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Simple Summary: Guinea pigs are reared not only to be kept as pets, but also for human consumption.
This happens mostly in the Andean countries (Ecuador, Bolivia, and Peru), where guinea pig meat is
one important source of animal protein. In this region, animal husbandry is performed usually by
small farmers, who enter into frequent and close contact with guinea pigs. This poses a potential
threat to human health because these (and other domestic) animals carry opportunistic human
pathogens in their tissues and organs. Using traditional microbiological procedures and molecular
biology techniques, we show here that the nasal mucosa of guinea pigs may contain up to 11 species
of potentially pathogenic yeasts. Several of these yeasts are resistant to compounds used to treat
fungal infections, which warns against their virulence potential if acquired by humans or other
animals. We suggest that more attention should be given to this situation to prevent the risk of
infectious diseases caused by microbes that are transmitted from animals to humans (=zoonoses).

Abstract: Guinea pigs (Cavia porcellus) have been reared for centuries in the Andean region for
ceremonial purposes or as the main ingredient of traditional foods. The animals are kept in close
proximity of households and interact closely with humans; this also occurs in western countries,
where guinea pigs are considered pets. Even though it is acknowledged that domestic animals carry
pathogenic yeasts in their tissues and organs that can cause human diseases, almost nothing is known
in the case of guinea pigs. In this work we used traditional microbiological approaches and molecular
biology techniques to isolate, identify, and characterize potentially zoonotic yeasts colonizing the
nasal duct of guinea pigs raised as livestock in Southern Ecuador (Cañar Province). Our results
show that 44% of the 100 animals studied were colonized in their nasal mucosa by at least eleven
yeast species, belonging to eight genera: Wickerhamomyces, Diutina, Meyerozyma, Candida, Pichia,
Rhodotorula, Galactomyces, and Cryptococcus. Noticeably, several isolates were insensitive toward
several antifungal drugs of therapeutic use, including fluconazole, voriconazole, itraconazole, and
caspofungin. Together, our results emphasize the threat posed by these potentially zoonotic yeasts to
the farmers, their families, the final consumers, and, in general, to public and animal health.

Keywords: guinea pig; Cavia porcellus; yeasts; antifungal resistance; zoonotic diseases; opportunistic
fungi; pathogenic fungi

1. Introduction

For millennia, guinea pigs (Cavia porcellus) have been raised in the Andean region
either for ceremonial purposes or as the main ingredient of traditional foods. In countries
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such as Bolivia, Peru and Ecuador, these rodents are reared by small farmers for family
subsistence or are mass-produced as livestock to be sold in markets and supermarkets.
Guinea pigs can be raised in small numbers in artisanal facilities located in the close vicinity
of households, being nurtured and treated with care; they can also be raised in huge
barns under intensive feeding regimes for meat production [1,2]. On the contrary, in many
countries of the western hemisphere, guinea pigs are considered easy-care pets and, thus,
they are reared indoors and in intimate contact with their owners (mostly children).

According to the Food and Agriculture Organization (FAO) of the United Nations, in
2009, the stable population of guinea pigs in the Andean region reached approximately
36 million animals for human consumption [3]. In Ecuador, more than 700.00 families
depend on guinea pig production and commercialization for their subsistence [4]. Unfortu-
nately, almost no measures of sanitary control are taken by small farmers to avoid health
problems related to careless handling of these animals.

Yet, in the last 20 years, a few reports have warned about the identification of guinea
pigs as being either accidental hosts or as bona fide reservoirs for human pathogens [5–9].
In the particular context of the Tropical Andes, guinea pigs have been shown to be infected
by Fasciola hepatica [10], Yersinia pestis [11], Trypanosoa cruzi [12], Campilobacter jejuni, Shiga
toxin-producing Escherichia coli [2,13], and methicillin-resistant Staphylococcus aureus [13].
Guinea pigs have also been shown to carry influenza virus antibodies in their blood [14].

Among opportunistic human pathogens, yeasts—especially Candida species—stand
out. However, these are far from being the only worrying species; instead, new emerging
fungal pathogens include members of other lesser-known genera, such as Malassezia,
Trichosporon, Rhodotorula, and Wickerhamomyces [15]. Animals, either wild or domesticated,
may act as natural or accidental reservoirs for these emerging pathogens, playing an
essential role in their transmission to human populations [16,17]. Noticeably, it has been
recently established that almost 37% of the 202 zoonotic events registered in the period of
1940–2004 were related to animals kept in captivity for food production [18]. These animals
were considered as reservoirs of the pathogens in 64 of these events, and as intermediates
or amplifying hosts in another 8 events.

Some domestic animals, such as pigeons and horses, have already been shown to
carry opportunistic pathogenic yeasts in their tissues and organs [19–21]. However, in
the case of guinea pigs raised for human consumption—and despite the abovementioned
proximity and close interaction with humans—almost nothing is known. The absence of
these kinds of studies is striking, since zoonotic fungi have been known for centuries and
are considered as threats to human and animal health [17,22,23]. Thus, the initial aim of
the present study was to isolate and identify Candida spp. species colonizing the nasal
mucosa of healthy guinea pigs raised in Southern Ecuador as livestock, and to test their
susceptibility against several antifungal drugs. Later on, we also aimed to detect other
potentially zoonotic yeast species colonizing the same environment.

2. Materials and Methods
2.1. Sampling Area and Animals

A total of 100 guinea pigs from 10 farms in the municipality of Biblián (2◦42′36”S,
78◦52′48”W), Cañar (Southern Ecuadorian Andes) (Figure 1), were included in this survey,
which was performed from March to November 2021.

Samples were collected indistinctly from clinically healthy adult animals. According
to national regulations in Ecuador, sample collections for the diagnosis in farm animals do
not require approval from an ethics committee (“Ley Orgánica de Sanidad Agropecuaria”
2017, Asamblea Nacional, República del Ecuador) [24]. Nevertheless, the farm owners
were asked to sign a written consent and were present during the collection of samples.
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Figure 1. Location and map of Biblián Municipality (Cañar Province, Ecuador). (A) Ecuador in the
South American context (in red); (B) Location of Cañar Province in Ecuador (in red). (C) Biblián
Municipality (in red) (reproduced from Wikimedia Commons under Creative Commons licenses
3.0 and 4.0).

2.2. Sample Collection and Isolation Procedures

Samples were collected from the nasal cavity of healthy adult guinea pigs by using
sterile cotton swabs. The swabs were moistened with sterile saline solution before collecting
the samples and were gently rubbed inside the nose cavity. Once finished, the swab
tips were introduced into sterile glass tubes containing Trypticase soy broth (Oxoid) and
stored in coolers to be transported to the laboratory. Petri dishes containing Hi-Crome
Candida Differential Agar (HiMedia Laboratories, Mumbai, India) were inoculated by
gently spreading the sample in one side, and then streaked with an inoculating loop
to obtain single colonies. Incubation was carried out at 30 ◦C for up to six days, with
daily observations to detect yeast colonies. All colonies with a microscopic morphology
consistent with yeasts were re-streaked several times until purification and were further
identified by molecular methods (see below).

Isolates were stored in distilled water at room temperature, in the dark, and were
recovered from storage by plating onto Potato Dextrose Agar (Difco Laboratories, Bergen,
NJ, USA) for further experimentation.

2.3. Antifungal Susceptibility Tests

Susceptibility to four antifungal drugs of a subgroup of 22 selected pure isolates
was ascertained by the disk diffusion technique, according to the Clinical and Laboratory
Standards Institute (CLSI) [25]. The assay was performed on Mueller–Hinton agar (MHA)
plates, supplemented with 2% glucose and 0.5 µg ml−1 methylene blue dye. The antifungals
tested were fluconazole (25 µg), voriconazole (1 µg), caspofungin (5 µg) (Liofilchem S.R.L.,
Rosetto degli Abruzzi, Italy), and itraconazole (10 µg) (Bioanalyse, Ankara, Turkey). The
diameter of the zone of inhibition of yeast growth was measured and registered after 24 h
at 30 ◦C. The Candida albicans ATCC 90028 strain was used as reference.

2.4. DNA Extraction and Molecular Identification of the Isolates

Yeast DNA extraction was performed according to the rapid-boiling method described
by Silva et al. [26]. The species identification was performed by PCR amplification of
the rDNA internal transcribed spacer (ITS), nucleotide sequencing of the amplicons, and
further analysis. For this, forward (ITS1 5′-TCC GTA GGT GAA CCT GCG G-3′) and
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reverse (ITS4 5′-TCC TCC GCT TAT TGA TAT GC-3′) primers were used [27,28]. The
PCR mixture contained 25 µL premix (DreamTaq Green PCR Mastermix, Thermoscientific),
19 µL deionized sterile water, 2 µL from each forward and reverse primer, and 2 µL of
genomic DNA, which served as the DNA template in a final volume of 50 µL. The PCR
cycling conditions were: an initial denaturation phase at 95 ◦C for 5 min, followed by
35 cycles of denaturation at 94 ◦C for 1 min, annealing at 58 ◦C for 1 min, and extension at
72 ◦C for 1 min, with a final extension phase at 72 ◦C for 10 min.

Amplicons were sequenced by Macrogen (Seoul, Republic of Korea) and the nucleo-
tidic sequences were subjected to BLAST searches against fungal sequences existing in DNA
databases (http://blast.ncbi.nlm.nih.gov/Blast.cgi accessed on 7 June 2022). The sequences
were compared using nucleotide–nucleotide BLAST (blastn) with default settings, except
that the sequences were not filtered for low complexity. Species were identified based on
the highest similarity score (100%) with the reference database sequence. All nucleotide
sequences were deposited in GenBank.

3. Results

One or several yeast colony morphotypes were retrieved from forty-four out of one
hundred healthy guinea pigs (44%) reared in ten farms in the Cañar Province (Figure 2a,b).
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Figure 2. Isolation of yeasts from the nasal mucosa of guinea pigs. (a) Primary isolation cultures,
showing pigmented colonies after 48–72 h growth at 30 ◦C on Hi-Crome Candida Differential Agar.
(b) Pure isolates after re-streaking. (c,d) Microscopic view at 400× magnification of two pure isolates
(isolates F2.3 and G3.1, respectively).

All isolates exhibited a characteristic yeast morphology at the microscopic level
(Figure 2c,d). The number of colony morphotypes retrieved in Hi-Crome Candida Differen-
tial Agar from each animal ranged from one (13 animals) to five (1 animal).

Incidentally, fewer animals were colonized in their nasal mucosa by yeasts when
raised in ground pits and fed with natural fodder (five farms: A, B, C, D, and E) (Figure 3a),
as compared to animals raised intensively in cages (five farms: F, G, S, M, and R) and fed
with a mixture of fodder and cereal concentrates (Figure 3b).

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Figure 3. Colonization of guinea pigs’ nasal mucosa by potentially zoonotic yeasts. Up: Photographs
of animals reared in ground pits and fed with natural fodder (a), or in metallic cages and fed with
a mixture of fodder and cereal concentrate (b). Down: Percentage of animals colonized by yeasts
in their nasal mucosa in each one of the ten farms included in this study. The number of animals
actually colonized by yeasts in their nasal mucosa (as shown by cultivation in Hi-Crome Candida
Differential Agar) versus the number of animals tested in each farm and of the animals is presented
on top of each bar, between parentheses.

In order to determine the diversity of yeast species colonizing the nasal duct of guinea
pigs, we selected a subgroup of 30 isolates showing conspicuous morphological differences
(or showing similar phenotypes but derived from different animals) at the colony level
for molecular identification. The results obtained by nucleotide sequencing and BLAST
analysis of the chromosomal ITS1-ITS4 region allowed us to identify these isolates as
members of eleven yeast species, belonging to eight different genera: Wickerhamomyces,
Diutina, Meyerozyma, Candida, Pichia, Rhodotorula, Galactomyces, and Cryptococcus (Table 1).

Table 1. Molecular identification of yeast isolates by ITS1-ITS4 region sequencing and analysis.

Isolate ID GenBank Accession Number Closest Phylogenetic Neighbor % Identity % Query Sequence Length

E4.1 ON706026 Diutina catenulata CBS 565 99 100 390
E6.2 ON706027 Diutina catenulata CBS 565 99 99 397
E6.3 ON706028 Cryptococcus aspenensis DS712 99.8 86 512
E7 ON706029 Wickerhamomyces anomalus L428/15 100 100 590

F2.1 ON706030 Diutina catenulata CBS 565 99.5 96 405
F2.2 ON706031 Wickerhamomyces anomalus L428/15 100 100 591
F2.3 ON706032 Pichia kluyveri E225 99.8 97 434
F2.4 ON706033 Candida parapsilosis LMICRO180 100 100 500
F4.1 ON706034 Wickerhamomyces anomalus CBS 113 100 100 590
F4.2 ON706035 Diutina catenulata CBS 565 99 100 398
F5.3 ON706036 Galactomyces geotrichum SPPRISTMF1 98 100 350
F6 ON706037 Candida parapsilosis IFM 63564 99.8 100 490
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Table 1. Cont.

Isolate ID GenBank Accession Number Closest Phylogenetic Neighbor % Identity % Query Sequence Length

F9.1 ON706038 Wickerhamomyces anomalus CBS:261 100 100 592
G2.1 ON706039 Wickerhamomyces anomalus CBS 5759 99.8 100 590
G3.1 ON706040 Wickerhamomyces anomalus T12 100 100 422
G5.1 ON706041 (Candida) railenensis R97308 99.8 100 600
G6.2 ON706042 Wickerhamomyces anomalus 3Y66 100 100 580
G6.3 ON706043 (Candida) railenensis R97308 99.8 100 600
G7.2 ON706044 Wickerhamomyces anomalus SSL32 100 100 420
G8.1 ON706045 Wickerhamomyces anomalus SSL32 100 100 422
G8.2 ON706046 Pichia fermentans strain E224 100 100 424
G9.1 ON706047 Wickerhamomyces anomalus TTG-100 100 100 425
G9.2 ON706048 (Candida) railenensis R97308 99.8 100 602
G9.4 ON706049 Pichia kluyveri E225 99.8 100 422
MC.2 ON706050 Meyerozyma caribbica E12 + 4 99 98 590
MC.3 ON706051 Meyerozyma (Candida) carpophila FF3 98.8 99 590

MC.10 ON706052 Meyerozyma caribbica CBS 9966 99 99 595
PCE.3 ON706054 Rhodotorula glutinis H1 99.5 97 592
PCA8 ON706053 Diutina catenulata CBS 565 99.5 100 372
SP.8 ON706055 Meyerozyma caribbica CBS 9966 99.8 99 582

Several of these isolates were subsequently tested for their susceptibility to four
antifungal drugs (Table 2). The results show that 15 out of 22 yeast isolates were insensitive
to at least one of the antifungal drugs tested. Some isolates were insensitive to two or three
of these antifungals. Itraconazole (at the dose tested) was shown to be ineffective against
14 (63.6%) of the isolates tested, followed by caspofungin and fluconazole (4/22, 18.2%), and,
finally, voriconazole (3/22, 13.6%). On the other hand, three Pichia spp. were insensitive to
three of the drugs tested (namely fluconazole, itraconazole, and voriconazole), while three
Meyerozyma spp. were insensitive to two of them (itraconazole and caspofungin).

Table 2. Antifungal susceptibility of yeast isolates obtained from the nasal mucosa of guinea pigs.

Isolate ID Molecular Identification
Antifungals

FLU-25 * ITC-10 VO-1 CAS-5

ATCC90028 Candida albicans 28 12 29 20
E4.1 Diutina catenulata 19 12 21 11
E7 Wickerhamomyces anomalus 26 NGI 18 24

F2.1 Diutina catenulata 17 17 31 NGI
F2.2 Wickerhamomyces anomalus 26 NGI 22 23
F2.3 Pichia kluyveri NGI NGI NGI 23
F4.1 Wickerhamomyces anomalus 22 10 17 22
F4.2 Diutina catenulata 15 15 11 27
G2.1 Wickerhamomyces anomalus 28 12 22 23
G3.1 Wickerhamomyces anomalus 32 NGI 21 24
G6.2 Wickerhamomyces anomalus 26 NGI 14 25
G7.2 Wickerhamomyces anomalus 31 NGI 20 22
G8.1 Wickerhamomyces anomalus 27 12 30 23
G8.2 Pichia fermentans NGI NGI NGI 23
G9.1 Wickerhamomyces anomalus 29 NGI 20 22
G9.2 (Candida) railenensis 15 7 10 30
G9.4 Pichia kluyveri NGI NGI NGI 21

MC10 Meyerozyma caribbica 27 NGI 39 NGI
MC2 Meyerozyma caribbica 30 NGI 31 NGI
MC3 Meyerozyma carpophila 24 NGI 31 NGI
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Table 2. Cont.

Isolate ID Molecular Identification
Antifungals

FLU-25 * ITC-10 VO-1 CAS-5

PCA.8 Diutina catenulata 16 11 22 10
SP8 Meyerozyma caribbica 29 NGI 30 12

PCE3 Rhodotorula glutinis NGI NGI ND ND

Pure isolates were spread on the surface of Mueller–Hinton Agar plates supplemented with 2% glucose and
0.5 µg mL−1 methylene blue dye. The test was performed according to the Clinical and Laboratory Standards
Institute (CLSI) approved protocol [25], using paper discs loaded with the respective antifungal drug. * The
diameter of the zone of inhibition for each isolate was measured after incubation for 24 h at 30 ◦C and is expressed
in mm. NGI: No growth inhibition (inhibition halo absent); ND: Not determined. FLU-25: Fluconazole (25 mcg);
ITC-50: Itraconazole (50 µg); VO-1: Voriconazole (1 µg); CAS-5: Caspofungin (5 µg).

4. Discussion

Interactions between humans and farm animals are at the origin of several zoonotic
diseases which may threaten the health of farmers, their families, the final consumers,
and—in general—the whole community. Considering that (i) guinea pigs are among the
most important sources of animal protein for human consumption in the Andean region;
(ii) these rodents are frequently handled by breeders, distributors, sellers, and consumers;
and (iii) almost no safety measures are taken during breeding, slaughter, sale, and prepara-
tion, a better understanding of their role as potential reservoirs of opportunistic pathogens
is necessary. In the present work, our initial aim was to prospect the nasal mucosa of guinea
pigs for opportunistic Candida spp. strains. Surprisingly, as we have shown here, at least
11 yeast species colonized the nasal mucosa of guinea pigs raised for human consumption,
some of which having already been identified as opportunistic human pathogens. As far as
we know, this is the first report showing that raised guinea pigs are an important reservoir
of these kinds of potentially pathogenic non-Candida yeasts.

The presence of yeasts in the nasal mucosa of guinea pigs was not totally unexpected.
In fact, it is well known that, due to its constant humidity, this particular environment is
colonized by all kinds of microbes, including saprophytic or pathogenic fungi. Opportunis-
tic yeast species have also been shown to persist outside of clinical settings, mainly in soils
and plants, which can also act as natural reservoirs. This suggests that the ecology of these
fungi may be more complex than previously thought [29].

Non-albicans Candida and other rare yeast species have emerged in recent decades as
agents of serious diseases in humans, especially targeting immunocompromised individu-
als, children, and the elderly [30]. Among the virulence factors expressed by many of these
pathogens, resistance against antifungal drugs is of utmost importance [31]. Since no spe-
cific clinical breakpoints have been established to date, by either the European Committee
on Antimicrobial Susceptibility Testing (EUCAST) or the CLSI, for environmental or rare
opportunistic yeasts, we decided to present here only the descriptive results (inhibition halo
diameter, expressed in mm values), with no attempt to categorize the isolates according to
the results of the antifungal susceptibility tests (except when the inhibition of growth was
complete). Nevertheless, we also considered that the benefits and advantages of the disk
diffusion tests, as tools for antifungal resistance surveillance, have been previously shown,
as in the case of the ARTEMIS DISK Global Antifungal Surveillance Study [32]. In the
case of fluconazole and voriconazole, disk testing is highly accurate and can be routinely
performed in clinical laboratories.

Wickerhamomyces anomalus (formerly Pichia anomala) belongs to this group of non-
Candida, non-Cryptococcus yeasts of clinical interest. It is considered an environmental yeast,
usually found in soils, plants, and fruits, but also in the feces of bats and birds [21,33,34]. W.
anomalus is increasingly being considered as an emerging pathogen of clinical importance,
often being associated with a wide range of fungal infections, from ocular keratitis to
meningitis and fatal candidemia [35]. Even though it is believed to be ubiquitous in the
environment, the knowledge concerning W. anomalus ecology is still limited.
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Our results show that more than half of the W. anomalus isolates tested were com-
pletely insensitive to itraconazole. From a public health perspective, this finding is of
relevance since previous studies have revealed that some nosocomial W. anomalus isolates
can, in fact, tolerate in vitro high doses of azoles, including flucytosine, itraconazole, and
fluconazole [35–37].

Diutina catenulata (formerly Candida catenulata), an ascomycete closely related to Sac-
charomyces cerevisiae and often used for bioremediation purposes [38,39], was also present
in the nasal mucosa of the healthy guinea pigs studied. This species has been previously
isolated from the gut of birds [20,40,41] and the nasolacrimal duct of healthy horses [18].
More importantly, a few reports have documented human infections with D. catenulata and
increasingly recognize its importance as an emerging pathogen [42].

D. catenulata animal isolates produce and secrete potent hydrolases (e.g., proteases
and phospholipases), as previously shown by Brilhante et al. [19] and Rhimi et al. [43].
These enzymes are considered as virulence factors, which play fundamental roles in the
pathogenesis of yeast infections [44]. In addition, D. catenulata isolates generally exhibit an-
tifungal sensitivity, particularly to azoles and echinocandins [20,42,45,46]. However, it has
been shown that some nosocomial isolates can tolerate high concentrations of fluconazole
or caspofungin [47]. Thus, it is important to explore their susceptibility to these antifungals.
In the present report, we show that one D. catenulata isolate was insensitive to caspofungin,
while another two were slightly inhibited by this antifungal drug. This opens the question
regarding their virulence potential if spread to human hosts, since echinocandins represent
the first choice of treatment against invasive candidiasis in patients [48].

On the other hand, three fungal isolates were identified as Meyerozyma caribbica
(anamorph Candida fermentati), and a fourth as Meyerozyma carpophila (formerly Can-
dida carpophila). These phenotypically indistinguishable species are phylogenetically re-
lated and belong to the M. guilliermondii species complex [49,50]. Even though yeasts
of this complex are ubiquitous in the environment and can be isolated from a variety of
sources—including fermented foods, plants, and arthropods—some isolates can also cause
human infections [51,52]. Furthermore, species within this complex are increasingly re-
garded as emerging infectious yeasts of the non-albicans Candida species group, which are
considered as opportunistic pathogens in immunocompromised patients and are responsi-
ble for 1–5% of nosocomial bloodstream infections worldwide [23].

In a recent report, Chaves and coworkers isolated M. caribbica and M. guillermondii
strains from patients suffering from bloodstream infections in an oncology reference center
in Brazil [52]. The isolates were poorly susceptible to antifungals and exhibited high
minimum inhibitory concentrations (MICs) for fluconazole and echinocandins. Strikingly,
all four tested Meyerozyma spp. isolates studied here were insensitive to itraconazole, and
three of them to caspofungin (an echinocandin). Again, these results raise concerns about
their potential as virulent zoonotic pathogens.

We also identified five isolates belonging to Candida railenensis or C. parapsilosis. Both
species belong to the non-albicans Candida group, some of which cause important infections
in humans and whose incidence has been increasing in recent years [22]. Most of these
species are generally considered commensal microorganisms, frequently found in the skin
and mucosae (respiratory, genital, and gastrointestinal) of animals such as dogs, horses,
and birds [53,54]. However, they are also considered emerging pathogens and must be
considered with care, particularly in the case of C. parapsilopsis isolates, since it is the second
most frequently isolated opportunistic Candida species [55].

The identification of an R. glutinis isolate is of upmost importance. This pink yeast
belongs to a very heterogeneous group, commonly found in the tissues and organs of
animals; it can also be easily isolated from environmental samples [56]. Although infections
caused in humans by R. glutinis are less frequent than those caused by R. mucilaginosa, it
is an opportunistic pathogen, which can infect the blood, the central nervous system, the
eyes, and the heart, among other organs and tissues [57]. Rhodotorula species appear to
be intrinsically resistant to fluconazole, which has been predicted to be ineffective to treat



Animals 2022, 12, 3449 9 of 12

infections caused by this fungus [58]. In line with this information, the only R. glutinis
isolate tested here was insensitive to fluconazole and itraconazole, a result that adds to its
potential as a virulent zoonotic pathogen.

As said above, the presence of commensal or opportunistic pathogenic fungi in the
nasal cavity of animals was far from unexpected. In fact, it is known that the nasal resident
bacteria interact with the immune system of the mammal host, and this dynamic interaction
favors the colonization of the mucosa by other microbes, such as Candida spp. and other
yeasts [58,59]. In this particular environment, microbes—either bona fide commensals
or opportunistic pathogens—are sheltered and well nurtured, being able to proliferate
depending on the topography of the cavity [60].

Many of these nasal-resident microorganisms reach the nasal cavity from the soil or
through the food used to feed the rodents. It is well acknowledged that several yeasts are
ubiquitous in the environment and can be easily isolated from the soil or some plants where
the fungi survive, especially when the environment is humid [61]. On the other hand, the
high density of animals in more sophisticated settlements favors the dissemination of yeasts
and other pathogens by frequent animal-to-animal contact and the use of contaminated
water and stored manure. Both circumstances have been already highlighted by Graham
et al. [4] while studying the infection of guinea pigs with Campylobacter jejuni in rural
Ecuador. As we have shown here, guinea pigs raised intensively in cages and fed with a
mixture of fodder and concentrates are colonized by more yeast species/strains in their
nasal mucosa than their counterparts raised in ground pits and fed only with natural fodder.
This very preliminary observation deserves to be addressed in more depth in the future.

Among the limitations of our work, the most obvious is the limited scope of the study,
in geographical terms. This circumstance obliges us to consider the presented results very
carefully, and to be cautious in order to not extrapolate them to other regions. Similarly,
since the study was transversal, we did not consider fluctuations during different periods
of the year. Finally, since we followed a classical microbiological approach—using culture
methods—we did not investigate the actual diversity of the mycobiome residing in the
nasal cavity of guinea pigs. In order to shed light on the actual composition and structure
of this microbial community, metagenomic techniques should be used.

Nevertheless, and to the best of our knowledge, this is the first attempt to describe
the diversity of culturable yeasts found in the nasal mucosa of such an important animal
resource in the Andean region of Ecuador. Furthermore, our results emphasize the threat
posed to human health by some of these potentially pathogenic zoonotic yeast species.

5. Conclusions

In summary, we isolated potentially zoonotic yeasts from the nasal duct of guinea
pigs raised as livestock in Southern Ecuador. At least 11 species, belonging to 8 genera,
were identified. Furthermore, the resistance exhibited by 22 of these isolates toward
four antifungal drugs of therapeutic use was also revealed. This particular aspect is of
fundamental importance since several of these yeast species are considered as emergent
pathogens. Considering the frequent manipulation of guinea pigs without any safety
measures by breeders, distributors, sellers, and consumers, the presence of pathogenic or
potentially pathogenic microorganisms in their tissues and organs represents a risk from a
public health point of view.
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