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Simple Summary: Decision making in veterinary medicine can be extremely difficult. Often, different
choices can have vastly different costs, complications, and outcomes associated with them. Bayesian
inference and decision analysis are two tools that, when combined, can help clinicians and pet owners
decide on the preferred course of action. In this retrospective case study, we describe a lethargic
ferret that is no longer eating. We solicited opinions from three expert veterinarians who were not
involved with the case on what the diagnosis could be before and after a series of diagnostic tests.
We also asked the original clinical team to estimate how valuable different clinical outcomes were.
By combining these data, we were able to assess if the original clinical team was right to take the
animal to surgery. We also discuss some of the pitfalls of not using Bayesian inference in diagnosis,
some cognitive biases that may have played a role in the case management decisions, and the
wider usefulness of decision-analysis methods to help foster shared decision making between client
and veterinarian.

Abstract: Bayesian inference and decision analysis can be used to identify the most probable dif-
ferential diagnosis and use those probabilities to identify the best choice of diagnostic or treatment
among several alternatives. In this retrospective case analysis, we surveyed three experts on the prior
probability of several differential diagnoses, given the signalment and history of a ferret presenting
for lethargy and anorexia, and the conditional probability of different clinical findings (physical,
bloodwork, imaging, etc.), given a diagnosis. Using these data and utility estimates provided by other
clinicians, we constructed a decision tree to retrospectively identify the optimal treatment choice
between exploratory laparotomy and medical management. We identified medical management
as the optimal choice, in contrast to the original clinical team which performed an exploratory la-
parotomy. We discuss the potential cognitive biases of the original clinical team. We also discuss
the strengths, e.g., shared decision making, and limitations of a Bayesian decision analysis in the
veterinary clinic. Bayesian decision analysis can be a useful tool for retrospective case analysis and
prospective decision making, especially for deciding on invasive interventions or end-of-life care.
The dissimilarity of expert-derived probability estimates makes Bayesian decision analysis somewhat
challenging to apply, particularly in wide-ranging specialties like zoological medicine.

Keywords: Bayes’ theorem; Bayesian; decision analysis; decision tree; clinical decision making; ferret;
foreign body; cognitive bias
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1. Introduction

A 75-year-old woman on warfarin therapy for chronic atrial fibrillation presented
to the emergency room with gross hematuria [1]. Her prothrombin time was markedly
prolonged. She was imaged with several different modalities which found two soft tissue
masses in one kidney. She had two urine cytologies reviewed, but both were negative
for neoplastic cells [1]. All imaging was considered to be consistent with potential renal
neoplasia [1]. She underwent a radical nephrectomy; however, on histopathology there was
no evidence of neoplasia [1]. In fact, when another physician reviewed the patient’s chart
and analyzed the decisions made, he found that the pre-surgery probability of this patient
having renal cancer was less than or equal to 1 in 10 million [2]. How is this possible?

It seems that a lack of probabilistic thinking was to blame. The physicians involved
in the case did not consider the probability of renal carcinoma vs. over anticoagulation as
the cause of hematuria in an elderly woman on warfarin. The clinicians involved in this
case expressed concerns about what the phrase “considered to be consistent with renal cell
cancer” in an imaging report actually meant [1]. Did inclusion of that phrase mean there
was a 90% likelihood of renal cell cancer, a 10% likelihood, or just that it could possibly be
renal cell cancer?

Bayesian inference, based on Bayes’ theorem, is a way to incorporate additional infor-
mation into prior hypotheses in order to improve clinical decision making. Bayes’ theorem
states that the probability of a diagnosis given a set of clinical findings is proportional to
the baseline probability, or prevalence, of that diagnosis multiplied by the probability of
having that set of clinical findings given that diagnosis. Bayesian inference considers both
how common a diagnosis is in the population and how well the clinical findings fit the
diagnosis. This is important as uncommon presentations of common diseases can be far
more prevalent than “textbook presentations” of rare diseases.

We seek here to introduce Bayesian decision analysis to a veterinary audience and
apply it to a case example in an exotic companion mammal, a ferret (Mustela putorius furo).

2. The Principles of Bayesian Decision Analysis

In order to identify a most likely differential diagnosis, there must be some data or
an estimate of the relative prevalence of the differential diagnoses (adding up to 100%)
for a specific presentation in a given population; in the prior example, this would be the
prevalence of renal cancer vs. bladder cancer vs. benign causes as potential causes of hema-
turia in an overly anticoagulated elderly woman. These prior probabilities are proposed
before information from diagnostic tests are incorporated; prior probabilities can be based
on literature estimates of prevalence and risk factors, expert opinion, or an experienced
clinician’s understanding of how common different diagnoses are in their particular clinic.
For each potential diagnosis, there is also a conditional probability associated with each
diagnostic test which is the estimated probability of that specific test result given that
the patient has a particular diagnosis (e.g., the probability of a negative urine cytology
assuming the patient has renal cell cancer). A related but distinct value, the likelihood
ratio, is the ratio of conditional probabilities for those with a particular test result and the
disease, and those with the same result without the disease. By multiplying each diagnosis’
prior probability by its conditional probabilities, we can calculate posterior probabilities,
which are the estimated probabilities of differential diagnoses after the information from
diagnostic tests has been incorporated.

Decision analysis is a field of study that mathematically models decisions in order to
identify the best choice among alternative options. In clinical medicine, decision analysis
evaluates both risks and benefits associated with a treatment or diagnostic test [3]. To
model a clinical decision, clinicians estimate the utility, or value, of clinical outcomes in
addition to diagnosis probabilities as above. Utility can be expressed as the survival benefit,
with 100 representing 100% survival and 0 representing 0% survival, but often represents a
composite figure, termed relative utility, of both survival and costs (medical and financial)
incurred [3]. By multiplying the posterior probabilities by the utility of each outcome,
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clinicians can better identify the treatment option with the greatest expected value for their
patient [3].

3. Materials and Methods

To illustrate the application and utility of Bayesian decision analysis, a veterinary
clinical case was retrospectively analyzed. In that case, the primary decision hinged on
whether to perform exploratory laparotomy for a suspected gastrointestinal foreign body.
First, the clinical case was briefly described. Second, outside expert opinions were elicited
as to the probability of a gastrointestinal foreign body vs. six non-surgical diagnoses. Third,
utility estimates were elicited from the original clinical team for each of four potential
clinical outcomes: surgery + gastrointestinal foreign body (GI FB), surgery + no GI FB, no
surgery + GI FB, no surgery + no GI FB. Finally, a decision tree was made to identify the
optimal decision using the utility estimates and diagnosis probabilities.

3.1. Case Description

An approximately 1-year-old, castrated male ferret presented emergently with a 2-day
history of lethargy and anorexia. One day prior to presentation, the patient developed
diarrhea. At presentation, the owners mentioned that he was a “chewer.” Abnormal
physical exam findings included a rectal temperature of 40.6 ◦C (105.1 ◦F; normal values:
37.8–40.0 ◦C [100–104 ◦F]) [4] and a mildly enlarged left axillary lymph node. Three view
radiographs indicated the stomach was moderately distended with inhomogeneous soft
tissue opaque material (Figure S1). An ultrasound evaluation by a non-radiologist found
gastric foreign material but no other abnormalities. A complete blood count (CBC) and
plasma biochemistry panel were also performed (Table S1).

The patient was taken to surgery for exploratory laparotomy. The stomach was found
to be full of food material with no foreign material identified. There was some erythematous
gastric mucosa identified and biopsied, but no other abnormalities were found within
the abdomen.

The patient had an extremely prolonged recovery after surgery (several hours). Two
days post-surgery, the patient was still extremely lethargic, anorexic, and had a fever of
40.1 ◦C (104 ◦F). Despite the risk of exacerbating potential GI ulceration, a high dose of
meloxicam (0.5 mg/kg) was administered to reduce the fever. The next day, however, the
patient’s fever had increased to 40.6 ◦C (105.1 ◦F). Given the lack of response to therapy, the
owners elected to humanely euthanize the patient three days after the initial presentation.
Submission of the gastric biopsy and necropsy were declined by the owner. An axillary
lymph node fine needle aspirate submitted shortly after surgery revealed reactive lymphoid
hyperplasia. For an expanded case description, radiographic, CBC, and other laboratory
data, see the supplementary materials (Methods S1, Figure S1, Table S1).

3.2. Case Analysis
3.2.1. Diagnosis Probability Estimates

In order to avoid hindsight and outcome bias [5], three clinicians with significant
expertise in ferret medicine, unassociated with the case, were consulted (J.M., A.M.L.,
C.A.J.-D.). Using an online survey, clinicians were given the patient’s signalment and
history and were asked to assign prior probability estimates for each of the following seven
differential diagnoses (deemed most likely diagnoses by the first author) as primary causes
of the patient’s clinical signs: lymphoma, gastrointestinal foreign body (GI FB), systemic
coronaviral infection, Helicobacter gastritis, disseminated idiopathic myofasciitis (DIM),
bacterial gastroenteritis, and unknown toxicosis.

Clinicians were given the diagnostic findings—physical exam, radiography, ultra-
sonography, plasma chemistry panel, and complete blood count—one at a time, using the
clinical information and images as written and shown in an extended case description
(Methods S1). Clinicians were reminded to only consider each diagnostic finding indepen-
dently. To estimate the conditional probabilities, these clinicians were asked to answer the
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question, “What percentage of patients with diagnosis X would have similar findings?” for
each diagnostic finding-diagnosis combination. Estimates could range from 100, meaning
all patients with disease X would have similar findings, to 1, meaning ≤ 1% of patients
with disease X would have similar findings. This minimum estimate of 1% was set because
lower estimates, like 1 in 1000 or 10,000, were thought unlikely to be precise, given that
even experienced ferret clinicians may have seen far fewer than 100 similar cases.

Composite prior and conditional probabilities were calculated by averaging clinician
estimates [6]. Posterior probabilities of pre-surgical findings were calculated for each
diagnosis (Table 1). Clinicians were also asked to provide conditional probabilities for
the surgical findings, results of lymph node cytology, and the clinical progression post-
surgery given each differential diagnosis. The composite pre-surgical posterior probabilities,
characterized here as prior probabilities, were multiplied by these additional composite-
conditional probabilities to calculate the posterior probabilities of differential diagnoses
at the time of euthanasia (Table 2). Iterative calculations of posterior probabilities were
also performed after each diagnostic, pre- and post-surgery, to illustrate how differential
diagnosis probabilities changed as new evidence was incorporated into the clinical picture
(Figure 1).
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Figure 1. Each of seven differential diagnosis probabilities for a 1-year-old castrated male ferret that
presented to a veterinary teaching hospital following two days of lethargy and inappetence, and
one day of diarrhea. The cumulative composite posterior probabilities for each differential diagnosis
change as each new piece of diagnostic evidence is incorporated into the clinical picture.

For each diagnosis, a posterior probability was calculated using the following equation:

Posterior Probability (%) =
Prior Probability × Conditional Probability1 × Conditional Probabilityn . . .

Sum of All Diagnoses′ Prior × Conditional Probabiliies
× 100

For each diagnosis, a posterior probability was calculated using the following equation:

Posterior Probability (%) =
Prior Probability × Conditional Probability1 × Conditional Probabilityn . . .

Sum of All Diagnoses′ Prior × Conditional Probabiliies
× 100
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Table 1. Outside clinician-derived composite prior and conditional probabilities for differential diagnoses and diagnostic findings, respectively, in an approximately
1-year-old ferret presenting for two days of lethargy and inappetence, and one day history of diarrhea. Pre-surgical posterior probabilities are also shown.

Diagnosis
Prior

Probability
(%)

Conditional
Probability (%)
Physical Exam

Conditional
Probability

(%) Radiography

Conditional
Probability

(%) Ultrasonography

Conditional
Probability

(%) CBC

Conditional
Probability

(%) Chemistry

Prior × Conditional
Probabilities

Posterior
Probability

(%)

Lymphoma 9.3 25 25 11.7 35 30 71,458,333 5

GI Foreign Body 46.7 20 20 43.3 35 15.3 434,103,704 31

Systemic Coronaviral
Infection 5.3 8.3 18.3 5.3 23.7 18.3 1,885,542 0.1

Helicobacter Gastritis 10.7 8.3 28.3 23.3 30 41.7 73,456,790 5

Disseminated Idiopathic
Myofasciitis 7.7 43.3 21.7 13.7 46.7 20 91,816,379 6

Bacterial Gastroenteritis 18.3 27 28.3 32 46.7 35 733,040,000 52

Unknown Toxicosis 2.7 10.3 21.7 26.7 27 18.7 8,024,178 1

SUM 1,413,784,925

Table 2. Outside clinician-derived composite prior (posterior probabilities from Table 1 become prior probabilities due to a different reference time point) and
conditional probabilities for differential diagnoses and diagnostic findings after all pre-surgical diagnostics in an approximately 1-year-old ferret presenting for two
days of lethargy and inappetence, and one day history of diarrhea. Posterior probabilities of differential diagnoses at time of euthanasia are shown.

Diagnosis Prior Probability (%) Conditional Probability (%)
Exploratory Laparotomy

Conditional Probability (%)
Lymph Node

Cytology

Conditional Probability (%)
Clinical

Progression

Prior × Conditional
Probabilities

Posterior
Probability

(%)

Lymphoma 5 23.7 35 15 62,801 10

GI Foreign Body 31 12 6.7 11.7 28,658 4

Systemic Coronaviral Infection 0.1 7 11.7 13.3 145 0.02

Helicobacter Gastritis 5 60 6.1 19.3 36,966 6

Disseminated Idiopathic
Myofasciitis 6 12 6.1 55 26,146 4

Bacterial Gastroenteritis 52 51.7 6.1 30.7 501,131 76

Unknown Toxicosis 1 8.7 5.3 13.3 350 0.05

SUM 656,197
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3.2.2. Outcome Utility Estimates

There are several different ways to elicit utility estimates, including rating scales, stan-
dard gambles, and time tradeoffs, all of which are described in greater depth elsewhere [6].
In this case, we elected to use a rating scale. Specifically, the clinicians who initially saw
the patient (C.O.C., M.A.M., S.M.P.) were asked to estimate the relative utility (a composite
figure incorporating both survival and cost) of three clinical outcomes on a scale of 0–100:
surgery + GI FB, surgery + no GI FB, no surgery + GI FB (Table 3). The fourth clinical
outcome of no surgery + no GI FB was assigned the maximum utility of 100, because it
meant that surgery was not required and not performed, sparing both money and potential
adverse effects from an unnecessary procedure. Clinicians were explicitly instructed to
consider how the cost of an unnecessary surgery would affect utility.

Table 3. Individual and composite (average) estimates of relative utility for different clinical outcomes
from the original clinical team. The utility for no surgery + no gastrointestinal foreign body was
assumed to be 100 (maximum).

Clinical Outcome Individual Estimated Utility Composite Estimated Utility

Surgery
+

Gastrointestinal
Foreign Body

90 80 80 83.3

Surgery
+

No Gastrointestinal
Foreign Body

70 60 50 60

No Surgery
+

Gastrointestinal
Foreign Body

25 25 20 23.3

No Surgery
+

No Gastrointestinal
Foreign Body

100

Treatment Threshold 32%
chance of GI FB

42%
chance of GI FB

45%
chance of GI FB

40%
chance of GI FB

Treatment thresholds were calculated using the utility estimates in the following equation:

1
1 + [((Treated disease − Untreated disease) / (Untreated no disease − Treated no disease))]

= Treatment threshold.

For the composite utilities, the calculations were performed as follows:

1
1 + [((83 .3 − 23 .3) / (100 − 60))]

= 0.4 or 40%

3.2.3. Decision Tree & Treatment Threshold Sensitivity Analysis

A decision tree was constructed with each clinical outcome as a terminal (rightmost)
branch (Figure 1). The utility of each outcome was then multiplied by its associated
diagnosis probability to provide an expected value of each option, with the higher value
considered to be the optimal choice (in this case surgery vs. no surgery).

To understand the lowest diagnostic probability at which surgery should be elected
(treatment threshold), a one-way sensitivity analysis was performed [7]. For this, both the
benefits and harm associated with surgery were calculated. The benefit of surgery was the
difference in utility between the surgery + GI FB (treated disease) and no surgery + GI FB
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outcomes (untreated disease). The harm of surgery was the difference in utility between the
no surgery + no GI FB (untreated no disease) and surgery + no GI FB (treated no disease)
outcomes. The treatment threshold is calculated with the equation: 1

1+(Benefit/Harm)
[7]. In

this model, a treatment or diagnostic test with a high benefit:harm ratio (low risk, low cost)
should be selected, even with a relatively low confidence of the diagnosis. Alternatively,
treatments or diagnostic tests with a low benefit:harm ratio (high risk, high cost) require a
much higher degree of certainty regarding the diagnosis. An overview of the approach to
clinical decision analysis using the “PROACTIVE” mnemonic is presented in Box S1 [6].

4. Results
4.1. Diagnosis Probability Estimates

Each outside clinician noted gastrointestinal foreign body as the differential diagnosis
with the highest prior probability. However, these probabilities varied widely, with one
clinician estimating a 30% prior probability and another doubling that estimate at 60%
(Table S2). Prior probabilities for other differentials were generally concordant, although
one clinician considered Helicobacter gastritis 10 times more likely and bacterial gastroen-
teritis 2.5 times more likely than another. Estimated conditional probabilities of both
pre-surgical and post-surgical findings were often concordant, but in some cases showed
marked differences (Tables S2 and S3).

Composite pre-surgery posterior probability estimates noted bacterial gastroenteritis
(52%) followed by GI foreign body (31%) as the most likely differential diagnoses (Table 1).
Individual pre-surgery posterior probability estimates from each clinician differed dramati-
cally from one another, and the clinicians indicated Helicobacter gastritis (59%), lymphoma
(92%), and bacterial gastroenteritis (93%) to be the most likely pre-surgery differential
diagnosis (Table S2). While composite pre-surgery posterior probability estimates indicated
a 31% chance of a GI foreign body, no clinician had an individual pre-surgery posterior
probability estimate of a GI foreign body above 7%. At the time of euthanasia, the individ-
ual estimates of posterior probabilities again varied widely (Table S3). Estimates for two
of the three clinicians indicated that, at the time of euthanasia, lymphoma was the most
likely diagnosis (86 and 99.1%), and bacterial gastroenteritis was the second least likely
diagnosis (0.4 and 0.0000009%). Estimates for the third clinician indicated that, at the time
of euthanasia, bacterial gastroenteritis was the most likely differential diagnosis (99.7%)
and lymphoma was the third least likely diagnosis (0.000004%). Composite posterior
probabilities of diagnoses at the time of euthanasia indicated that bacterial gastroenteritis
was the most likely diagnosis at 76%, while gastrointestinal foreign body was tied for the
fourth most likely diagnosis at 4% (Table 2).

4.2. Outcome Utility Estimates

While no surgery + no GI FB (untreated no disease) was assigned the highest util-
ity, the three clinicians on the original clinical team agreed on the relative order of the
other outcomes (Table 3). The outcome with the second highest composite utility was
surgery + GI FB (treated disease, utility of 83.3/100), followed by surgery + no GI FB
(treated no disease, utility of 60/100), then no surgery + GI FB (untreated disease, utility of
23.3/100) as the worst outcome. Utility estimates varied somewhat by clinician (Table 3).

4.3. Decision Tree & Treatment Threshold

The decision tree (Figure 2) revealed no surgery to be preferred to surgery given that
the composite pre-surgery posterior probability of GI FB was 31%. A one-way sensitivity
analysis to determine the treatment threshold showed that surgery would have been
preferred to no surgery if the probability of a foreign body was above 40%. A probability
of exactly 40% would indicate neither strategy is preferable to the other. This treatment
threshold varied slightly when using individual clinician estimates of utility (Table 3).
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Figure 2. Decision tree for the clinical case of a ferret with a possible gastrointestinal foreign body (GI
FB). The square node represents a decision to be made by the clinician, while the oval nodes, called
chance nodes, represent the different outcomes dictated by diagnosis probability. The numbers in
the oval nodes represent expected values (∑ (utility × diagnosis probability)) of each choice. For
example, the composite probability of a GI FB at time of surgery (0.31) was multiplied by the utility
value of the surgery + GI FB outcome (83.3) to equal 25.8; then the probability of not having a GI
FB (1 − 0.31 = 0.69) was multiplied by the utility value of the surgery + no GI FB outcome (60) to
equal 41.4. When 41.4 and 25.8 were added together and rounded to the nearest whole number, the
expected value of surgery was revealed to be 67. This process was repeated for the “no surgery”
choice to reveal an expected value of 76. In this case, the “no surgery” choice provides greater value.

5. Discussion

The primary aim of this investigation was to introduce Bayesian decision analysis and
apply it to a clinical case, specifically to answer the question, “Should this patient have
undergone surgery?” It is an important question. Unnecessary surgery has profound costs,
including medical costs in the form of adverse anesthetic or surgical events, as well as
financial opportunity costs, (e.g., money that could have been spent on other diagnostics or
medical management). Based on probability estimates from clinicians not involved in the
case and utility estimates from clinicians who were, the answer to that question was “No,
this animal should not have gone to surgery as there was only a 31% chance that it had a
GI foreign body, and the treatment threshold was 40%.”

While knowledge gaps, communication errors, and circumstance (e.g., Friday night
presentation) may have played a role in this suboptimal decision, it is always important
to consider the cognitive biases that contributed to it as well. Doing so may help to
mitigate them in the future. Multiple related biases—premature closure, anchoring, and
confirmation bias—may have been at play in this case. In premature closure bias, there is a
failure to adequately consider alternative diagnoses after an initial clinical impression is
formed. In this case, the initial clinical impression based on signalment and history was
consistent with a GI foreign body, and many other diagnoses were not explicitly considered
during initial discussions amongst the team. Anchoring bias is the overreliance on earlier
information or failing to update one’s prior probabilities in light of information that is not
supportive of those probabilities. In this case, despite the physical exam and radiographic
findings that outside clinicians thought would be somewhat unusual (20%) in ferrets with
GI foreign bodies, the original clinicians still considered it to be the most likely diagnosis.
To confirm this, they performed an abdominal ultrasound to find gastric foreign material.
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This was an example of confirmation bias, namely seeking or preferring test results to
confirm rather than disproving a suspected diagnosis.

To illustrate how these biases would alter pre-surgery diagnosis posterior probabilities,
suppose that the original clinicians considered the diagnostic prior probabilities and the
conditional probabilities for ultrasonographic findings (confirmation bias), but discounted
all other pre-surgical diagnostics (anchoring bias). In that scenario, the pre-surgery posterior
probability of GI foreign body was 64% compared to 31% when all pre-surgical diagnostics
were considered. In light of these cognitive biases, it becomes obvious why the original
clinicians elected to take the patient to surgery.

One strength of this decision-analysis approach is that it can allow for improved,
shared decision making between client and veterinarian, especially when it comes to
deciding on potentially invasive or expensive therapies/diagnostics. To derive utilities for
use in the decision tree, clinicians can explain the benefits and harms of a treatment or test
to the client, whether it be surgery, renal biopsy, radiation therapy, or a drug with potential
adverse effects. Clients, on the other hand, will have a better understanding of how much
they value each outcome financially. Together, clinicians and clients can assess the potential
outcomes and assign utility values to them. This can also be done when there are more
than two options from which to choose. For example, in the case presented, another option
could have been endoscopic evaluation and the removal of a gastric foreign body. Because
of this, decision analysis allows clinicians to help their clients determine the best option for
them between the most efficacious and often most expensive therapy (the gold standard)
and other less costly but less efficacious alternative therapies.

Another strength of this approach is that because decision analysis makes the decision-
making process explicit, clinicians are able to assess the robustness of their decisions
to different diagnosis probabilities or utility values. The one-way sensitivity analysis
performed above can determine the treatment threshold, but this can also be extended to
identify a test-treatment threshold, which shows the probabilities at which a diagnosis
should be treated without additional testing, tested for, or not treated without additional
testing [8]. Although different clinicians may disagree about the structure of the problem
(e.g., the number of alternatives), diagnosis probabilities, utilities, and thus treatment
thresholds, decisions made using decision analysis are defensible as rational.

One major limitation of decision analysis is that clinicians do not necessarily have the
time to implement it. Clinicians make dozens of decisions every day for which decision
analysis would be excessive. Rather, clinicians could view decision analysis as a tool
to facilitate shared decision making for end-of-life care or when deciding whether to go
forward with particularly invasive diagnostics or interventions like surgery, mechanical
ventilation, or hemodialysis. Another limitation of Bayesian decision analysis, especially in
this zoological medicine context, was the imprecision and dissimilarity of the probability
estimates (Tables S2 and S3). This is inescapable given the relative lack of relevant pub-
lished data. Even in human medicine, probability estimates vary in degrees of fuzziness,
depending on the specialty and clinical scenario. Accordingly, some have even defined
clinical decision analysis as “a formal approach to making bad decisions, which would
have otherwise been worse” (J. Wong, personal communication). Some of this imprecision
in literature-derived estimates can stem from the use of language such as, “frequently,”
“commonly,” “uncommonly,” or “rarely” when describing clinical signs of a disease as
opposed to data-driven percentage estimates. Clinician-derived estimate imprecision is
also likely to be common in exotic animal/zoological medicine, a field defined by its
breadth rather than depth. Compared to the high number of heart attacks and kidney
stones that an emergency physician may see, zoological medicine clinicians encounter
diseases and species almost at random. We attempted to account for this stochasticity of
experience by surveying more than one experienced clinician. Furthermore, limitations of
data imprecision apply to the entirety of exotic animal/zoological practice, so this does not
preclude clinicians from using the Bayesian decision analysis to understand and improve
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their own clinical decision making. Readers can use a fill-in-the-blank template for their
consideration in using Bayesian inference for diagnosis (Figure 3, Table S4).
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Figure 3. Template for using Bayes’ theorem to think probabilistically in diagnosis. Differential
diagnoses should be exhaustive and mutually exclusive, meaning they should cover the realm of
possibilities and that only one is the true primary cause of disease. If necessary, inclusion of an
“other” category, consisting of aggregated low probability diagnoses, may be considered. Conditional
probabilities may come from literature, expert opinion, or in the case of certain diagnostic assays, data
from the manufacturer or lab. Any probability, prior or conditional, of 0 will result in that diagnosis
having a posterior probability of 0, so it is important to consider whether a diagnosis or a diagnostic
finding is possible, i.e., has a probability > 0, rather than simply unlikely. Posterior probability in
this template is expressed as a percentage, rather than on a 0 to 1 scale. An interactive spreadsheet
formulation has been included in the supplementary material (Table S4) to allow easier application of
this tool.

6. Conclusions

Clinical decision making is difficult. Retrospectively, humans are plagued with hind-
sight and outcome biases such that when we misdiagnose patients or have bad outcomes,
we come to believe that the right diagnosis was more obvious or that the treatment choice
made was clearly wrong. Prospectively, there are a myriad of unknowns that complicate the
decision-making process. In this article, we have described the Bayesian decision analysis
as a tool for ordering differential diagnoses, making prospective clinical decisions, and
analyzing past clinical decisions (Box S1). We have also applied this tool in a retrospective
case analysis of a ferret with a suspected gastrointestinal foreign body. Given the exact
same information, outside clinicians came to different conclusions about prior diagnosis
probabilities and conditional probabilities of clinical findings. By combining these expert
opinions into composite estimates, we endeavored to reflect a collective truth rather than
individual experiences. In doing so, we were able to analyze our own decisions and under-
stand the cognitive biases that may have given rise to them. We hope others are able to do
the same and start improving their own clinical reasoning.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12233414/s1, Methods S1: Expanded Case Description (As
Presented to Clinicians for Diagnostic Probability Estimates); Figure S1: Whole body radiographs
of an approximately 1-year-old ferret presenting for two days of lethargy and inappetence and
one day history of diarrhea; Table S1: Biochemical and hematologic values for an approximately
1-year-old ferret presenting for two days of lethargy and inappetence and one day history of diarrhea;
Table S2: Individually estimated prior probabilities for each of 7 differential diagnoses and conditional
probabilities of diagnostic findings given a known diagnosis; Table S3: Individually estimated,
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outside clinician-derived prior (posterior probabilities from Table S2) and conditional probabilities
for differential diagnoses and diagnostic findings, respectively, in an approximately 1-year-old ferret
presenting for two days of lethargy and inappetence and one day history of diarrhea; Table S4:
Interactive calculator for using Bayes’ theorem to think probabilistically in diagnosis. Differential
diagnoses should be exhaustive and mutually exclusive, meaning they should cover the realm of
possibilities and that only one is the true primary cause of disease. If necessary, inclusion of an
“other” category, consisting of aggregated low probability diagnoses, may be considered. Conditional
probabilities may come from literature, expert opinion, or in the case of certain diagnostic assays, data
from the manufacturer or lab. Any probability, prior or conditional, of 0 will result in that diagnosis
having a posterior probability of 0, so it is important to consider whether a diagnosis or a diagnostic
finding is possible, i.e., has a probability > 0, rather than simply unlikely. Posterior probability in
this template is expressed as a percentage, rather than on a 0 to 1 scale. Using fewer diagnoses or
diagnostics should not impact how well the spreadsheet works. Additional diagnostics may be
included by inserting a column to the left of the “Pr x CPs” column, and spreadsheet formulas should
remain intact. Additional differential diagnoses may be added by inserting a row above the “SUM”
row; in that case, formulas in the “PrP x CPs” and “Posterior Probability (%)” columns will have to be
manually extended down. Box S1. PROACTIVE mnemonic used to apply clinical decision analysis,
adapted from Decision Making in Health and Medicine: Integrating Evidence and Values, 2nd Edition [6].
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