113 11 of 15

Table 4. Top ten differentially abundant ASVs for the treatment effect based on the adjusted p-value.
The direction of differential abundance is indicated by the sign of the Log2 Fold Change.

ASV Log2
Fold Change Standard Error Adjusted p-Value Lowest

Resolved Taxon

ASV_566 −30.000000 4.494941 2.4864 × 10−11 Faecalibacterium

ASV_450 −23.252888 3.715454 3.8889 × 10−10 Monoglobus

ASV_557 −27.994668 4.727891 3.1965 × 10−9 Clostridia UCG-014

ASV_788 30.000000 5.187864 7.3500 × 10−9 Lachnospiraceae

ASV_326 −30.000000 5.454703 3.8013 × 10−8 Clostridia UCG-014

ASV_156 −30.000000 5.827878 2.6374 × 10−7 Clostridia UCG-014

ASV_159 −30.000000 5.839874 2.7902 × 10−7 Clostridia UCG-014

ASV_275 −29.839008 5.840154 3.2338 × 10−7 Clostridia UCG-014

ASV_340 30.000000 5.832041 2.6895 × 10−7 Clostridia

ASV_395 −29.762335 5.834230 3.3727 × 10−7 Clostridia UCG-014

4. Discussion

The evaluation of macroscopic intestinal features and histological measurements al-
lowed us to assess the chickens’ gut health, and how it was impacted by the synbiotic
treatment. Although the BE and histopathological lesion scores suggested good intestinal
health in all treatment and control groups, likely due to the absence of a challenge, some
differences in favor of the treated chickens could still be noted. In particular, significantly
lower BE scores were observed in synbiotic-fed birds only in farm 3, while more overt
differences were found in terms of histopathological lesions in most intestinal tracts of
chickens raised in all farms. These results were in line with those observed after adminis-
tering PS to the group of broiler breeders that birthed the investigated progenies, which
also pointed at a general intestinal eubiosis in both treatment and control groups, with the
former scoring better overall [18].

The BE scores measured in this study allowed us to demonstrate a significant age
effect, showing a biologically plausible increase in subsequent time points. In addition,
between-farm differences were present according to both scores. Such an effect, which was
observed also for other evaluated parameters, could easily be ascribed to environmental
factors related to the individual farms, such as differences in management, stockmanship,
housing, farm location and others. These variations should be considered inherent to the
field conditions in which the study was conducted to reproduce the real-life application of
the tested synbiotic.

The evaluation of villi and crypts length at 38 doa provided additional insights on
the effect of PS. Longer villi are considered an indicator of a greater surface area and thus
a greater adsorption capability [31,32], while shorter villi and deeper crypts may lead
to poor nutrient absorption, increased secretions in the gastrointestinal tract, and poorer
performance [33]. Reduced villi length also appears to be associated to macroscopic lesions
suggestive of dysbacteriosis [22]. The villi of the treated broilers were significantly longer
across most intestinal tracts and in all three farms, in agreement with other studies which
reported the same beneficial effect for other synbiotics [34–38]. On the other hand, the
differences in terms of crypt depth were less marked and consistent. Conflicting evidence
on the effect of synbiotic supplementation on intestinal crypts may also be found in the
literature, with different formulations leading to an increase [36], decrease [39] or not
affecting their depth [15]. Trends similar to the present study were found in the previous
experiment conducted on breeders [18], consolidating the knowledge about the effects of
PS administration on gut morphology.

By promoting good intestinal health and preventing any undesired condition of
dysbacteriosis or inflammation, synbiotic administration should ultimately promote pro-
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duction efficiency. In this study, synbiotic-treated flocks performed significantly better
according to several parameters, including feed conversion ratio, carcass BW and daily
cumulative mortality rate. These results agree with several other studies in which other syn-
biotics were tested [8,37,40–42], and further support the promising application of synbiotics
to poultry production.

The impact of PS administration on caecal bacteriome was also investigated through
high-throughput sequencing. Caeca represent the enteric tract with the highest microbial
density, mainly composed of obligate anaerobes belonging to the phyla Firmicutes and
Bacteroidetes [43]. The studied flocks showed a large predominance of Firmicutes, particu-
larly members of the class Clostridia, as expected in broilers [44,45]. In comparison, the
microbial composition of the broiler breeders which birthed the broiler progenies used for
this study was similarly dominated by Firmicutes but, coherently with the older age at
sampling, the overall diversity was higher [18].

A clear treatment effect was visible in all farms, significantly impacting the abundance
of 65 ASVs. Among the most influenced were representatives of Lachnospiraceae, a family of
cellulolytic bacteria capable of metabolizing non-starch polysaccharides that are among the
earliest colonizers of the caecum of broiler chickens [46,47], which were overrepresented
in synbiotic-fed flocks compared to control ones. On the other hand, ASVs belonging
to the genera Faecalibacterium, which are common inhabitants of the caeca involved in
butyrate production and in the anti-inflammatory response [48,49], and Monoglobus, a less
abundant component of the intestinal microbiome capable of degrading pectin [50], were
underrepresented, along with others classifiable as Clostridia UCG-014. Overall, based on
alpha diversity measures, PS chickens exhibited a lower species richness than control ones.

Considering the complexity and variability of the gut microbiota, it is hard to ascertain
the implications of the observed changes. An increasing number of studies on synbiotics are
using molecular assays to investigate their effects on gut bacterial populations, reporting
different results. For instance, Baffoni et al. [14] and Pineda-Quiroga et al. [51] found
that, similar to the present study, species richness was decreased by synbiotic treatment,
but the opposite was reported by other authors [52,53]. The taxa affected by synbiotic
supplementation were widely variable [51,52,54], further complicating the interpretation of
these findings. This diversity can be easily motivated by considering the many variables
ascribable to environmental, nutritional, and host factors [16] as well as to the formula-
tion and administration protocol of different synbiotic products. Nonetheless, these data
are still valuable to obtain a more complete picture of the mechanism through which a
specific synbiotic acts, and also add to the existing general knowledge on synbiotics and
nutraceuticals for future comparisons.

5. Conclusions

The presented results support the benefits achieved by the administration of PoultryStar®

sol in broilers, which improved the productive performance in terms of FCR, carcass weight
and mortality rate. Treated chickens also exhibited a better intestinal health, having lower
histopathological lesion scores and longer villi across most intestinal tracts. In addition,
synbiotic supplementation was shown to influence the caecal microbial ecosystem, causing
some taxa to be more or less abundant in synbiotic-fed flocks. The exact implications of
these changes will, however, require further studies to be better understood.
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