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Simple Summary: The effect of feeding and feed deprivation on the regulation of feed intake in Euro-
pean seabass was evaluated. European seabass possess feed intake regulation mechanisms similar to
those found in mammals and fish. Fasting and feeding conditions induce different responses in feed
intake regulation mechanisms in European seabass. The present results are important to identify and
understand the mechanisms of appetite regulation of European seabass, and therefore contribute to
feeding optimization processes, ensuring the growth and sustainability of the aquaculture industry.

Abstract: The present study aimed to evaluate the effects of feeding or feed deprivation on the
orexigenic and anorexigenic responses at the central (whole brain) and peripheral (anterior and
posterior intestine, stomach, and liver) system levels in European seabass. For this purpose, a group
of fish (208 g) was fed a single meal daily for 8 days (fed group) and another group was feed-deprived
for 8 days (unfed group). Compared to the fed group, in the whole brain, feed deprivation did not
induce changes in npy, agrp1, and cart2 expression, but increased agrp2 and pomc1 expression. In the
anterior intestine, feed deprivation increased cck expression, while in the posterior intestine, the npy
expression increased and pyyb decreased. In the stomach, the ghr expression decreased regardless of
the feeding status. The hepatic lep expression increased in the unfed fish. The present results suggest
a feed intake regulation mechanism in European seabass similar to that observed in other teleosts.

Keywords: fasting; feeding; orexigenic; anorexigenic

1. Introduction

Feeding is one of the most important practices in the aquaculture industry, ensuring the
good development, growth performance, and welfare of the cultured species. Nowadays,
aquaculture mainly relies on the production of fed species, implying the use of aquafeeds [1].
However, aquafeeds represent 50–70% of variable costs [2]. Therefore, understanding the
feed intake regulation is of high relevance for the adequate management feeding the
profitability of aquaculture.

As in other vertebrates, feed intake regulation mechanisms in fish present a complex
interaction between the central nervous system, the peripheral systems, and the environ-
ment [3–6]. Furthermore, the animal’s nutritional status provides an important stimulus for
the regulation of feed intake mechanisms [5]. Under satiation or fasting, different periph-
eral peptides and hormones, namely leptin, ghrelin, cholecystokinin, and neuropeptide
Y-related peptides, are produced and released into the bloodstream and directed to the
hypothalamus. In the hypothalamus, information is integrated and induces changes in
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the production of orexigenic or anorexigenic neuropeptides that stimulate or suppress
appetite [3,6,7] (Figure 1).

The Neuropeptide Y family involves structurally related peptides comprising neu-
ropeptide y (npy), peptide YYa (pyya), peptide YYb (pyyb), and tetrapod pancreatic
polypeptide (pp) [8,9]. Npy is considered one of the most potent orexigenic agents in
mammals [10]. In fish, npy is found in the central and peripheral systems and has also
been described as having potent orexigenic action [4,7]. Npy is regulated by the nutritional
status of fish and variations in npy expression were reported in several fish species in
response to fasting and refeeding [11–16]. For instance, in goldfish (Carassius auratus),
npy intracerebroventricular injection resulted in an increase in feed intake followed by a
decrease in npy mRNA levels after feeding [17]. Additionally, in olive flounder (Paralichthys
olivaceus), the intraperitoneal injection of npy increased feed intake and growth rate [18].

Pyy is a hormone with a structure similar to that of npy, mostly produced in the
intestine L-cells, and has been described as an anorexigenic peptide in mammals [19,20]. In
fish, pyy was described to be widely present in both the central and peripheral systems,
and to also have anorexigenic functions [9]. Accordingly, in rainbow trout (Oncorhynchus
mykiss) and Nile tilapia (Oreochromis niloticus), the intracerebroventricular injection of pyy
decreased feed intake [21,22]. Previous studies also reported that pyy expression is affected
by feeding or feed deprivation, increasing after a meal and decreasing during fasting,
further supporting its anorectic effect in fish [23–28].

In mammals, agouti-related protein (agrp) is co-expressed in the hypothalamus along
with npy, and also has an orexigenic effect by antagonizing central melanocortin recep-
tors [29]. In fish, two isoforms of the agrp (1 and 2) gene have been identified, and both
appear to play a role in the feed intake control by inducing appetite. Accordingly, it was
shown that agrp1 and agrp2 mRNA levels increased during fasting, in goldfish (Carassius
auratus), [30], zebrafish (Danio renio) [31], and Atlantic salmon (Salmo salar) [32]

Cocaine-and amphetamine-regulated transcript (cart) is a peptide with neurotrans-
mitter and neuroendocrine functions with numerous key roles in pituitary hormone se-
cretion, and energy metabolism, acting as an anorexigenic agent across the vertebrate
phyla [4,6,7,33]. In goldfish, it was shown that intracerebroventricular cart injections
decreased feed intake and growth rates [34]. Additionally, fasting decreased brain cart
expression in several fish species, further supporting its anorexigenic action [11,14,35–37].

Proopiomelanocortin (pomc) is a precursor peptide that is post-transcriptionally pro-
cessed into melanocortins, including melanocyte-stimulating hormones (a-, b- and c-MSH)
and adrenocorticotropic hormone (ACTH). In mammals, pomc neurons produce α-MSH
and cart, both inducing a decrease in feed intake [38]. As in mammals, fish hypothalamus
co-expresses pomc and cart. However, the pomc role in feed intake regulation still needs to
be clarified. For instance, in Atlantic halibut (Hippoglossus hippoglossus), pomc expression
was higher half an hour after feeding but no differences were observed in the following
hours [25]. On the contrary, in olive flounder (Paralichthys olivaceus), fasting increased pomc
expression [39].

In mammals, cholecystokinin (cck) produced and released by the gastrointestinal tract
endocrine cells acts as a satiety signal, reducing feed intake. In fish, cck is widely expressed
both in the brain and gastrointestinal tract, and it was also shown to have an anorexigenic
action in winter skate (Raja ocellata) [40], blunt snout bream (Megalobrama amblycephala) [41],
white sea bream (Diplodus sargus) [42], channel catfish (Ictalurus punctatus) [13], and Ya fish
(Schizothorax prenanti) [16].

In fish, as in mammals, ghrelin (ghr) is mainly synthesized in the stomach and is
considered the most potent orexigenic hormone produced in the gastrointestinal tract [43].
Supporting its orexigenic action, it was shown that ghr increased after feed intake in
goldfish [44,45], brown trout (Salmo truta) [46], cavefish (Astyanax fasciatus mexicanus) [47],
and blunt snout bream [41]. However, in rainbow trout, contradictory results were obtained,
as it was suggested that ghr might have orexigenic [48] and anorexigenic [49] functions.
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Leptin (lep) is an anorexigenic hormone with several physiological functions in energy
balance, fat deposition, and feed intake regulation, and in mammals, it is synthesized in the
adipose tissue [50]. In contrast, in fish, even though adipose tissues also produce lep [51],
the main lep producer is the liver. As in mammals, lep was also described as having
a potent anorexigenic function in fish. Accordingly, it was shown that fasting led to a
decrease in lep mRNA levels in striped bass (Morone saxatilis) [52], common carp (Cyprinus
carpio) [53], and Ya fish [16].

European seabass (Dicentrarchus labrax) is a well-established species in European
aquaculture, with a production of 84.430 tonnes in 2019 [54]. Thus, optimizing feeding
without compromising the growth performance and health of European seabass is of
great interest to the aquaculture industry. However, feeding optimization implies a deep
knowledge of feeding control mechanisms and how feeding status affects feed intake. Thus,
this study aimed to contribute to the understanding of the response mechanisms involved
in feed intake regulation in European seabass juveniles.
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Figure 1. Diagram showing the interaction of peptides and hormones at the central level (brain) and
peripheral levels (intestine, liver, and stomach) involved in the regulation of food intake in fish and
how they can be affected by feeding deprivation and feeding. agrp: Agouti-related peptide; cart:
cocaine- and amphetamine-regulated transcript; cck: cholecystokinin; npy: neuropeptide Y; pomc:
proopiomelanocortin; pyy: peptide YY; ghr: ghrelin.

2. Materials and Methods
2.1. Experimental Conditions

The trial was carried out at the Marine Zoological Station, Porto University, in a
thermoregulated recirculation water system equipped with 8 cylindrical fiberglass tanks of
100 L capacity and supplied with a continuous seawater flow (3 L min−1). The trial was
performed by accredited scientists according to FELASA category C recommendations and
approved by the CIIMAR ethical committee for Managing Animal Welfare (ORBEA), in
conformity with the European Union directive 2010/63/EU and the Portuguese Law (DL
113/2013).
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European seabass was obtained from a commercial farm (Acuinuga S.L., Bertamiráns,
Ames, Spain) and submitted to a quarantine period of one month before the trial. Then,
fish with an average body weight of 208.0 ± 0.3 g were randomly distributed to 8 tanks
(6 fish/tank) and two groups were randomly established as fed and unfed (four tanks per
group). Both groups were fed once daily until apparent satiation with a commercial diet
(Aquasoja Sustainable Feed-Standart Orange 4 MEO4; Sorgal, Ovar, Portugal) for 16 days,
and then, the fed group continued to be fed for 8 days as above while the unfed group was
kept without feeding during the while period.

During the trial, the water temperature was maintained at 23 ± 1 ◦C, salinity at
35 ± 1‰, dissolved oxygen was kept near saturation, ammonia and nitrites levels were
kept around zero mg L−1, and a photoperiod of 12 h light:12 h dark was adopted.

At the end of the trial, both groups were sampled before (0 h) and at 3, 9, and 12 h
hours after the feeding time. To prevent stress due to manipulation, a different tank of
each group was sampled at each sampling time. The blood of six fish per treatment and
sampling time was collected from the caudal vein using a heparinized syringe, placed
in heparinized tubes, and centrifuged at 6800× g for 10 min at room temperature. The
aliquots of the resultant plasma were stored at −20 ◦C for further analysis. After blood
collection, the fish were euthanized with a sharp blow to the head and whole brain, and
samples of the posterior and anterior intestine, stomach, and liver were collected, kept in
RNA later (1:10) at 4 ◦C for 24 h, and then stored at −80 ◦C until RNA extraction.

2.2. Plasma Metabolites

Commercial kits from Spinreact, S.A. (Gerona, Spain) were used for plasma glucose
(Kit cod. 1001191), triglycerides (Kit cod. 1001312), cholesterol (Kit cod. 1001092), and
phospholipids (Kit cod. 1001140) analysis. All plasmatic parameters were analyzed using
colorimetric reactions and absorbance was read in a Multiskan GO microplate reader
(Model5111 9200; Thermo Scientific, Nanjing, China).

2.3. Gene Expression

The RNA of each tissue was isolated through homogenization in a Precellys evolu-
tion apparatus (Bertin Instruments, Montigny-le-Bretonneux, France) with TRIzol reagent
(Direct-zolTM RNA Miniprep, Zymo Research) and following manufacturer recommenda-
tions. The RNA quality was assessed by electrophoresis on 1% agarose gel and the RNA
quantity was checked by spectrophotometry (µDrop™ plate, ThermoScientific, Waltham,
VA, USA). RNA concentration was adjusted to 0.5 µg/8 µL H2O for complementary
DNA synthesis, utilizing the NZY First-Strand cDNA Synthesis Kit (NZYTech. MB12502,
Lisbon, Portugal).

Gene expression was determined by real-time quantitative PCR analysis (CFX Con-
nect™ Real-Time System, Bio-Rad, Hercules, CA, USA). The analysis mixture contains
0.4 µL diluted cDNA (1:1), 0.2 µL of each primer (10 µM), 5 µL SsoAdvanced Universal
SYBR® Green supermix (Bio-Rad), and 4.2 µL DNase/RNASE/Protease-free water, in a
total volume of 10 µL. The sequences of primers used are presented in Table 1. The pair of
primers’ quality was analyzed with the Beacon Designer Program. Primer efficiency was
validated with serial two-fold dilutions of cDNA and determined from the slope of the re-
gression line of the quantification cycle (Ct) versus the relative concentration of cDNA [55].
Primer efficiency among 90 and 110% (slope −3.5 and 3.1, r2 = 0.99) were accepted. For
agrp1, agrp2, npy, pomc1, cart2, cck, ghr, and lep primers pairs, the annealing temperature
was determined through a temperature gradient. The reaction was initiated with incubation
at 95 ◦C for 30 s for hot-start iTaqTM DNA polymerase activation. A total of forty PCR
cycles were performed, each consisting of heating at 95 ◦C for 15 s for denaturing, and 30 s
for annealing and extension. The annealing temperature of each primer pair is presented
in Table 1. Melting curves were systematically monotonized (60 ◦C temperature 0.5 ◦C
10 s−1 from 60 to 95 ◦C). Each PCR run included triplicates of reverse transcription for each
sample and negative controls (reverse transcriptase-free samples, RNA-free samples). To
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normalize the results, previously validated reference genes, namely elongation factor 1α
(ef1α) and 18S ribosomal RNA (18s), were used. The expression levels are given as the
mean normalized values ± standard error (SE) corresponding to the ratio between copy
numbers of the target gene transcripts and the geometric mean of copy numbers of the
reference genes [56].

Table 1. Sequences of primers used for real-time quantitative PCR determination of several genes
involved in the feed-intake regulation mechanism in European seabass (Dicentrarchus labrax) 1.

Gene Sequence (5′-3′) Ta (◦C) Efficiency Accession Number

Central

agrp1 F: TCTGCTGCGTCTCTCTTCTT
62.0 2.01 HE660086R: TCTCTCCAGGTCAGACAGGT

agrp2 F: GGGCAGAGGACACAAAGAAA
62.0 2.01 HE660087R: TGTGACTTTCCTGTGGTGGA

cart2
F: CCGAACCTGACCAGCGAGAA

61.0 1.92 MZ441181R: GCTCCCCGACATCACACGTT

npy F: ACTCAGCCCTGAGACACTACA
50.8 2.01 AJ005378

R: ACTGTGGAAGCTGGTCTGTG

pomc1 F: TCCCTGTTCTCTTCCTCCTC
57.6 2.01 AY691808R: CTCTGCCGCTATAATCTCGC

Peripheral

cck
F: TTCTCCTCCCAGCTCTTTGA

60.0 1.92 DLA_LG9_001730
R: GGAGTCTGCATCCTCCTCAG

ghr
F: TTGCTGGTGGTTCTGTTGTG

61.0 1.95 DQ665912
R: TTGCCTCTGCTCTGAGGTTT

lep
F: TCAGTCAGTGGAGGCAAGAG

60.0 1.92 KJ934254
R: TTTCAGCAGCAGATTGAGGA

pyyb
F: GGTGTGTTTGAGCAGCTTCG

60.0 1.92 AJ005380
R: CAGCGTCTTGGCTTGAATCG

Housekeeping

ef1α
F: GCTTCGAGGAAATCACCAAG

60.0 1.97 AJ866727
R: CAACCTTCCATCCCTTGAAC

18s
F: GGAGGTTCGAAGACGATCAG

63.0 2.01 AY831388.1R: GAGGTTTCCCGTGTTGAGTC
1 agrp1, agouti-related peptide 1; agrp2, agouti-related peptide 2; cart2, cocaine-and-amphetamine-regulated
transcript; npy, neuropeptide Y; pomc1, proopiomelanocortin 1; cck, cholecystokinin; ghr, ghrelin; lep, leptin; py,
peptide Y; ef1α, elongation factor 1α; 18s, 18S ribosomal rRNA; Ta, annealing temperature.

2.4. Statistical Analysis

All data were tested for normality and homogeneity of variances by the Shapiro–Wilk
and Levene tests, respectively, and, when necessary, were log-transformed. Statistical
analysis was performed by two-way ANOVA with feeding status (fed and unfed) and
sampling times (0, 3, 9, and 12 h) as the main factors. When significant interaction between
the main factors was observed, one-way ANOVA was used for each factor. Significant
differences between the means were determined by Tukey’s multiple range test. The level
of significance used was p < 0.05 for all statistical tests. All the statistical analysis was
performed using the SPSS version 27 software package for Windows (IBM® SPSS® Statistics,
Armonk, NY, USA).

3. Results

Plasmatic glucose levels were higher in the fed than in the unfed group, except at
12 h where the opposite was observed. No statistically significant differences in plasma
glucose were observed with time in the fed group, while in the unfed group the highest
glucose levels were observed at 3 and 12 h, and the lowest at 9 h (Figure 2a). Plasma
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cholesterol levels were not affected by feeding status or postprandial delay (Figure 2b).
Plasma triglyceride levels were much higher in the fed (1000–1200 mg dL−1) than in the
unfed (200–300 mg dL−1) group and were higher at 9 and 12 h than at the other sampling
times, regardless of feeding status (Figure 2c). Plasma phospholipid levels were also higher
in the fed (1400 mg dL−1) than in the unfed group (1200 mg dL−1) and no differences
between sampling times were observed, regardless of the feeding status (Figure 2d).
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Figure 2. Plasma glucose (a), total cholesterol (b), triglyceride (c), and phospholipid (d) levels of
European seabass juveniles after 8 days pf feed deprivation (unfed) or continuous feeding (fed).
Values are presented as means (n = 6) and standard error (SE). Small letters denote significant
differences in sampling times regardless of feeding conditions and capital letters denote significant
differences in sampling times between feeding conditions.
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In the brain, npy and cart2 expression were not affected by the feeding status or
sampling times (Figure 3a,b, respectively). Differently, the agrp1 expression was 1-fold
higher in the unfed than in the fed group and was not affected by sampling times (Figure 3a).
The expression of agrp2 was not affected by sampling time except in the unfed group, where
it peaked at 9 h (Figure 3a). The expression of pomc1 was not affected with time in the fed
group, while in the unfed group, it increased from 9 h onwards, and at 12 h, it was 30-fold
higher than in the fed group (Figure 3b). The Cck expression was not detected in the brain,
either in the unfed or the fed fish.
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juveniles after 8 days of feed deprivation (unfed) or continuous feeding (fed). Data were normalized
with two housekeeping genes, ribosomal 18S (18S) and α-elongation factor (ef1), according to [56].
Values are presented as means and standard error (SE). Small letters denote significant differences in
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protein; cart: cocaine-and amphetamine-regulated transcript; pomc: proopiomelanocortin.
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In the anterior intestine, npy expression at 9 h it was 9-fold higher in the unfed than
in the fed group, while at 12 h npy expression, it was 5-fold higher in the fed group than
the unfed group, although differences between groups were not statistically significant
(Figure 4a). The expression of pyyb was not affected by the feeding status and was higher
at 3 and 9 h than at the other sampling times (Figure 4a). In contrast, the cck expression
was not affected by the sampling time but was higher in the fed than in the unfed group
(Figure 4a).

In the posterior intestine, the npy expression was lower in the fed than in the unfed
group and, regardless of feeding status, it was higher at 0 h and 12 h than at the other
sampling times (Figure 4b). The pyyb expression was not affected by the feeding status, but
it was higher at 3 and 9 h than at the other sampling times (Figure 4b). The cck expression
was not affected by feeding status or sampling times (Figure 4b).

In the stomach, the grh expression decreased with time in the unfed group while in
the fed group it was not affected by the sampling time, and at 3 and 12 h, was 2-fold higher
than in the unfed group (Figure 4c). Liver lep expression was not affected by feeding status
and decreased with time from 0 to 9 in both groups (Figure 4c).
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Figure 4. mRNA relative expression of main hormones and peptides in the peripheral systems
anterior intestine (a), posterior intestine (b), liver and stomach (c) of European seabass days after
feed deprivation (unfed) or continuous feeding (fed). Data were normalized with two housekeeping
genes, ribosomal 18S (18S) and α-elongation factor (ef1), according to [56]. Values are presented as
means and standard error (SE). Small letters denote significant differences in sampling time under the
same feeding conditions and capital letters denote significant differences in sampling times regardless
of feeding conditions. npy: neuropeptide Y; pyyb: peptide YYb; cck: cholecystokinin; lep: leptin;
ghr: ghrelin.

4. Discussion

Previous studies in European seabass have already reported the presence of some
peptides and hormones that are known to be involved in feed intake regulation. However,
their specific role in feed intake regulation in this species was not confirmed [57–62]. Thus,
the present study aimed to elucidate the anorexigenic or orexigenic responses of some of
these peptides and hormones in the central and peripheral systems of European seabass.
As plasmatic biochemistry parameters are affected by feeding conditions, in this study, we
also assessed the specific plasmatic metabolites that are known to be good indicators of the
nutritional condition of European seabass [63].
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In the present study, plasma glucose levels after 8 days of feed deprivation were
circa 30% lower than that of fed fish. This is in agreement with the results of Pérez-
Jiménez et al. (2007), also in this species, which reported a significant drop in plasma
glucose on the first day of feed deprivation, with values remaining stable thereafter for at
least 8 days. In contrast, Peres et al. (2014) reported that glucose levels were maintained for
starvation period of at least 7 days. In the present study, no statistical differences in plasma
glucose were noticed with time in the fed group. However, in absolute values, plasma
glucose levels were higher at 3 h post-feeding (hpf) and decreased thereafter. Similarly, in a
glucose tolerance test with European seabass, Peres et al. (1999) also observed that plasma
glucose levels peaked at 3–6 h, decreasing thereafter.

In the present study, plasma triglyceride levels were nearly 80% lower in unfed fish
compared to fed fish, while total cholesterol and phospholipids were not affected by feeding
status. Peres et al. (2014) also reported a significant decrease in plasma triglyceride levels
after 7 days of starvation while the total cholesterol levels were unaffected. Similarly,
Pérez-Jiménez et al. (2007) observed a decrease in plasmatic triglycerides levels after 9 days
of starvation. However, in contrast with the present study and that of Peres et al. (2014),
these authors also reported a reduction in cholesterol levels after 9 days of starvation.

Npy is a potent orexigenic peptide in fish, mainly expressed in the brain and intes-
tine [7,9,64]. Npy expression is known to vary with diet composition, meal frequency,
and ration size, and circadian rhythm and feed deprivation are major inducers of npy
expression [9,65,66]. On the contrary, during feeding, npy discharge usually occurs near
feeding time and then it progressively decreases as feed ingestion proceeds [9]. In the
present study, npy expression in the brain was similar in fed and unfed fish, suggesting that
npy may not have an orexigenic role in European seabass. These results agree with those
observed in Atlantic halibut [25], Atlantic salmon [35], and Atlantic cod (Gadus morhua) [11]
but are contradictory to those observed in other fish species. For instance, in blunt snout
bream [41], yellowtail [15], Nile tilapia [22], and channel catfish [13] npy expression in the
brain increased through fasting, and decreased during feeding. Additionally, on the con-
trary to present results, other studies have reported a pre and postprandial variation of npy
expression in response to a meal. For instance, in goldfish, npy expression increased 1–3 h
before the meal and decreased 1–3 hpf [17]. Similarly, in Brazilian flounder (Paralichthys
orbignyanus), the npy expression was elevated at mealtime and reduced at 2 hpf [67], and in
fed Ya-fish, the npy expression decreased at 0.5, 1.5, 3, and 9 hpf [16].

It is known that the npy expression may differ in the different regions of the brain and
analyzing the expression in the whole brain may not be sensitive sufficiently sensitive to
detect differences in expression in the different brain regions. For instance, in goldfish, [17]
observed a higher npy expression in telencephalon-preoptic than in the hypothalamus.
In contrast, in winter skate, hypothalamic npy expression was not affected by feeding or
fasting, while in the telencephalon, it was higher in fasted animals [14]. In Atlantic cod, the
npy expression was higher in the telencephalon than in the hypothalamus and optic tectum,
regardless of feeding status [11]. Further studies in European seabass should analyze the
npy expression in different regions of the brain to further elucidate the role of npy in feed
intake regulation.

In mammals, npy acts as a brain–gut peptide influencing gastrointestinal processes
at the peripheral system level [20], and in fish, it was shown that it inhibits the contractile
activity of the stomach in elasmobranchs [68–70], and induces vasorelaxation and intestinal
contractions in Atlantic cod [71]. In the present study, fasting increases npy expression
in anterior and posterior intestines, suggesting that, as in mammals, npy may act as a
brain–gut peptide in European seabass. This agrees with what was observed in other
fish species, including Atlantic cod [11], grass carp (Ctenopharyngodon idellus), [72] winter
skate [14], winter flounder (Pseudopleuronectes americanus) [40], and yellowtail [15].

Peptide YY (pyy) and peptide Y (py) are npy-related peptides that have been described
as important gut peptides in feed intake regulation and energy homeostasis [10]. There is,
however, some controversy regarding the exact function and the evolutionary relationship
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of these peptides with the peptides of the npy-family. Previously, it was suggested that
European seabass has orthologues of npy and pyy as well as py [73]. Py seems to be a
pancreatic peptide present in fish instead of the pancreatic polypeptide (pp) that is found
in mammals. Cerdá-Reverter et al. (2000) proposed that py arose from a copy of pyy
after gene duplication and besides the pancreas, it is expressed in the brain and intestine,
which are the main feed intake control areas. Upon reevaluating the phylogenetic evolution
of the neuropeptide Y family, Sundström et al. (2008) concluded that py emerged as a
duplicate of the pyy gene and should hence be called pyyb. The pyy gene (either pyya or
pyyb, according to Sundström et al. (2008) was identified in several fish species, including
Atlantic salmon [32], goldfish [23], Ya-fish [24], zebrafish, and pufferfish [74], and Nile
tilapia [22], and was shown to have an anorexigenic function. In the present study, the
pyyb expression was not affected by feeding status. However, it increased at 3hpf and then
decreased with sampling time both in the anterior and posterior intestines, suggesting
that it may have an anorexigenic function, as in other fish species. Further studies are,
however, necessary to better elucidate the role of pyy in the feed-intake regulation in
European seabass.

The neuropeptides agrp1 and agrp2 are involved in energy regulation, and their
orexigenic role in feed intake regulation was confirmed in several fish species, including
Atlantic salmon [35,75], zebrafish [31,76], goldfish [77], Ya fish [16], and Arctic Charr
(Salvelinus alpinus) [78]. Both agrp isoforms were previously confirmed in European seabass
and were shown to be mainly expressed in the brain, ovary, posterior kidney, pineal organ,
and ventral skin [58]. It was also observed that agrp1 expression increased during a long-
term fasting period (8–29 days), while agrp2 decreased after 15 days of fasting [58]. This
suggests that agrp1 and agrp2 may have different mechanisms of action in the feed intake
regulation of European seabass. Accordingly, in the present study, agrp1 expression was
affected by the feeding status being higher in the unfed fish, while agrp2 expression was
similar in both groups, except at 9 h, at which it peaked in the unfed fish. Further studies
are needed to better understand the specific role of agrp1 and agrp2 in the feed intake
regulation of European seabass.

The cart gene is strongly conserved within vertebrates, and conserves several physio-
logical functions in different species [33]. In fish, several cart isoforms have been described,
possibly due to the genome duplication that fish experienced [4]. For instance, seven cart iso-
forms were identified in Senegalese sole (Solea senegalensis). However, only three isoforms
(cart1a, cart2a, and cart4) have been shown to respond to feeding, being up-regulated in the
post-feeding period [37]. To date, only one cart isoform, cart2 was identified in European
seabass [79]. In the present study, cart2 expression was similar in fed and unfed European
seabass. The absence of cart2 response to feeding could be related to the isoform evaluated,
which may not be the one involved in feed intake regulation. Accordingly, Bonacic et al.
(2015) identified two cart2 isoforms in Senegalese sole, but only cart2a responded to feeding.
Thus, further studies are necessary to establish the possible existence of cart isoforms in
European seabass.

Although the presence of several cart isoforms is well established in fish, in some
species, the existence of only one cart isoform was reported. In such cases, and similarly to
what was observed in the present study, there was no modulation in cart expression in fed
or unfed fish. [14,25].

In European seabass, only one functional pomc isoform (pomc1) was identified, and it
was mainly expressed in the central system [59]. In the present study, pomc1 expression in
the whole brain was very low, and almost undetected in the fed European seabass. In the
unfed group, an increase in pomc1 expression was observed between 9 and 12 h, suggesting
an orexigenic role of pomc1 in feed intake regulation in European seabass. In fish, the role of
pomc in feed intake regulation is still largely unexplored and seems to be dependent on the
pomc isoform, fish species, and fish nutritional status. For instance, in olive flounder, three
pomc isoforms were identified, while the pomc1 and pomc3 expressions were not affected
by feeding status, the pomc2 expression increased during fasting, suggesting that it has an
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orexigenic role in this species [39]. In Atlantic salmon, four functional pomc isoforms were
identified (pomca1/a2/a2s/b), but only pomca1 expression was affected by feeding, increasing
at 3 hpf, and indicating that it had an anorexigenic role [80]. In rainbow trout, 14 days of
feed deprivation did not affect hypothalamic pomca1, pomca2, pomca2s, or pomcb expression,
but a 50% reduction in pomca1 expression was observed after 28 days of fasting [81].

Cck is an important gut hormone, previously described as having a potent anorexi-
genic function in European seabass [82]. The authors showed that the oral administration
of cck decreased the appetite of European seabass. Accordingly, in the present study, in the
fed group, an increase in cck expression was observed at 3 and 12 hpf, while in the unfed
group, the cck expression was lower and similar along the sampling times. In contrast, in
the posterior intestine, no effects of feeding or fasting were observed in the cck expression.
These results further support an anorexigenic action of cck in European seabass and are in
line with the results observed in other fish species, such as yellowtail [83,84], blunt snout
bream [41], cunner [85], zebrafish [86], winter flounder [40], Atlantic salmon [80], and
channel catfish [13].

In fish, the role of grh in feed-intake control is still controversial. For example, an orex-
igenic action of ghr was reported in grass carp [87], blunt snout bream [41], zebrafish [88],
goldfish [44], while an anorexigenic function was reported in Atlantic salmon [89] and
rainbow trout [49]. In European seabass, ghr was reported as a potent orexigenic hormone,
being up-regulated under starvation and downregulated during refeeding [61]. In the
present study, in the fed group, ghr expression was higher—up to 3 h and 12 h after the
meal. On the contrary, in the unfed group, ghr expression was higher at 0 h and then
decreased until null expression was observed at 12 h. This supports the orexigenic action
of ghr in European seabass, although it also indicates that even after 8 days of fasting, fish
still seem to respond to the previously circadian feeding conditioning.

As in mammals, lep is involved in the regulation of energy balance in fish [90], inter-
acting with different peptides and hormones, such as agrp, npy, and pomc in a feedback
manner, decreasing the expression of orexigenic genes and up-regulating anorexigenic
genes [51,53]. Previous studies reported an anorexigenic action of lep in fish [91]. In
European seabass, lep appears to act differently. According to Gambardella et al. (2012),
lep expression increased during fasting and decreased after refeeding, and in the present
study, no significant differences in lep expression were observed between the fed and unfed
fish. Further studies are needed to confirm the role of lep in the feed intake regulation of
European seabass.

5. Conclusions

In conclusion, the present study shows that in European seabass, feeding did not
induce significant changes in orexigenic and anorexigenic peptides and hormones at the
central and peripheral levels. Feeding deprivation increased the agrp2 expression in whole-
brain and npy in posterior intestine suggesting an orexigenic action. Further studies are
necessary to further understand the role of the different neuropeptides and hormones in
the feed intake regulation of European seabass and the specific mechanisms of action.
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