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Simple Summary: The use of microorganisms has become a trend as nutritional and functional
feedstuffs become widely used in swine and poultry diets. Microorganisms, as coproducts obtained
from the food industry and biorefineries, can reduce not only the burdens of the natural ecosystem
but also the high costs of feedstuffs. It is possible to mitigate food and land competition with humans
in the current global issues. These microorganisms could be promising and sustainable alternatives
in animal diets because they contain highly valuable proteins, amino acids, fatty acid composition,
and biogenic metabolites, which are beneficial for animal production. Microorganisms could be good
alternatives to replace plant and animal-based protein supplements with high protein and a balanced
amino acid composition. Lipid-rich microalgae and yeasts could be alternative energy feeds with
valuable fatty acids used to enhance intestinal health and meat quality. In addition, microorganisms
could be functional feed additives due to their cell contents and their cell wall bioactive components.
However, there still are some limitations to using microorganisms, including the sources and dose of
those microorganisms, which may cause negative effects on growth and health. Thus, this research
focused on investigating the use of nutritional and functional microorganisms as feedstuffs and feed
additives to replace conventional feedstuffs for enhancing the growth and intestinal health of nursery
pigs and broilers.

Abstract: The objectives of this review paper are to introduce the structures and composition of
various microorganisms, to show some applications of single cells as alternative protein supplements
or energy feeds in swine and poultry diets, and to discuss the functional effects of microorganisms
as feed additives on the growth performance and intestinal health of nursery pigs and broilers.
Microorganisms, including bacteria, yeasts, and microalgae, have been commonly supplemented
in animal diets because they are cost-effective, stable, and have quantitative production that pro-
vides nutritional and functional benefits to pigs and broilers. Microorganisms could be alternative
antibiotics to enhance intestinal health due to bioactive components from cell wall components,
which interact with receptors on epithelial and immune cells. In addition, bioactive components
could be digested by intestinal microbiota to produce short-chain fatty acids and enhance energy
utilization. Otherwise, microorganisms such as single-cell protein (SCP) and single-cell oils (SCOs)
are sustainable and economic choices to replace conventional protein supplements and energy feeds.
Supplementing microorganisms as feedstuffs and feed additives improved the average daily gain by
1.83%, the daily feed intake by 0.24%, and the feed efficiency by 1.46% in pigs and broilers. Based on
the properties of each microorganism, traditional protein supplements, energy feeds, and functional
feed additives could be replaced by microorganisms, which have shown benefits to animal’s growth
and health. Therefore, specific microorganisms could be promising alternatives as nutritional and
functional feedstuffs in animal diets.
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1. Introduction

Animal diets make up 70% of the total costs of animal production [1]. Soybean meal
(SBM) and corn are the main protein supplement and energy feed in animal diets, respec-
tively. However, plant protein supplements contain anti-nutritional factors, including
trypsin inhibitors, flatulence-producing compounds, and allergenic proteins, which restrict
growth performance and intestinal development [2,3]. Some anti-nutritional factors could
be eliminated via fermentation by using yeasts or bacteria to enhance nutrient bioavailabil-
ity [4]. After fermentation, these microorganisms could be supplemented as coproducts in
animal diets due to their valuable amino acids, vitamins, minerals, nucleotides, enzymes,
and other metabolites [5–7]. In addition, the use of plant-based feedstuffs is dependent on
seasonal availability and is limited to land use [8], whereas the use of microorganisms has
fewer availability concerns and could be produced on a large scale in less time.

Animal-based feedstuffs are commonly supplemented in nursery diets to enhance
growth performance, nutrient digestibility, and intestinal health [3,9,10]. Although animal-
based feedstuffs have positive effects on growth and health development in pigs and
broilers, these feedstuffs are expensive and in short supply [11,12]. It is important for
nutritionists to seek alternative feedstuffs so that animal producers can reduce the cost
burden while maintaining the growth performance of pigs and broilers. For alternative
feedstuffs in pig and poultry diets, some key points need to be considered, including
nutritional values, availability, palatability, and consistency [13,14]. Among alternative
feedstuffs, coproducts from the food industry, insects, and some microorganisms can
replace expensive feedstuffs in animal diets.

Coproducts from the food industry are convenient and easily available for delivery
to feed mills. In the research from Kwak and Kang [15] using finishing pigs, a food
waste mixture (70% food waste, 10% poultry litter, and 13% bakery coproducts) with
an aerobic microbial culture could be supplemented in diets, replacing corn and SBM,
without adverse effects on their growth and meat quality. However, supplementing bakery
meal as an alternative energy feed reduces growth performance and the digestibility of
AA in diets fed to nursery and growing pigs [16–18]. Candy coproducts could partially
replace whey permeate without negative effects on the growth performance of nursery
pigs [19]. The concern of using food coproducts is the variable nutrient composition by
different processes and sources; therefore, it is important to analyze nutrient composition
before formulation. Insect meal contains high protein and lipid content and is used to
replace SBM and animal-based protein supplements [20,21]. Even though some studies
demonstrated that corn–insect diets had better growth performance than corn–SBM diets
in poultry diets, the price of insect meal remains high due to the low production [21,22].
Some microorganisms have been commonly supplemented in animal diets because they are
cost-effective, stable, and their quantitative production provides nutritional and functional
benefits to pigs and broilers. In addition, specific microorganisms could be divided into
groups with different characteristics and functions. Further details are reviewed in the
following sections.

1.1. Bacteria

Bacteria are unicellular and relatively small with a size range of 0.5 to 5.0 µm [23].
Bacteria are rich in lipids, proteins, and amino acids (Table 1). In addition, bacteria are
categorized into two groups, Gram-positive and Gram-negative, based on different cell wall
structures (Figure 1A). Peptidoglycan (PGN) is the major component (40 to 60%) of the cell
wall and is made of N-acetylglucosamine (NAG), N-acetylmuramic acid (NAM), and short
peptide chains, including L-alanine, D-glutamic acid, either L-lysine or diaminopimelic acid
(DAP), and D-alanine [24,25] (Figure 1B). In the cell wall, cross-linking of the PGN envelope
enhances the strength of the structure (Figure 1C). Gram-positive bacteria have a thicker
cell wall due to more PGN envelopes in the cell wall than Gram-negative bacteria [26],
whereas Gram-negative bacteria have an outer membrane, called the lipopolysaccharide
(LPS), which may be toxic and affect animal health [23,27]. Based on properties of bacterial
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cells, they were commonly used to replace fish meal in aquacultural diets without negative
effects on intestinal health and growth [28]. Some studies demonstrated that the thick cell
wall is non-digestible in mono-gastric animals; however, some bacterial cell walls can be
utilized by the intestinal microbiota to enhance intestinal health [27,29].

Table 1. Characteristics and nutrient content of bacteria, yeasts, and microalgae.

Bacteria Yeast Microalgae

DM 1, % 90 to 95 93 94

CP, % DM basis 50 to 80 12 to 53 10 to 70

Lipid, % DM basis 7 to 15 1 to 40 3 to 71

Total Fiber, % DM basis 3 to 6 2 to 40 10 to 66

Cell wall contents

Gram + 2 Gram − 2

Mannoprotein
(35 to 40%);

1,3 β-glucan (50 to 55%);
1,6 β-glucan (5 to 10%);

Chitin (up to 3%)

Polysaccharide
(1 to 12%)

Soluble protein
(up to 4.5%)

20 to 80 nm;
PN 3 (40 to 60%);

Teichoic acid
(up to 40%);

Arabinogalactan
(10 to 20%)

8 to 10 nm;
PN (10 to 20%);

LPS 4;
Lipoprotein

References [30,31] [23,32,33] [34–36]
1 DM—dry matter. 2 Gram +/−—Gram-positive (+)/negative (−) bacteria. 3 PN—peptidoglycan. 4 LPS—
lipopolysaccharide.
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1.2. Yeasts 
Yeast sizes are variable from 2 to 50 µm in length and 1 to 10 µm in width [32]. Yeasts 

could grow under aerobic respiration, so they are generally used for brewing to produce 
alcohol [39]. In both inner and outer cell walls (Figure 2), β-glucans and mannoprotein are 
the major components [23] (Table 1). Chitin is a minor component, contributing approxi-
mately 1 to 3% in the yeast cell wall, and β-1,6 glucan links to the inner and outer walls, 
strengthening the cell structure [40]. Interestingly, yeast cell walls could stimulate animals 
to secrete protease and glucanase to release cell contents and cause fragmentation of cell 
walls [41]. Some studies demonstrated that β-glucans and mannoprotein from yeasts can 
enhance growth performance and intestinal health in pigs [42–44]. 

Figure 1. The structure of Gram-positive and Gram-negative bacterial cell walls (A), peptidoglycan
(PG) structure (B), and the cross-linking of PG chains in bacteria (C). Concepts were based on Koch
(2006) [37]; Kang et al. (2016) [38]; Pazos and Peters (2019) [25]. LPS, lipopolysaccharides; NAM,
N-acetylmuramic acid; NAG, N-acetylglucosamine; L-Ala, L-alanine; D-Glu, D-glutamic acid; DAP,
Diaminopimelic acid; L-Lys, L-lysine; D-Ala, D-Alanine.



Animals 2022, 12, 3141 4 of 23

1.2. Yeasts

Yeast sizes are variable from 2 to 50 µm in length and 1 to 10 µm in width [32]. Yeasts
could grow under aerobic respiration, so they are generally used for brewing to produce
alcohol [39]. In both inner and outer cell walls (Figure 2), β-glucans and mannoprotein are
the major components [23] (Table 1). Chitin is a minor component, contributing approxi-
mately 1 to 3% in the yeast cell wall, and β-1,6 glucan links to the inner and outer walls,
strengthening the cell structure [40]. Interestingly, yeast cell walls could stimulate animals
to secrete protease and glucanase to release cell contents and cause fragmentation of cell
walls [41]. Some studies demonstrated that β-glucans and mannoprotein from yeasts can
enhance growth performance and intestinal health in pigs [42–44].
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1.3. Microalgae

Within the microorganisms, microalgae are rich in essential fatty acids (FA), vitamins,
and minerals [34] (Table 1). Cell wall components of microalgae are primarily made of
cellulose, with pectin, fucan, xylan, and mannan as minor components [47,48] (Figure 3).
Pyrrophyta contains two flagella and chlorophyll with carotenoid and xanthophyll as
bioactive components, which accumulate starch via photosynthesis [49]. Compared to
other types of microalgae, Chrysophyta includes cellulose, silica, and calcium carbonate in
the cell wall and are able to accumulate lipids, including omega-3 [50], therefore, they are
generally used as energy feeds [51–53].

There are several advantages of using nutritional and functional microorganisms:
(1) Microbial production is an applicable and economical technology to obtain stable
products and maintain the cell culture [56,57]. (2) It is eco-friendly because microorganisms
that are considered as coproducts from the food industry or biofuel production could
be recyclable and supplemented in animal diets [56,58]. (3) Microorganisms are high
in nutrients, such as protein, AA, fats, and vitamins, and can be useful in animal diets.
However, there are some issues with using microorganisms in animal diets due to low
digestibility, heavy metals, and toxicity [12]. Although the cell wall is non-digestible in
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pigs, bioactive components could be extracted to enhance intestinal health in pigs and
broilers [59–61].
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The hypothesis of this review is that supplementing microorganisms as nutritional
and functional feed additives in nursery diets is feasible. To achieve this, the objectives
are as follows: (i) To introduce the structures and composition of various microorganisms,
(ii) to show some applications of microorganisms as alternative protein supplements or
energy feeds in animal diets, and (iii) to discuss the functional effects of microorganisms as
feed additives on the growth performance and intestinal health of pigs and broilers.

2. Microorganisms as Functional Feed Additives
2.1. Introduction of Functional Feed Additives

The intestinal microbiota is an indicator of intestinal health, which assists digestion
and absorption of nutrients, the development of the intestinal immune system, and the
inhibition of the colonization of harmful microbiota [62–64]. Young animals are susceptible
to pathogenic infections due to their immature gastrointestinal (GI) tract and microbiota
community. Therefore, diet composition plays a critical role in developing the balance of
intestinal microbiota [65,66]. Antibiotics have been supplemented in young animal diets
to avoid disease and enhance the growth rate [67]. The role of antibiotics is to inhibit
pathogen replication and destroy cell wall synthesis [68]. However, the use of antibiotics
gives rise to pathogens developing antibiotic resistance and affecting the intestinal micro-
bial population [69]. Many countries have banned the use of antibiotics due to chemical
residues in animals and antibiotic resistance transferred to humans [68]. Consequently,
alternative antibiotics, including prebiotics, probiotics, or postbiotics derived from bacteria,
yeast, and microalgae, can be a safer alternative for use in swine production [29,42,43].
Probiotics are live microorganisms, which benefit animal growth and the intestinal mi-
crobial community [27,70]. Prebiotics are polysaccharides obtained from the cell walls
of microorganisms [35]. On the other hand, postbiotics are metabolites and cell contents
extracted from probiotics [71]. Probiotics, prebiotics, and postbiotics not only balance
intestinal microbiota diversity [27,42] but also have positive effects on the immune system
by preventing intestinal inflammation [29,43].
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2.2. Mechanism and Application
2.2.1. Bacteria

The mechanism of immune response is complicated and varies based on different types
of bacteria. Among the bacterial cell walls, PGN, teichoic acid (TA), and S-layers are the
main cell wall components in most Gram-positive bacteria, whereas Mycobacteria contain
PGN, arabinogalactans (AG), and mycolic acids, which make up the top layer [30]. Different
from the Gram-positive bacteria, Gram-negative bacteria contain less peptidoglycan, porin,
and lipopolysaccharides (LPS) in the cell wall. Peptidoglycans, TA, and AG interact with
receptors on the epithelial and immune cells, including Toll-like receptor 2 (TLR2) and a
cluster of differentiation 14 (CD14), which is a co-receptor of TLR2, and on the intestinal
epithelial cells (IECs) [71–73]. Peptidoglycans are cleaved by PGN hydrolases into small
fragments and recognized by nucleotide binding and oligomerization domain proteins
(NOD). The NOD inhibits nuclear factor-κB (NF-κB) and proinflammatory cytokines,
interleukin (IL) 6, IL-8, and tumor necrosis factor-alpha (TNF-α) [74,75]. Different from
PGN, AG binds to C-type lectin receptor (CLR) on the surface of immune cells, dendritic
cells, and macrophages that decrease the activity of NF-κB and inhibit the release of
proinflammatory cytokines [76].

When animals are infected by LPS from pathogenic bacteria, LPS stimulates TLR4 and
NF-κB releasing interferons and pro-inflammatory cytokines. Probiotics, prebiotics, and
postbiotics could act as immunostimulators to stimulate TLR to inhibit NF-κB and activate
an anti-inflammatory response [77–79]. For example, selected Bacillus sp. not only help
to decrease diarrhea caused by Escherichia coli (E. coli) infection but also improve growth
performance [27,80] (Table 2). However, it is observed that not all Bacillus sp. exhibit posi-
tive effects on growth performance [81]. In addition, Lactic acid bacteria (LAB), including
Enterococcus sp. and Lactobacillus sp., commonly occur in the GI tract due to a favorable
environment and strong adhesion to the intestinal epithelial cells [82], which stimulate
the inflammatory response to release cytokines and chemokines as pathogens enter the
body [79]. This can increase lymphocyte proliferation and macrophage phagocytosis to
reduce aggregated pathogens in the intestine [82]. Taras et al. [83] demonstrated that Ente-
rococcus faecium fed to sows can reduce the mortality of newborn piglets and post-weaning
diarrhea. Enterococcus faecium reduced serum IgG [67] and tended to reduce chlamydial
infection in newborn piglets from infected sows [84]. Therefore, bacteria and their bioac-
tive components could be functional feed additives for beneficial immune responses in
nursery pigs.

Table 2. Examples of bacteria as functional feed additives.

Micro-
organism Species Feedstuff Product Level, %

Improvement, % Animal
Model Reference

ADG ADFI FE

Bacteria Bacillus sp. probiotic 1.0 × 1010 CFU/g 0.01 11.1 2.94 8.28 Nursery
pigs [80]

Bacteria Bacillus sp. probiotic 1.0 × 109 CFU/kg
0.05 18.83 20.5 −0.91 Nursery

pigs [81]0.05 2.44 −0.80 1.21

Bacteria Bacillus sp. probiotic 3.2 × 109 CFU/kg 0.04 2.65 0.81 1.94
Growing-
finishing
pigs

[85]

Bacteria Bacillus sp. probiotic 6.0 × 108 CFU/g
0.05 9.80 −0.44 10.4 Growing

pigs [86]0.03 4.93 −0.15 5.11

Bacteria Bacillus sp. probiotic 2.4 × 108 CFU/g
0.45 9.12 4.87 4.17 Nursery

pigs [87]0.30 6.92 4.06 2.78
0.15 2.20 1.01 1.24

Bacteria Bacillus sp. probiotic 3.2 × 109 CFU/kg 0.04 2.41 −10.6 6.63 Nursery
pigs [88]

Bacteria Clostridium
butyricum probiotic 1.0 × 109 CFU/kg 0.05 2.54 1.76 0.00 Broilers [89]
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Table 2. Cont.

Micro-
organism Species Feedstuff Product Level, %

Improvement, % Animal
Model Reference

ADG ADFI FE

Bacteria Enterococcus
faecium probiotic 2.0 × 109 CFU/kg 0.05 4.93 5.14 0.00 Broilers [89]

Bacteria Enterococcus
faecium probiotic 2.0 × 109 CFU/kg 0.01 5.50 −0.77 6.01 Nursery

pigs [90]

Bacteria Lactobacillus sp. postbiotic 6.0 × 1010 CFU/g
and medium

0.20 26.1 20.0 9.52 Nursery
pigs [91]

Bacteria Lactobacillus sp. probiotic 1.0 × 1010 CFU/g 0.50 4.56 36.2 1.10 Nursery
pigs [88]

Bacteria Lactobacillus sp. probiotic 5.0 × 109 CFU/kg
0.10 6.06 −7.20 12.5 Nursery

pigs [92]0.15 3.56 −7.12 10.3
0.20 −1.89 −10.2 8.44

Bacteria Lactobacillus sp. probiotic 2.4 × 105 CFU/g

0.10 16.0 10.5 5.16
Nursery
pigs [93]

0.50 1.91 0.84 1.03
0.75 3.35 1.75 1.63
1.00 4.16 1.16 2.90

2.2.2. Yeasts

Beta-glucans, mannoprotein, and chitin are the main cell wall components of yeasts.
Many studies have investigated how the yeast cell wall and its metabolites could modu-
late immune responses through pattern recognition receptors (PRR), including TLR and
CLR [94,95]. Beta-glucans derived from yeast cell walls bind to the TLR2 and CLR family
and dectin-1 receptor on enterocytes and immune cells [96,97]. Activated receptors give
rise to Ig secretion and increase the number of goblet cells for the maintenance of intestinal
structural integrity [98]. Li et al. (2006) [99] demonstrated that pigs fed β-glucans can
inhibit secretion of TNF-α and IL-6 due to increased IL-10; therefore, nutrients would be
utilized for increased growth performance rather than for immune responses. Moreover,
β-glucans can increase the number of LAB, which improve intestinal health and alleviate
pathogens infected [100].

Mannoprotein, located on the external cell wall, contains oligomannoside chains to
produce mannose oligosaccharides in yeasts [46]. Mannose has the ability to bind to
the mannose-specific lectin-type receptors on pathogenic bacteria or viruses to prevent
colonization of the intestinal villi [60]. Additionally, mannose also binds to TLR4 and dectin-
2 receptors to activate the immune responses releasing anti-inflammatory cytokines to avoid
inflammation [96,97]. Yeasts provided to sows during the gestation and lactation period
could improve the growth performance of offspring [101–103] because of positive effects
on the establishment of beneficial microbiota in the GI tract [104]. Therefore, nursery pigs
continuously fed yeasts in their diets showed enhanced digestibility of nutrients [43,104]
and had positive effects on intestinal health and morphology by β-glucans, which can
enhance growth performance [43] (Table 3). Although the high dose of β-glucans may
reduce growth performance in pigs [99], yeasts and their metabolites may have functions
similar to antibiotics to enhance growth and reduce inflammation [105].

Table 3. Examples of yeasts and microalgae as functional feed additives.

Microorganism Species Feedstuff Product Level, %
Improvement, % Animal

Model Reference
ADG ADFI FE

Yeast Saccharomyces
cerevisiae Postbiotic Glucans extracted

0.05 10.6 5.16 5.38

Broilers [106]
0.10 18.7 13.3 4.93
0.15 10.5 10.0 1.35
0.20 10.6 4.55 10.8

Yeast Saccharomyces
cerevisiae Prebiotic Cell wall extract 0.30 4.71 −0.26 6.25 Broilers [107]
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Table 3. Cont.

Microorganism Species Feedstuff Product Level, %
Improvement, % Animal

Model Reference
ADG ADFI FE

Yeast Saccharomyces
cerevisiae Prebiotic Cell wall extract 0.03 −15.7 0.85 5.88 Nursery

pigs [108]

Yeast Saccharomyces
cerevisiae Probiotic 1.0 × 109 CFU/g 0.10 4.48 20.1 −15.4 Nursery

pigs [109]

Yeast Saccharomyces
cerevisiae Postbiotic yeast culture

0.50 6.31 9.48 0.00 Nursery
pigs [43]1.00 −6.80 −1.07 −2.79

2.00 −8.01 −5.47 0.93

Microalgae Arthrospira
platensis Postbiotic Spray dried algae, Setalg

(Pleubian, France) 1.00 −0.25 4.21 −3.28 Nursery
pigs [65]

Microalgae Arthrospira
platensis Postbiotic

Spirulina powder,
NeoEnBiz Co. (Bucheon,
Republic of Korea)

0.25 1.79 1.12 0.67

Broilers [110]
0.50 1.91 0.84 1.03
0.75 3.35 1.75 1.63
1.00 4.16 1.16 2.90

Microalgae Aurantiochytrium
limacinum Postbiotic

ALL-G Rich,
Alltech Inc. (Lexingtong,
KE, USA)

1.00 1.12 −0.38 1.22 Finishing
pigs [111]

Microalgae Chlorella sp. Postbiotic Spray dried algae, Setalg 1.00 0.51 −1.40 1.64 Nursery
pigs [65]

Microalgae Haematococcus
pluvialis Postbiotic

Novasta, AstaCarotene AB
(Stockholm, Sweden)

0.04 −2.00 −2.20 0.00
Broilers [112]0.18 −1.77 −3.64 1.90

0.90 −0.74 −2.43 1.27

Microalgae Schizochytrium
sp. Postbiotic

JB5, JINIS Co., Ltd. (Jeonju,
Republic of Korea)

0.50 −1.33 2.23 −3.36 Nursery
pigs [113]1.00 1.56 0.48 1.12

2.2.3. Microalgae

The bioactive components of microalgae are variable across different species. Many
microalgae contain high omega-3 FA, which is converted to polyunsaturated fatty acids
(PUFA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) [114]. Both PU-
FAs are beneficial to the integrity of cell membranes and reduce inflammation and oxida-
tion [115]. In addition, the use of DHA-rich microalgae could improve meat quality by chang-
ing FA composition and reducing the backfat thickness [116,117]. Kibria and Kim (2019) [113]
demonstrated that nursery pigs fed Schizochytrium sp. developed an enhanced immune
system and displayed improved nutrient digestibility and feed efficiency (Table 3). Beta-
carotene, one type of carotenoid produced by Schizochytrium sp. and the family Chrysophyceae,
could be antioxidants and immunomodulators [118,119]. In addition, the flavonoid is an-
other common bioactive component, which has anti-inflammatory effects to inhibit NOD-,
LRR-, and pyrin domain-containing protein 3 releasing pro-inflammatory cytokines [120].
Furbeyre et al. (2017) [65] demonstrated that pigs fed Chlorella and Arthrospira platensis had
reduced incidence of diarrhea and provided antibiotic function to maintain the intestinal
morphology in newly nursery pigs, which may increase beneficial microbiota in the intestine
and nutrient digestibility, respectively.

Some microorganisms have been used as functional feed additives with clear mech-
anisms in immune responses. Their functional cell wall components, including peptido-
glycan, teichoic acid, β-glucans, mannoprotein oligosaccharides, and flavonoids, have
positive effects on animal’s intestinal health to increase growth and nutrient digestibility.
In addition, yeasts and microalgae have prebiotic effects on polysaccharides from the cell
wall. Polysaccharides could be digested by intestinal microbiota to produce short-chain
fatty acids (SCFA) and enhance energy utilization [35,121]. Short-chain fatty acids bind
and activate G protein-coupled receptors related to lipid and glucose metabolism [31] that
increase fatty acid oxidation in muscle and reduce fat deposition in adipose tissue [122].
Shen et al. (2009) [43] reported that increased SCFA production may be correlated with
improved marbling scores. A recent study demonstrated that SCFA infusion in the ileum
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increased dressing weight and improved carcass traits by reducing N excretion and regulat-
ing lipid metabolism in growing to finishing pigs [123]. However, there are some concerns
surrounding the use of microorganisms that may contain biogenic toxins, such as purines
and heavy metals [124]. New technology could reduce these toxins and break the cell wall
of microalgae to release functional metabolites as valuable feed additives in the future.

3. Single Cell Protein (SCP)
3.1. Introduction of SCP

Conventional protein supplements, soybean meal (SBM), and animal-based protein
supplements, including meat and bone meal, blood plasma, and fish meal, are mainly
utilized in animal diets. Soybean meal has anti-nutritional factors, including the trypsin
inhibitor, glycinin, and flatulence-producing oligosaccharides, which reduce nutrient di-
gestibility in diets fed to pigs [2,3,125]. Although animal-based protein supplements are
highly digestible and can improve health and growth in pigs and broilers [126], they are
relatively expensive and in short supply [11,127]. Therefore, SCP is the sustainable and
economic choice to replace conventional protein supplements.

Single-cell proteins not only contain high protein content in the cell, namely, 30 to
50% in yeast, 50 to 80% in bacteria, and 60 to 70% in microalgae, but can also be efficiently
produced [128]. The SCP has highly valuable protein and AAs, similar to SBM and animal
protein supplements [12,129] (Table 4). Furthermore, the use of microorganisms is more
eco-friendly and can reduce land usage and carbon production [130]. Many studies have
demonstrated that SCP could be a beneficial alternative protein supplement to animals,
reducing the portion of conventional protein supplements in diets to enhance growth
performance [131,132], animal health [133,134], and meat quality [135,136].

Table 4. Composition of crude protein (CP) and amino acids (AA-to-lysine ratio) of conventional
protein supplements and bacterial protein supplements.

Conventional Protein Supplement Bacteria

Fish Meal Soybean
Meal

Blood
Plasma

Corynebacterium
glutamicum

Methylophilus
methylotrophus

Methylococcus
capsulatus

CP, % 63.0 48.0 78.0 76.8 79.9 68.0

Essential
AA, %

Arg 3.80 83% 3.50 117% 4.40 64% 4.09 61% 3.61 80% 4.56 123%
His 1.40 30% 1.30 43% 2.50 36% 1.55 23% 1.54 34% 1.54 42%
Ile 2.60 57% 2.10 70% 2.70 39% 3.35 50% 3.32 73% 3.01 81%

Leu 4.50 98% 3.60 120% 0.40 6% 5.38 80% 5.45 120% 5.06 137%
Lys 4.60 - 3.00 - 6.90 - 6.74 - 4.54 - 3.70 -
Met 1.70 37% 0.70 23% 0.80 12% 1.26 19% 1.83 40% 1.72 46%
Phe 2.50 54% 2.40 80% 4.30 62% 2.78 41% 4.22 93% 2.70 73%
Thr 2.60 57% 1.90 63% 4.50 65% 3.32 49% 3.97 87% 2.87 77%
Trp 0.60 13% 0.70 23% 1.40 20% 0.56 8% 0.77 17% 2.21 60%
Val 3.10 67% 2.20 73% 5.10 74% 4.61 68% 4.91 108% 3.94 106%

Non-
essential
AA, %

Ala 3.90 85% 2.10 70% 4.00 58% 6.26 93% 6.04 133% 4.64 125%
Asp 5.40 117% 5.40 180% 7.40 107% 6.68 99% 7.52 166% 5.66 153%
Cys 0.60 13% 0.70 23% 2.60 38% 0.35 5% 0.57 13% 0.45 12%
Glu 7.90 172% 8.50 283% 10.90 158% 8.86 131% 10.50 231% 7.35 198%
Gly 4.70 102% 2.00 67% 2.80 41% 3.33 49% 5.69 125% 3.34 90%
Pro 2.90 63% 2.50 83% 4.30 62% 2.32 34% NA NA 2.57 69%
Ser 2.40 52% 2.40 80% 4.20 61% 2.34 35% 2.60 57% 2.37 64%
Tyr 1.90 41% 1.60 53% 3.90 57% 1.81 27% 3.48 77% 2.43 66%

Reference [137] [137] [137] [138,139] [140,141] [135,142,143]
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3.2. Application of SCP
3.2.1. Bacteria

Based on the nutrient composition, bacterial protein supplements provide a similar
amino acid composition to SBM and fish meal [138,144]. There are some bacterial protein
supplements used in pig and poultry diets, including Corynebacterium glutamicum [138,139],
Methylobacterium extorquens [145], and Methylococcus capsulatus [135,146] (Table 4). Supple-
menting Methylococcus capsulate up to 12 % to replace SBM and fish meal in nursery diets
may improve growth performance and meat quality due to changes in FA composition
in meat [131,135]. In broiler diets, supplementing Methylophilus methylotrophus negatively
affected growth performance, whereas intestinal health, microbial community, and disease
resistance were improved [147–149].

Corynebacterium glutamicum and E. coli are mainly used to produce AA [150,151]. These
bacteria have been considered waste after AA production, but they contain high levels
of protein and AA [139]. Escherichia coli is Gram-negative bacteria with double layers of
membrane and contains LPS. Some strains of E. coli may cause low nutrient digestibility
and inflammation by binding to TLR4 on enterocytes and activating inflammatory ef-
fects [96,152]. However, Corynebacterium glutamicum is a Gram-positive and endotoxin-free
bacterium, which is generally recognized as safe. This bacterium could be considered a
single-cell protein supplemented in nursery diets that can improve growth performance
and stimulate immune responses by increasing immunoglobulins (Ig) due to the bioac-
tive components from the CGCM cell wall [139]. Within the same genus, Corynebacterium
ammoniagenes supplemented up to 1% replacing SBM in poultry diets enhanced the daily
gain and feed efficiency; however, increasing the inclusion of Corynebacterium ammoniagenes
caused negative effects on growth and meat quality as a result of the low digestibility of
protein and AA [132,153]. The overall result of supplementing bacterial protein supple-
ments improved ADG by 0.12%, while reducing ADFI by 0.7% and FE by 0.41% in pigs
and broilers (Table 5).

Table 5. Single-cell proteins from bacteria and their impacts on growth performance.

Micro-
organism Species Product Level, %

Improvement, %
Animal Model Reference

ADG ADFI FE

Bacteria
Corynebacterium
ammoniagenes Protide, CJ

1.00 3.69 1.82 2.08
Broilers [132]3.00 −1.02 −1.18 0.00

5.00 −3.07 −1.50 −1.56

Bacteria
Corynebacterium
glutamicum

Bacteria and
medium

2.50 −4.32 −1.89 −2.08 Nursery pigs [138]5.00 −8.38 1.89 −10.4

Bacteria
Corynebacterium
glutamicum Lysed bacteria

0.70 −1.27 0.00 −3.64
Nursery pigs [139]1.40 −1.27 5.31 −9.09

2.10 11.4 8.78 0.00

Bacteria
Methylococcus
capsulatus

BP, Dansk
Bioprotein

10.7 5.59 1.31 3.44 Growing pigs

[131]
12.0 8.48 7.82 −1.26

Nursery pigs8.00 5.65 2.42 −2.52
4.00 −0.22 −4.55 3.77

Bacteria
Methylococcus
capsulatus BBP, Norferm AS

6.00 2.68 −3.08 5.88
Broilers [142]4.00 5.01 −0.57 5.29

2.00 3.98 0.81 3.53

Bacteria
Methylophilus
methylotrophus

Bacteria and
medium

10.0 −1.44 0.20 1.78 Nursery pigs [154]20.0 9.41 -0.08 1.78

Bacteria
Methylophilus
methylotrophus

Bacteria and
medium

9.60 4.01 2.23 9.60
Broilers [140]19.2 −14.2 −6.95 −8.09

Bacteria
Methylophilus
methylotrophus

Bacteria and
medium

3.65 0.15 −4.00 −4.00

Broilers [149]6.35 −1.00 −4.00 −3.00
9.00 −8.00 −8.00 −1.00
13.6 −13.0 −13.0 0.00
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3.2.2. Yeasts

Torula yeast (Candida utilis) and brewer’s yeast (Saccharomyces cerevisiae) contain 45
to 55% protein in the total cell, which could be considered protein supplements in animal
diets [155–158] (Table 6). Yeasts are rich in Lys but insufficient in sulfur AA, therefore
additional Met must be considered in feed formulation [155]. Yeasts would be utilized by
intestinal microbiota and produce SCFA, which are energy feeds for the health of intestinal
epithelial cells [159]. The overall impact of supplementing yeast protein supplements may
reduce ADG by 0.16% and ADFI by 1.86% but improve FE by 1.89% in pigs and broilers
(Table 7). However, studies demonstrated that supplementing yeasts at a certain level and
replacing conventional protein supplements had positive effects on growth performance,
nutrient digestibility, and intestinal morphology in nursery pigs [156,160–162]. The reason
for enhanced growth performance is due to β-glucans and mannoprotein from the cell wall,
which are beneficial to animal’s health [41,158]. However, some studies demonstrated that
supplementing yeasts and replacing SBM and fish meal in the diets did not affect intestinal
health in nursery pigs regarding the immune response and liver biomarkers [66,159].

Table 6. Composition of crude protein (CP) and amino acids (AA-to-lysine ratio) of single-cell protein
from yeasts and microalgae.

Yeast Microalgae

Torula Yeast Saccharomyces
cerevisiae

Yarrowia
lipolytica

Desmodesmus
sp. Chlorella sp. Nannochloropsis

oceanica

CP, % 49.1 44.2 43.5 31.2 47.7 38.2

Essential
AA, %

Arg 2.39 72% 2.29 73% 1.81 55% 1.50 94% 3.88 123% 1.99 88%
His 0.89 27% 1.05 34% 0.95 29% 0.50 31% 0.92 29% 0.64 28%
Ile 2.16 66% 1.92 62% 1.99 61% 1.10 69% 1.87 60% 1.50 66%

Leu 3.16 96% 2.99 96% 3.10 94% 2.30 144% 3.58 114% 2.90 128%
Lys 3.30 - 3.11 - 3.28 - 1.60 - 3.15 100% 2.27 -
Met 0.58 18% 0.73 23% 0.72 22% 0.50 31% 0.84 27% 0.57 25%
Phe 1.92 58% 1.82 58% 1.54 47% 1.30 81% 2.12 67% 1.57 69%
Thr 2.10 64% 2.19 70% 2.01 61% 1.30 81% 2.63 84% 1.54 68%
Trp 0.59 18% 0.57 18% 0.65 20% 0.40 25% 0.24 7% 0.49 22%
Val 2.49 76% 2.24 72% 2.39 73% 1.60 100% 3.44 109% 2.13 94%

Non-
essential
AA, %

Ala 3.03 92% 2.68 86% 3.63 111% 2.30 144% 1.39 44% 2.22 98%
Asp 3.98 121% 4.49 144% 3.58 109% 2.70 169% 0.03 1% 2.80 123%
Cys 0.46 14% 0.54 17% 0.44 13% 0.30 19% 0.42 13% 0.30 13%
Glu 6.77 205% 6.57 211% 6.07 185% 2.90 181% 2.04 65% 3.34 147%
Gly 1.94 59% 1.75 56% 1.96 60% 1.70 106% 2.43 77% 1.92 85%
Pro 1.55 47% 2.10 68% 1.72 52% 2.70 169% 0.94 30% 4.00 176%
Ser 1.78 54% 2.32 75% 1.82 55% 1.10 69% 0.78 25% 1.21 53%
Tyr 1.48 45% 1.56 50% 1.50 46% 1.00 63% 1.77 56% 1.20 53%

References [137,156,163,164] [137] [165] [134] [166–168] [169]

Table 7. Single-cell proteins from yeasts and their impacts on growth performance.

Micro-
organism Species Product Level, %

Improvement, % Animal
Model Reference

ADG ADFI FE

Yeast Saccharomyces
cerevisiae

Autolyzed
yeast

1.25 −1.05 5.56 1.89
Broilers [136]2.50 −8.99 −0.20 −0.47

5.00 −12.6 2.69 −7.55

Yeast Saccharomyces
cerevisiae

Whole yeast 0.50 4.32 −0.33 5.68
Broilers [107]Yeast extract 0.30 3.74 2.45 2.84

Yeast Saccharomyces
cerevisiae

Yeast and
medium 3.00 −3.61 1.60 −2.27 Nursery

pigs [170]
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Table 7. Cont.

Micro-
organism Species Product Level, %

Improvement, % Animal
Model Reference

ADG ADFI FE

Yeast Torula yeast Extracted yeast

4.00 −1.00 −3.00 −3.00

Broilers [149]
7.00 −3.00 −3.00 −1.00
10.0 −4.00 −3.00 1.00
15.0 −6.00 −5.00 1.00

Yeast Torula yeast Yeast and
medium

20.0 −4.87 −0.77 −4.44
Broilers [163]4.75 1.38 −3.72 5.31

Yeast Torula yeast SylPro, Arbiom
Inc

10.8 8.76 2.29 6.76
Nursery
pigs [164]

9.00 −3.75 −2.93 2.38
16.0 −3.00 −7.32 7.77
23.0 −7.87 −12.4 2.69

Yeast
Yarrowia
lipolytica

Yeast and
medium

3.00 12.4 −1.25 11.9 Nursery
pigs [165]6.00 −1.81 −1.63 −0.63

Yeast Yarrowia
lipolytica

Yeast and
medium 3.00 2.27 −1.20 2.14 Nursery

pigs [170]

3.2.3. Microalgae

Microalgae contain high values of oil and increased protein concentrations after oil
extraction [171,172] (Table 6). Therefore, the de-fatted microalgae could be used as pro-
tein supplements, and their protein contents vary from 12 to 65% CP based on different
microalgae [173]. The overall impact of supplementing microalgal protein supplements
improves ADG by 2.24% and FE by 0.44% but reduces ADFI by 0.13% in pigs and broilers
(Table 8). Dietary Arthrospira platensis of 15%, replacing SBM, is beneficial to growth and
health due to enhanced activities of digestive enzymes and nutrient utilization [174]. This
microalga could improve meat quality by changing the FA composition and increasing
flavor, while the color of meat is more yellow due to the high amount of zeaxanthin in the
microalgae [174,175]. However, the growth performance in pigs fed Arthrospira platensis
did not change, whereas improvements were seen in regard to oxidative stress in mus-
cles and meat quality [176,177]. In contrast, the use of microorganisms Desmodesmus sp.
and Nannochloropsis oceanica in pig and broiler diets promoted protein and FA synthesis
by increased expression of the mammalian target of rapamycin (mTOR) and acetyl CoA
carboxylase [134,178,179].

Table 8. Single-cell proteins from microalgae and their impacts on growth performance.

Micro-
organism Species Product Level, %

Improvement, % Animal
Model Reference

ADG ADFI FE

Microalgae Arthrospira
platensis

Spirulina,
Sopropeche 15.0 −11.5 −2.42 −10.1 Broilers [174]

Microalgae Arthrospira
platensis

Spirulina powder,
Sopropeche 10.0 −12.4 −3.71 −9.46 Nursery pigs [180]

Microalgae Chlorella sp. Pure, whole
7.50 0.21 2.32 −2.50 Broilers

[166]15.0 −2.07 −0.51 −1.87

Microalgae Chlorella sp. Allmicroalgae,
Natural Products 5.00 12.6 4.30 7.43 Finishing

pigs [167]

Microalgae Chlorella sp. Allmicroalgae,
Natural Products 10.0 5.44 −3.48 3.14 Broilers [168]

Microalgae Desmodesmus sp. DGM, Cellana
10.0 −11.4 −9.73 −1.64 Nursery pigs

[134]15.0 5.21 8.56 16.42 Broilers
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Table 8. Cont.

Micro-
organism Species Product Level, %

Improvement, % Animal
Model Reference

ADG ADFI FE

Microalgae Desmodesmus sp. Pure, whole 5.00 35.36 −0.24 12.24
Broilers [179]Pure, defatted 5.00 20.91 −2.37 5.44

Microalgae Nannochloropsis
oceanica

DGA, Cellana

2.00 0.84 −1.67 1.54

Broilers [169]
4.00 −2.39 0.83 −3.08
8.00 1.97 3.33 0.00
16.0 −10.4 −3.33 −6.15

Microalgae Staurosira sp. Pure, defatted 7.50 1.20 6.21 −4.78 Broilers [51]

The usage levels of microorganisms should be approached cautiously, as increasing the
dose may cause negative effects on growth and health in animals due to the low digestibility
of the cell wall of microorganisms and over-reaction to bioactive components [139]. The
thick cell wall could be broken down by various technologies, including autolysis and
hydrolysis [181,182]. Each technique may reduce palatability and growth performance in
animals due to the change in nutrient composition [181,183] and affect nutritional values [7].

In summary, microorganisms such as SCPs are beneficial to animals’ growth, health,
and meat quality. However, SCP may cause some problems with the usage levels and
technology of production [184,185], which need to be considered during feed formulation.
Therefore, further studies are needed to discuss the appropriate use of single-cell proteins
in animals.

4. Single-Cell Oil (SCO)
4.1. Introduction of SCO

Dietary lipids provide critical energy in feeds and essential fatty acids (EFA), increase
nutrient absorption, and reduce feed dust [137]. For energy feeds, vegetable oils and
animal fats have been used for over 35 years around the world [186]. Common lipid
sources in pig diets are vegetable oils, animal fats, and animal–vegetable fat blends. Fats
of animal origin, including poultry fat, tallow, and lard, have been used for a long time
due to their higher digestibility in pigs [187,188]. The production of animal fats has
increased in recent years and supplied the food industry, animal industry, and diesel
production with approximately 3000 million pounds in 2019, but the price also increased
from 20 cents/pound to 30 cents/pound from 2006 to 2019 in the U.S [189]. In addition, the
European Union has become concerned with the use of animal fat regarding animal health
due to disease, bovine spongiform encephalopathy, and chemical contaminations [190].
Vegetable oils, including soybean oil, corn oil, palm oil, and coconut oil, supplemented in
diets may enhance higher amounts of long-chain n-3 poly-unsaturated fatty acids (PUFA)
in carcasses [191,192]. Although vegetable oils are popularly utilized in various areas
including the biodiesel and food industries, the production of vegetable oils competes for
land with humans and emits thousands of tons of CO2 [193]. Therefore, the rise in costs of
conventional oils as energy feeds may be substituted with SCOs, such as Lipomyces starkeyi,
Yarrowia lipolytica, and Schizochytrium species [170,194,195].

The advantages of SCO include decreased land usage, lower cost, and a shorter life cy-
cle for large-scale production. Apart from their high protein content, SCO also has valuable
fatty acids (Table 9). Microbial oils contain over 20% of lipid content and valuable polyun-
saturated fatty acids (PUFA), which enhance immunity in young animals [196,197]. Fatty
acid composition from different dietary lipids may affect animal growth performance [198],
energy digestibility [198–200], intestinal health [201], and meat quality [202,203]. In fish
diets, fish need high n-3 PUFA, including EPA and DHA, so plant oils and fish oils are
the main energy feeds for fish [204]. Some studies demonstrated that SCOs replacing
conventional lipids in diets can be practically used in aquaculture due to similar fatty acid
composition and no adverse effects on fish growth and quality [205–207].
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Table 9. Fatty acid composition (% of total lipids) in different sources of lipid supplements.

Poultry Fat Soybean Oil Yarrowia lipolytica Schizochytrium sp. Crypthecodinium
cohnii

ME, kcal/kg 8364 8574 - - -
Total saturated, % 28.7 14.2 19.4 36.5 -
Total unsaturated, % 64.8 81.0 80.6 62.4 -
FA, % -
C 14:0 0.9 0.1 0.3 11.0 16.0
C 16:0 21.6 10.3 10.7 38.5 25.0
C 16:1 5.7 0.2 1.5 18.5 0.4
C 18:0 6.0 3.8 6.6 1.10 -
C 18:1 37.4 22.8 8.8 3.15 16.0
C 18:2 19.5 51.0 22.9 - 0.5
C 18:3 1.0 6.8 2.3 - 0.4
C 20:0 - - 0.7 - -
C 20:1 1.1 0.2 0.2 0.60 -
C 20:4 0.1 0.0 4.0 - -
C 20:5 0.0 0.0 30.2 1.65 0.1
C 22:1 0.0 0.0 0.9 0.10 -
C 22:5 0.0 0.0 0.9 12.9 -
C 22:6 0.0 0.0 - 24.0 39.0
References [137] [137] [206] [208,209] [207]

4.2. Application of SCO

Within SCOs, oleaginous yeasts have been involved in various biotechnological appli-
cations [210,211] (Table 10). Yarrowia lipolytica has the ability to produce valuable protein,
lipids, lipolytic enzymes, and organic acids, which have been widely used in the food
industry [212]. Yarrowia lipolytica is not only an alternative protein supplement in animal
diets but also a lipid source containing 20% lipids in the cell [206]. When 3% dried Yarrowia
lipolytica was used as a protein supplement, replacing soybean meal, it improved ADG and
feed efficiency [165]. However, 6% Yarrowia lipolytica, with its high lipid content, resulted in
diarrhea in piglets, as well as a reduction in the growth performance of nursery pigs [165].
In addition, Cheng et al. (2022) [213] demonstrated that 1.5% Yarrowia lipolytica used as
energy feeds, replacing poultry fat, maintained intestinal health and growth performance in
nursery pigs, while the thick cell wall may reduce nutrient digestibility when supplement-
ing 3% Yarrowia lipolytica. Hatlen et al. (2012) [206] reported that 10 to 30% Yarrowia lipolytica
supplemented in fish diets improved feed efficiency and protein and energy retention;
however, protein digestibility and energy digestibility were reduced due to the indigestible
yeast cell wall. The result may indicate that the lysis of yeast cell walls may be required
to release nutrients and increase nutrient digestibility in diets. Berge et al. (2013) [214]
reported that disrupted Yarrowia lipolytica released more lipids from the cell and improved
nutrient digestibility. Another oleaginous yeast, Lipomyces starkeyi, is a feasible replacement
for vegetable oils in fish without adverse effects on fish growth and meat quality [205].

Table 10. Single-cell oils from microorganisms and their impacts on growth performance.

Microorganism Species Level, %
Improvement, %

Animal Model Reference
ADG ADFI FE

Yeast Yarrowia lipolytica 1.50 15.2 −5.08 20.0 Nursery pigs [213]3.00 4.64 −3.23 7.27

Microalgae Aurantiochytrium
acetophilum

1.00 −2.65 6.42 −8.18
Broilers [215]2.00 −4.05 1.83 −6.21

4.00 −12.7 1.83 −14.7

Microalgae Schizochytrium sp. 3.12 −0.23 −3.69 4.35 Nursery pigs [216]

Microalgae Schizochytrium sp. 3.60 −1.92 −0.95 −0.86 Growing-finishing pigs [217]

Microalgae Schizochytrium sp. 3.70 −0.93 −3.03 3.45 Growing-finishing pigs [218]

Microalgae Schizochytrium sp. 0.25 4.17 0.65 3.38 Growing-finishing pigs [116]0.50 4.17 1.18 3.80
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Microalgae is high in n-3 PUFA, especially EPA (20:5n-3) and DHA (22:6n-3), so it
is effective for use in young fish [219]. Harel et al. (2002) [220] reported that adding
microalgae Crypthecodinium sp. to replace fish oil in aquacultural diets demonstrated
similar growth performance compared with a commercial control diet. Due to the high
arachidonic acid proportion in microalgae, Crypthecodinium sp. improved the hatching rate
of eggs [220] and reduced mortality during the larval stage of fish [207,221]. Supplementing
Schizochytrium sp. not only improved growth performance but also enhanced intestinal
health in nursery pigs and meat quality in growing to finishing pigs based on functional
FA [116,216]. However, microalgae as energy feed are not competitive compared to other
sources of oils due to the price of production and animal feasibility and acceptability [14].
Furthermore, microalgae can accumulate heavy metals, which may cause animal health
problems, so it should be used cautiously to prevent toxic effects [173,194]. Even though
SCOs are not as common as animal fats and plant oils supplemented in pig and broiler
diets, SCOs may be promising alternative energy feeds based on their valuable FA for
animal health and growth.

5. Conclusions

The production of selected microorganisms from fermentation is one of the sustainable
solutions for the environmental challenges of animal agriculture. Selected microorganisms
with nutritional and functional roles in improving the growth and health of young animals
provide enhanced production efficiency and profits in animal agriculture. From the review,
the use of selected microorganisms as feedstuffs and feed additives enhanced growth by
1.83%, feed intake by 0.24%, and feed efficiency by 1.46% in nursery pigs and broilers.
Selected microorganisms, based on their properties, can reduce the use of traditional
protein supplements, energy feeds, and functional feed additives. Collectively, selected
microorganisms can be promising alternatives as nutritional and functional feedstuffs in
diets for nursery pigs and broilers.
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