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Simple Summary: The gastrointestinal microbiome plays a significant role in diet digestion and the
energy production of its host. This study investigated the influence of sex on the fecal microbiome of
camels. Our findings revealed sex differences in the composition and function of fecal microbiomes.
This research, to the best of our knowledge, is the first characterization of the fecal core bacteriomes
of male and female dromedary camels. The variation in the intestinal microbial communities between
male and female dromedary camels lies in the abundance and prevalence of taxa rather than in the
presence and absence of bacterial taxa.

Abstract: The gastrointestinal microbiome plays a significant role in diet digestion and the energy
production of its host. Several factors that affect the gastrointestinal microbiota composition were
studied in camels. Yet, the impact of sex on the gastrointestinal bacteriome of camels remains unex-
plored to date. In this perspective, the fecal microbiome community composition from dromedary
camels was determined in 10 male and 10 female samples using the 16S rRNA amplicon, in order
to estimate if this was influenced by sex. The core microbiome in females contained 284 bacterial
OTUs and one archaeal OUT, whereas in males, it contained 279 bacterial OTUs and one archaeal
OTU. In females, Bacteroidetes and Spirochaetes were significantly more abundant than in male
camels, whereas Lentisphaerae and Euryarchaeota were significantly abundant in males. According
to Principal Coordinate Analysis and UPGMA clustering, grouping with respect to sex was observed.
The functional prediction results showed differences such as energy production and conversion, and
that the cell wall/membrane/envelope were enriched in female camels. The fecal microbiome of
male camels was rich in amino acid, lipid transport and metabolism.

Keywords: dromedary camel; methane emissions; 16S rRNA gene; sex impact; bacteriome

1. Introduction

An animal’s gut microbiome is shaped by several factors such as diet and age [1].
Sex, in particular, is a neglected factor in several studies. Nonetheless, in studies that
consider sex as a factor, they found contradicting results, as one study found a limited effect
on gut microbiota [2] while other studies have suggested evidence for sex impact on gut
microbiota [3,4]. Furthermore, two previous studies revealed that the commensal microbial
community can impact sex hormone levels [3,4]. A recent study revealed that Bacteroidetes
was more abundant in fecal microorganisms of female pigs than in male pigs. In contrast,
Firmicutes was higher in male pigs than in female pigs and further research revealed that
castration can affect the composition of the gut microbial community [5]. Another study in
Tibetan goats showed that Fibrobacteres and Spirochaetes had greater relative abundances
in the microbiota of females than in males [6]. All together, these studies indicate that sex
represents an important factor in shaping the gut microbial community in animals.

Camels have unique characteristics in physiology, biochemistry and morphology,
which allows them to withstand hot climates and water and food shortages in the desert [7].
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Unlike a true ruminant forestomach that has four compartments, camels have pseudo-
ruminants, with their forestomach consisting of three compartments and lacking an oma-
sum [8]. We think these unique characteristics of camels would lead to distinctive gastroin-
testinal bacteriome that deserve to be explored. Nevertheless, previous studies focused
only on the bacterial community in the gastrointestinal tract of camels [9–13] and the effect
of age and dietary alterations on microbiome composition [14–21].

A gut’s microbiome can influence the host immunity, which indirectly mirrors the
level of disease resistance due to sex variation [22]. Furthermore, studying the sex impact
on the microbiome might clarify if sex is a statistical variable or not. To our knowledge,
no published information on whether the fecal microbiomes of dromedary camels were
different between the adult male and adult female camels is available. Thus, this study
aimed to extend the previous findings of other animals by investigating any significant sex
differences at the OTUs level. Therefore, we explore sex differences in the composition and
function of fecal microbiomes in dromedary camels using the 16S rRNA amplicon.

2. Material and Methods
2.1. Samples Collection

Fecal samples were collected on April 2021 from 10 male camels 10 female camels
with an average age of 6 years old. All dromedary camels involved in this study were part
of a camel herd registered with the Camel Research Center farm, King Faisal University,
which is located in Al-Hasa province, Saudi Arabia. All the camels were healthy and
did not receive any medication. All camels were raised in the same farm conditions,
consumed the same diet and clean water ad libitum. Each camel was offered a daily diet
that consisted of 2 kg alfalfa forage at 06:00 h and 2 kg feed concentrate at 15:00 h. The feed
concentrate consisted of wheat bran, barley, corn, soybean meal and molasses. The chemical
composition of the feed concentrate was 18% protein, 3% crude fat, 6% crude fiber, 6.5%
ash, 0.7%NaCl, 0.6%phosphorous, 1% potassium, 1% calcium, 0.23% magnesium, 3 IU/g
vitamin D, 20 IU/g vitamin A, 15 IU/kg vitamin E and 2780 kcl/kg metabolizable energy.

Feces were collected from each camel into falcon™ 50 mL conical centrifuge tubes.
The collected fecal samples were stored at −20 ◦C, before whole DNA was extracted
using the QIAamp Fast DNA Stool Mini Kit (Qiagen, Hilden, Germany), according to the
manufacturer’s instructions and kept at −20 ◦C until they were used as a template for
sequencing.

2.2. V3-V4 16S rRNA Amplicon Sequencing and Bioinformatics Analysis

Briefly, the V3-V4 region of the 16S rRNA gene was amplified with Bakt_341F and
Bakt_805R primers [23]. The amplicon library was prepared by ligating sequencing adapters
and indices to purified PCR products using the Nextera XT DNA library Kit (Illumina, San
Diego, CA, USA) according to the 16S rRNA metataxonomics sequencing library prepa-
ration protocol (Illumina, San Diego, CA, USA). Then, the libraries’ concentrations was
determined, and equimolar volumes of each of the libraries was pooled and processed
on an Illumina’s Miseq platform with paired-end 300 bp reads by Macrogen Inc (Seoul,
Republic of Korea). MiSeq reads were assembled by FLASH version 1.2.11 [24], which
merge overlapping paired-end reads. Read trimming, filtering with a quality score offset 33
and out selection with a 97% identity cut-off was done using CD-HoutOTU software [25].
OTUs were classified by using the RDP Ribosomal Database Project11.5 classifier [26] and
by a blast against the NCBI 16S rRNA database with BLASTN using default parameters [27].
For species-level identification using V3-V4 16S rRNA sequences region, Villmones et al.,
2018 [28], recommends ≥99.3% similarity with a trusted reference species together with a
minimum distance of >0.8% to the closest species. Based on the levels of intra-species se-
quence variations, we observed them in Genbank sequences, and adopted a more stringent
cut off ≥1% minimum distance to the closest species while keeping a similarity of ≥99.3%.

QIIME software was used to perform rarefaction curves and alpha diversity analyses
(Chao1 index and sample coverage) [29]. For beta diversity statistical analysis, we used the
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diversity plugin from QIIME. An unweighted unifrac distance matrix [30] was constructed
from the phylogenetic tree and visualized using principal coordinates analysis. Hierarchical
clustering of samples was constructed using the unweighted pair-group method with
arithmetic mean (UPGMA).

We used PICRUSt2 to predict the functional gene content of bacteria [31] by using
homology for genes in the COG database [32]. The significant differentially abundant
OTUs between male camel and female camel were compared by STAMP [33].

3. Results
3.1. 16S rRNA Sequence Analysis and OTUs Clustering

For 20 fecal samples, after removal, we obtained low quality and chimeric reads,
for a total of 332,442 high quality reads. OTUs for each sample were identified at a 97%
sequence similarity level. A total of 1673 OTUs were detected in the 20 camels located at
the university farm. On average, the number of OTUs was higher in females than in males
but this difference was not significant (p > 0.05). According to the 0.99% average good’s
coverage estimate, the sequencing depth was sufficient to estimate 99% of the bacterial
diversity and species richness in all samples (Table 1). An alpha diversity analysis (Table 1)
showed higher values for females than for males regarding the Chao1 index, but this
difference was not significant (p > 0.05), whereas the Shannon index was higher for males
than for females, although this difference was also not significant (p > 0.05). As for the
Gini–Simpson index, the values were similar and, therefore, were not significant (p > 0.05).

Table 1. Number of samples analyzed, estimated OTU richness (Chao1), Shannon index, GiniSimpson
index and estimated sample coverage for 16S rRNA libraries. Sample level composition of OTUs.

Sample Name Group Age OTUs Chao1 Shannon Gini–Simpson Good’s Coverage

64 Female 3 715 818.511 7.359 0.983 0.991

488 Female 10 679 788.879 6.418 0.932 0.991

928 Female 9 730 864.639 7.592 0.988 0.991

961 Female 11 674 813.276 6.436 0.938 0.991

962 Female 11 587 769.043 5.639 0.907 0.990

963 Female 7 664 770.139 6.940 0.968 0.992

964 Female 3 749 861.258 6.445 0.931 0.993

967 Female 4 709 823.079 6.671 0.947 0.990

977 Female 3 707 864.120 6.373 0.941 0.991

998 Female 3 713 782.515 7.426 0.979 0.992

920 Male 3 703 790.073 7.069 0.981 0.995

926 Male 4 719 821.070 6.364 0.931 0.993

927 Male 3 700 783.875 7.344 0.979 0.993

936 Male 7 670 747.351 6.531 0.947 0.993

937 Male 10 627 710.023 5.963 0.916 0.993

938 Male 3 637 747.915 7.035 0.973 0.993

947 Male 3 731 818.079 7.565 0.987 0.993

949 Male 12 700 826.110 7.192 0.977 0.991

950 Male 4 728 808.010 7.558 0.987 0.993

991 Male 6 659 759.309 6.872 0.961 0.988
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3.2. Prevalence Rate and Abundance of Bacteria/Archaea in Feces

At the herd level, a total of 1473 OTUs (88.05%) out of 1673 OTUs were assigned to
16 bacterial phyla and 2 archaea, whereas 11.95% of OTUs were unclassifiable (Table 2).
As for bacteria, Firmicutes, Bacteroidetes, Verrucomicrobia, Proteobacteria, Spirochaetes,
Fusobacteria, Lentisphaerae and Euryarchaeota were dominant in all samples. The propor-
tion of these eight phyla was 88.8% in entire female camels and 89% in male camels. As for
the archaea, two OTUs were assigned to the phylum Candidatus Thermoplasmatota and
three OTUs were assigned to Euryarchaeota. OTU1072 and OTU542 were assigned to the
genus Methanobrevibacter, whereas OTU22 was assigned to the genus Methanocorpusculum.
Firmicutes and Bacteroidetes constituted the two abundant phyla of both groups (Table 2).
In addition, Bacteroidetes had significantly greater relative abundance in females than in
male camels (p < 0.05). In contrast, Lentisphaerae and Euryarchaeota were significantly
more abundant in male than in female camels (p < 0.05). As for the archaea phylum,
Euryarchaeota was significantly more abundant in male than female camels (p < 0.05)
(Figure 1).

Table 2. Average relative abundance of bacteria and archaea phyla found in fecal samples and
phylum level composition of OTUs. Values were presented as %.

Kingdom Phylum
Number of OTUs Average Relative Abundance

Male Female Male Female

Bacteria Firmicutes 769 990 41.315 36.146

Unclassified Unclassified 83 165 10.092 10.868

Bacteria Bacteroidetes 140 197 26.105 31.538

Bacteria Proteobacteria 38 45 5.705 4.85

Bacteria Spirochaetes 18 23 2.371 2.317

Bacteria Lentisphaerae 21 22 0.796 0.47

Bacteria Verrucomicrobia 10 16 7.627 11.366

Bacteria Candidatus
Melainabacteria 8 11 0.07 0.092

Bacteria Actinobacteria 4 6 0.009 0.012

Bacteria Fusobacteria 1 2 4.899 1.369

Bacteria Planctomycetes 5 6 0.123 0.142

Bacteria Tenericutes 5 5 0.022 0.008

Bacteria Fibrobacteres 2 2 0.528 0.53

Bacteria Elusimicrobia 2 2 0.025 0.041

Archaea Euryarchaeota 3 3 0.276 0.176

Bacteria Synergistetes 1 2 0.003 0.003

Archaea Candidatus
Thermoplasmatota 2 2 0.012 0.005

Bacteria Chloroflexi 1 0 0.002 0

Bacteria Deferribacteres 1 1 0.02 0.067

At the OTUs level, we grouped the 1673 OTUs detected in camels located at the
university farm into high prevalent (core), moderate and low prevalent bacteria/archaea
groups depending on their prevalence. The core bacteriome of female camels consisted
of 284 OTUs representing 87.1% of the total reads. In contrast, the core bacteriome of
male camels consisted of 279 OTUs representing 82.8% of the total reads. We classified
the OTUs with a prevalence of less than 100% to 50% into the moderate prevalent bacteria
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group, which accounted for 10.8% and 14.8% of the total reads in the females and males,
respectively. OTUs with a prevalence of less than 50% were classified into the low prevalent
bacteria group. They accounted for 2.1% and 2.4% of the total reads in the females and
males, respectively. The female core is dominated by Firmicutes, at 33.1% followed by
Bacteroidetes at 22.5%, Verrucomicrobia at 15.1% and unclassified bacteria at 8.3%. The
the male core is dominated by Firmicutes at 33.5%, followed by Bacteroidetes at 23.3%,
unclassified bacteria at 8.7% and Verrucomicrobia at 7.4%. Out of the 16 phyla, 10 and
9 phyla were present in the core of females and males, respectively. As for the archaea,
only one OTU was represented in the core from the genus Methanocorpusculum in male and
female camels.
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By analyzing the differences of OTUs’ abundance in females and males, we detected a
total of 106 OTUs with statistical differences between male and female camels. Of these,
fifty-nine OTUs were significantly more abundant in the core of female camels than in the
core of male camels. On the contrary, forty-seven OTUs in the cores of male camels were
significantly more abundant than in the core of female camels (Figure 2). The significant
OTUs in the core of male camels were distributed in Firmicutes (76.6%), Lentisphaerae
(12.8%), Bacteroidetes (2.1%) and unclassified (8.5%). As for the females, the significant
OTUs in the cores of female camels were distributed in Firmicutes (59.3%), Bacteroidetes
(22%), unclassified (13.6%), Proteobacteria (1.7%) and Spirochaetes (3.4%). Data also
showed that the prevalence of Succinivibrio dextrinosolvens in male camels is found in the
low prevalent bacteria group whereas it is a core member in the female camels.

3.3. Comparison of Microbial Community

For comparing microbial profiles between male and female camels, we applied the
unweighted UniFrac phylogenetic distance matrixes approach, which considers the pres-
ence/absence of species by weighing the relative abundances. The unweighted pair-group
method with arithmetic mean (UPGMA) method is a type of hierarchical clustering that is
used in the ecology of group samples. Based on the unweighted Unifrac dissimilarity, the
UPGMA cluster tree revealed that the microbiomes of female camels were clustered in one
group, whereas most of the microbiomes of male camels were clustered in another group
(Figure 3).

Principal Coordinate Analysis (PCoA) is an approach that helps with extracting and
visualizing highly informative components of variation of data. The unweighted UniFrac
coefficients are calculated to assist in the PCoA analysis, and the result is shown in (Figure 4).
The male and female samples were distributed in different locations, demonstrating the
significant variation between the male and female camels, except for one sample from the
males. Therefore, the PCoA showed clusters according to sex.
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3.4. Differences of Microbial Function among Male and Female Camels

COG is a known protein functional classification database for prokaryotes. Utilizing
this, a total of 25 metabolic pathways was studied. Among the principal COG gene families
(Figure S1), five COG gene families with functions significantly more abundant in female
than male camels (p < 0.05) include: energy production and conversion, posttranslational
modification, protein turnover, chaperones, cell wall/membrane/envelope biogenesis,
inorganic ion transport, metabolism and secondary metabolites biosynthesis, transport and
catabolism, which were significantly more abundant in female than male camels (p < 0.05).
As for male camels, functions related to transcription, replication, recombination and repair,
cell cycle control, cell division, chromosome partitioning, signal transduction mechanisms,
cell motility, extracellular structures, carbohydrate transport and metabolism, amino acid
transport and metabolism, nucleotide transport and metabolism, coenzyme transport and
metabolism and lipid transport and metabolism were significantly higher in male camels
than in female camels (p < 0.05).

4. Discussion

This study unveils the sex differences in the abundance and function of intestinal
bacteriome of the dromedary camel. It has been published that sex differences lead to
differences in the gastrointestinal microbiomes of animals [4]. The gut microbiomes of
animals can be influenced by several factors. Of these factors, diet plays a major role
over other factors such as age, geographical location and environment in shaping the
animal’s gastrointestinal microbiota [34]. In our study, we ensured the homogenization of
factors such as diet, environment and geographical location. As for age, we included adult
camels as their rumen microbial diversity is relatively stable when ruminants approach
adulthood [35]. As sex differences in gut microbiota are not visible until puberty, the impact
of sex hormones in shaping gastrointestinal microbiota composition is supported [3,4].
Despite the homogenization of confounding variables, significant differences could be
detected in bacteriome composition and functionality related to sex. Thus, data reported
herein were interpreted as authentic.

The large intestine (colon, cecum and rectum) serves as a second site for fermentation
of undigested nutrients that escape fermentation and absorption in the rumen. Therefore,
the large intestine enhances the overall energy extracted from a diet. In addition, it has
been associated with production traits, in particular with regards to the efficiency of milk
production in cows [36].

The idea of camel core fecal bacteriome is still evolving. A number of previous studies
described the core rumen bacteriome in camels [11,16]. However, the lack of consistency
regarding criteria for a core definition may lead to incomparable data. This study, to the best
of our knowledge, is the first description of the fecal core bacteriomes of male (279 OTUs)
and female (284 OTUs) dromedary camels. In this study, the low prevalence and abundance
of some bacteria suggest they are likely transient bacteria acquired from the surrounding
environment.

Beta analysis revealed that there were some differences in the content of fecal bac-
teriomes between the two groups. Intestinal microorganisms are influenced by host hor-
mones [4]. In this research, PCoA and UPGMA analysis showed that male camel samples
were not clustered with female camel samples except for one male sample clustered within
the female samples. One explanation is that the male samples have different levels of sex
hormones concentration. One of the limitations of our study is that the sex hormone level
was not measured.

Form the physiological point of view, adult female camels are unlike male camels in
that they need more energy to meet the energy requirement for the lactation and repro-
duction process. To fulfil their energy requirements, camels rely on rumen microbiomes,
which ferment plant material into metabolic end products such as volatile fatty acids
(VFAs) and methane. VFAs are absorbed by the rumen wall and act as an energy source for
animal [37,38]. As for methane, it is not absorbed but released into the atmosphere together



Animals 2022, 12, 3430 9 of 12

with its retained energy, thus contributing to energy loss from the feed [39]. However,
female camels used in our study were not lactating and may have experienced similar stress
as the male camels. Therefore, different sex hormones levels between males and females
might be one of the possible explanations for this difference. Researchers have found that
sex hormones such as estrogen and testosterone directly shape the gut microbiome [40].
The cross-talk between microbiota and sex hormones likely acts by directly affecting the
growth of specific taxa and by influencing the immune response to gut microbiota [40].
Anyhow, the whole mechanism through which hormones affect the host’s selection of gut
microbial communities is currently not fully understood.

The present study sequenced the fecal bacteriomes in dromedary camel of different
sexes and found that the prevalence and abundance of bacteriomes were significantly
different between males and females. Previous studies of camels revealed that Firmicutes
and Bacteroidetes harbour many genes encoding carbohydrate active enzymes, thereby
assisting the host’s breakdowns and fermenting of dietary carbohydrates [16]. Here, we
found most significant abundant OTUs (biomarkers) in male camels were found in Firmi-
cutes and Lentisphaerae, whereas the potential biomarkers of female camels were mainly
found in Firmicutes and Bacteroidetes, which is in line with the findings of Wang et al. [5].
Another two potential biomarkers in female camels were distributed in Spirochaetes, which
contained genes encoding enzymes for the hydrolysis of cellulose and pectin [41]. Herein,
we found that the relative abundance of Spirochaetes in female camels was significantly
higher than that in male camels, which is consistent with the results found in female Tibetan
goats [6]. The asaccharolytic genus Anaerotignum is significantly abundant in male than
female camels. The Oscillospiraceae species, which are cellulolytic, are significantly more
abundant in females than in male camels. Flavobacteriia are significantly more abundant
in females than in male camels. Of the other potential biomarkers identified, Succinivibrio
dextrinosolvens was more abundant in females than in males. Notably, S. dextrinosolvens, a
species in Succinivibrionaceae, was isolated before from the cattle rumen and was abundant
in high-yielding multiparous cows. Hailemariam et al. showed that S. dextrinosolvens Z6
plays a role in nitrogen utilization [42].

The archaeal domain in the feces largely consists of methanogenic archaea from the
phylum Euryarchaeota. These methanogens are involved in methane production, which
in turn is eructed and released into the atmosphere. Methanobrevibacter, a member of
Euryarchaeota, is the prevalent genus of the archaea community, constituting more than
70% of the total archaea and is the major contributor to methane production in ruminant
rumen [1]. Unlike the previous studies, Methanobrevibacter spp. was not dominant, but
instead Methanocorpusculum was a core member and showed the highest relative abundance
in the fecal archaeal community of camels. During the digestion process of plant material,
methane is produced by methanogenic archaea and is not absorbed by rumen but released
into the atmosphere together with its retained energy [39], thus contributing to energy
loss from the feed. In this study, the higher abundance of methanogenic archaea in male
camels than female camels warrants further analysis on its impact on energy waste by
methane release.

Fecal bacteriomes contain around 672,015 genes. This microecosystem executes dif-
ferent functions when the content of gastrointestinal microbial community is altered. To
analyze functional differences among male/female camels, we used the groups species
content information to predict the functional gene content. The functional differences
between the fecal bacteriomes of male camels and female camels was significant. In the
COG gene family, energy production and conversion and cell wall/membrane/envelope
were significantly increased in the female group. In contrast, males showed enrichment in
COG pathways related to amino acid transport and metabolism and carbohydrate transport
and metabolism. A related study exploring sex differences in the composition and function
of intestinal microorganisms in pigs found a similar enrichment in the same COG pathways
mentioned above [5]. Collectively, these differences further confirm that the sex factor has
an impact on the fecal bacteriome composition.
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5. Conclusions

This study provides preliminary information on the potential relationship of camel
fecal microbiome composition and host sex. The differences in the intestinal microbial
communities between male and female camels lies in the abundance and prevalence of
taxa rather than in the presence and absence of taxa. Thus, sex should be taken into
consideration in future research of fecal microbiomes in camels.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12233430/s1, Figure S1: COG categories were predicted by
PICRUSt2.
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