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Simple Summary: In the poultry feeding process, a feeding robot instead of manual feed delivery
can solve the problems of high labor demand and untimely feeding. However, if the feeding robot
is not guaranteed to travel in an optimal path, it will cause large amounts of unnecessary energy
consumption. In order to obtain the minimum energy consumption travel path of the feeding robot,
the energy consumption of the feeding robot was taken as the optimization objective of the path
planning in this study, and the minimum energy consumption travel path planning algorithm was
designed. The experiment results show that the minimum energy consumption travel path could
be obtained by the algorithms proposed in this study at the specified time, and that they have more
computing power. The methods proposed in this study can reduce the production cost of the poultry
smart farm to a certain extent and promote the development of poultry smart farms.

Abstract: In order to solve the problems of poor feeding environment, untimely feeding and high
labor demand in poultry smart farms, the development of feeding robots is imminent, while the
research on path planning algorithms is an important part of developing feeding robots. The energy
consumption of the feeding robot is one of the important elements of concern in the process of path
planning. In this study, the shortest path does not mean that the feeding robot consumes the least
energy, because the total mass of the feeding robot keeps changing during the feeding process. It is
necessary to find the most suitable path so that the feeding robot consumes the lowest amount of
energy during the feeding process. A branch and bound algorithm to calculate the minimum energy
consumption travel path for small-scale buckets lacking feed is proposed. The lower bound of the
branch and bound on the energy consumption is obtained by the approach of preferred selection
of the set of shortest edges combined with the sequence inequality, and the upper bound could be
obtained based on Christofides’s Heuristic algorithm. A double-crossover operator genetic algorithm
based on an upper bound on energy consumption for large-scale buckets lacking feed is proposed,
and different crossover operations are performed according to the relationship between the fitness
value and the upper bound of energy consumption in order to find a better path. The experiment
results show that the approach proposed in this study is efficient; for small-scale buckets lacking feed,
a branch and bound algorithm could calculate the minimum energy consumption path of 17 points in
300 s, and for large-scale buckets lacking feed, a double-crossover operator genetic algorithm based
on an upper bound on energy consumption could calculate the minimum energy consumption travel
path within 30 points in 60 s. The result is more accurate compared to the genetic algorithm with a
single crossover operator.

Keywords: smart farms; precision agriculture; animal welfare; feeding robot; path planning;
branch and bound; genetic algorithm

1. Introduction

Animal welfare farming is gradually becoming the main method for smart farms. The
purpose of welfare farming is to create additional value for animals and consumers by
helping farms resolve the conflict between animal welfare and efficient farming, as well as
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by supporting reduced production intensity and intensive farming [1]. Intensive farming,
as a common global agricultural production approach, has met the increasing human
demand for meat-protein dairy products, but the survival and health of farm animals in
this mode of farming are seriously neglected [2], and their meat quality is lower compared
to semi-intensive farming [3]. Semi-intensive farming is usually conducted outdoors under
non-structural conditions, with the aim of providing animals with a free and comfortable
growing environment. However, large-scale farming under non-structural conditions has a
high demand for labor: the data show that the percentage of agricultural labor participation
in 2017 was 1.66%, 1.28%, 3.49% and 6.70% in the United States, Japan, Germany and
Russia [4]. This is still a decreasing trend year by year, resulting in a lower and lower
agricultural labor force in the future, and the demand for “machine for human” is increasing.
In recent years, with the rapid development of new generation information technology such
as Internet of Things [5,6], big data [7], artificial intelligence [8,9] and intelligent equipment
manufacturing [10,11], these technologies will gradually be widely applied to all aspects of
agricultural production. The smart farm could realize information perception, quantitative
decision-making, intelligent control, precise input and personalized service in the entire
process of agricultural production and management [12].

Research on and development of feeding robots could fundamentally solve issues
such as the feeding labor shortage, high labor intensity and untimely feeding. Currently,
there is more research on feeding robots for structured poultry and livestock enclosures
(e.g., cattle barns, sheep barns, etc.). The sheep feeder SF60, a stationary automatic feeding
robot designed by BioControl AS in the Oslo, Norway, consists mainly of front and rear
doors, sheep feeding troughs, feed bins and controllers. The sheep feeder SF60 is capable
of providing concentrated feed to sheep according to the settings made by the user and
by reading the RFID ear tag information [13]. The Triloliet HP 2300 automatic feeding
device designed by Trioliet B.V. in Rotterdam, Netherlands, is a suspended, self-contained
feeding robot consisting of a 3 m3 hopper, two vertical churns, discharge belts on both
sides, am infinitely adjustable speed control belt and a mixing enhancer, which acts as a
fully automatic feeding system in conjunction with a stationary feed mixer [14]. The aerial
conveyor feeding system, produced by PELLON in Tampere, Finland, consists of filler unit
and concentrate tower to put the feed group into the fixed feed mixing device. The mixed
feed is sent to the feed conveyor by the lifting conveyor, and under the thrust of the sliding
plow device on the conveyor, it is evenly sprinkled on the feeding surface to complete the
feeding operation [15].

The aforementioned research on feeding robots is mainly for intensive farms. Semi-
intensive farms are generally flatland free-range farms that cover a large area. A large
number of feed buckets are placed in the site, and a large amount of manual transportation
and feeding is required. This kind of feeding mode is relatively crude; it is difficult to be
quantitative and accurate, and often there is not enough feed in the buckets, which leads
to some livestock and poultry having no feed to eat or overfeeding. At the same time,
the process of transporting and feeding is labor-intensive and the operating environment
is poor.

According to the above review of the development of the feeding robots, current
typical automatic feeding devices use magnetic guidance or laser-guided techniques as
their strategies for travel in structured farming environment. These control strategies
cannot be used in the unstructured farming environment in this paper. This is because
the feed buckets are scattered throughout the farm in semi-intensive farms; the activity
areas of livestock and poultry are uncertain; the number of feeding buckets lacking feed
is different during each feeding; and some feeding buckets need feeding, while others do
not, which leads the feeding robot to work in different paths each time. Thus, the above
robot control strategies are not applicable to this study. The key to path planning is the
traversal order of the feeding robot, which is equivalent to a multi-objective path planning
problem. Research on path planning problems with multiple objective points has focused
on the study of algorithms; accurate algorithms are generally used to find the exact path of
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small-scale target points. Wang et al. [16] proposed a tailored branch and bound algorithm
to obtain near-optimal solutions in small-scale instances in automated container terminals.
Meneguzzi et al. [17] used the branch and bound algorithm to solve the path planning
model in order to obtain the forest inventory vehicles path. Thakar et al. [18] presented a
branch and bound-based algorithm to determine spray paths on a point cloud of the surface
being disinfected. From the above review, it is clear that branch and bound has been applied
to solve many problems in engineering, but the above applications for branch and bound
algorithms are dominated by the path length and do not involve energy consumption.
The exact algorithm (e.g., branch and bound) is computationally inefficient and cannot
calculate the path of large-scale target points, so the optimal path can only be calculated by
heuristic algorithm. Xie et al. [19] proposed an improved ant colony optimization algorithm
to solve the multi-objective detection path planning for radioactive environments, which
not only combines the ant colony algorithm and chaos optimization algorithm, but also
introduces the pheromone difference update strategy and local search optimization strategy
to obtain a more reasonable detection path. Multi-objective path planning for agricultural
robots under virtual greenhouse conditions by Mahmud et al. [20], a reference point-based
non-dominated sorting genetic algorithm, was used to determine the best path (NSGA-III),
which was then compared with the non-dominated sorting genetic algorithm (NSGA-II),
and the quality of the results was verified. Zacharia et al. [21] proposed a minimum time
path planning strategy for the multi-point manufacturing problem in drilling/spot welding
tasks, transforming the problem into a travel salesman problem and applying a genetic
algorithm in order to obtain the final path. Although the heuristic algorithm can solve the
problem at a faster rate, its solution result is an approximation of the best result, and the
above studies are length-driven for solving, unrelated to energy consumption.

For the solution of multi-objective point path planning-related problems, the path
length is generally taken as the dominant solution [22]. For smart farms, the energy
consumption of feeding robots is very important, and reducing the energy consumption
of feeding robots will reduce the operation cost of unmanned farms to a certain extent.
Therefore, this study will take energy consumption as the optimization objective to solve
the multi-objective path planning problem with a variable number of target points.

In this paper, we first describe and analyze the problem under study, determine the
conditions for triggering robot path planning and divide the number of feed buckets in
the problem into different scales in order to find the minimum energy consumption path
separately. Then, the methods for solving problems in this study are proposed. For the
small-scale feed buckets lacking feed, the travel path with minimum energy consumption
is obtained by branch and bound algorithm. For the large-scale feed buckets lacking feed,
the travel path with minimum energy consumption approximation is obtained by double-
crossing operator genetic algorithm based on the upper bound of energy consumption.
Finally, the effectiveness of the algorithms proposed in this study is verified through
comparative experiments.

2. Materials and Methods
2.1. Problem Description and Analysis

We can see from the simulated smart farm in Figure 1 that there are n feed buckets
distributed in the smart farm, and the feed buckets are equipped with weighing sensors
and wireless communication modules. The feeding robot can receive signals of the re-
maining amount of feed in each bucket in real time. When the weight of feed in each
bucket meets the conditions set, the robot starts to plan the path to complete the feeding
process independently.

In this study, the shortest path does not mean that the feeding robot consumes the
least energy, because the total mass of the feeding robot changes during the feeding process.
In addition, the number of buckets to be fed at a time is uncertain. When the weight of feed
in the bucket is below the threshold set, it will be brought into the target set for the feeding
robot’s path planning. According to the number of buckets short of feed and the shortage
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of feed for each bucket, the conditions for triggering robot path planning are divided into
two cases. The first one is urgent feeding depending on the situation, and the second one is
feeding at the regular time.
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Case 1: The urgent feeding case is shown in Figure 2, depending on the situation, is
that the feeding robot starts path planning and feeding when there are m buckets in the
farm with less than W/4 of feed, where W is the feed weight when the buckets are full and
the relationship between n and m is Equation (1).

m =
2
3

n (1)
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Case 2: The case of feeding at the regular time is shown in Figure 3 is that the feeding
robot starts path planning and feeding when there are m feed buckets more than z feed
buckets with feed weight less than W/2, and after α hours since the last feeding time (z is
the threshold).
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The main process of the approach is shown in Figure 4, and each feed bucket is
regarded as a point in the path planning algorithm for the feeding robot. b is the boundary
value of the small scale and the large scale of feed points. The energy consumption used by
the feeding robot to complete the feeding task is the optimization objective. For a small
scale of feed points, the branch and bound algorithm is proposed for path planning. The
genetic algorithm based on the upper bound of energy consumption is proposed for a large
scale of feed points.

2.2. Path Planning for Small-Scale Feeding Point
2.2.1. Theory of the Branch and Bound Algorithm

For the path planning of the small-scale feeding points, the exact algorithm or the
heuristic algorithm could be used. Generally, the exact algorithm could obtain an optimal
solution but takes more time, while the heuristic algorithm could obtain an approximation
of the optimal solution in less time [23]. The minimum energy consumption path of the
feeding robot could be obtained by the exact algorithm within an acceptable calculation
time. Therefore, the branch and bound algorithm, a kind of exact algorithm, is used to
calculate the minimum energy consumption for small-scale feeding point path planning.

The start point of the feeding robot is regarded as the root point of the search tree of
the branch and bound algorithm. The process of branching is to add child points to the
tree, and the bounding is to check the values of the upper and lower bounds of energy
consumption with the added points until the optimal solution is obtained.

2.2.2. Boundary Constraints of Branch and Bound Algorithms

The time of the branch and bound algorithm taken is one of the important indexes to
evaluate performance of the algorithm, and it is dependent on the method to determine
the upper and lower bounds [24]. For the path planning of small-scale feeding points, the
approach of preferred selection of the set of shortest edges combined with the sequence
inequality is proposed to calculate the lower bound, and the upper bound could be obtained
based on Christofides’s heuristic algorithm.
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2.2.3. Solution of the Global Lower Bound

In general, the lower bound (LB) is used to find the optimal solution in the search
tree, and the point with the minimum value of LB in the search tree would be expanded
each time. A more accurate LB is conducive to finding the optimal solution. In order
to improve the efficiency of the algorithm, an approach to computing the LB is pro-
posed, which is called preferred selection of the set of shortest edges combined with the
sequence inequality.

A complete graph G = (V, E) is defined, where V = {v0, v1, v2, · · · , vn}, v0 is the
starting and the final return point of the feeding robot, v1, v2, . . . , vn represents the
set of feed buckets in the farm and E is the set of edges of the complete graph G. Any
two points are connected by an edge. For any edge in G, the path from vi to vj is eij. The
path of the feeding robot satisfies the symmetric property that the distance between any
two feeding points satisfies eij = eji (i, j ∈ V). Thus, the distance between any two points can
be expressed as the following symmetric matrix.

E =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− e01 · · · e0i · · · e0n

e10 − · · · e1i · · ·
...

...
... −

... · · ·
...

ei0 ei1 · · · − · · · ein
...

...
...

... −
...

en0 · · · · · · eni · · · −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, where i, j ∈ {0, 1, 2, · · · , n}.
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For the bucket to require feeding, a complete graph Gm = (V0, E0) could be defined:
V0 = {v0, v1, v2, · · · , vm}, v0 is the starting and the final return point of the feeding robot,
V1 = {v1, v2, · · · , vm} represents the set of feed buckets in the farm and the weight of feed re-
quired for each bucket is F = {q1, q2, · · · , qm}. E0 is the set of edges of the complete graph Gm.

The robot’s path is represented by the following: B =

{
e01, e12, · · · , eij, · · · , e

(m−1)m, em0

}
,

where eij is the edge from vi to vj and the length of eij is di. The energy consumed by the
feeding robot for the path B could be expressed as Equation (2):

C(B) = d0(w + Q) + d1(w + Q− q1) + · · ·+ dm−1

(
w + Q−

m−1

∑
i=1

qi

)
+ dmw (2)

where w is the net weight of the feeding robot and Q is the total weight of the required
feed. For the complete graph Gm, there are m edges connected to vi. From the path B, it is
known that the feeding robot needs to pass through m + 1 points and m + 1 edges to finish
the feeding task. In order to find the lower bound of the energy consumption of the feeding
robot, it is necessary to find the lower bound by choosing m + 1 suitable and relatively short
edges. The approach of preferred selection of the set of shortest edges is as follows:

Firstly, create the set H of shortest edges, which could contain only m + 1 elements.
Then, choose the shortest edge hi from the m edges corresponding to each point as an edge
in set H. The shortest edges could be chosen from the distance matrix E, the minimum
value of each row is the shortest edge corresponding to the point and the edges chosen
are then added to the set H. To further select the most suitable shortest edge, duplicate
selection of edges is prohibited. Since eij and eji are the same edge, when the shortest edge
eij of an edge point vi ∈ V1 is selected, eji cannot be selected as the shortest edge again.
Therefore, if the shortest edge of point vj is eij and eji has been selected, the secondary
short edge in the two set of edges corresponding to vi and vj is added to set H. Finally,
H = {h0, h1, · · · , hm} is obtained, and it could be expressed as an increasing sequence
matrix H∗ =

[
h∗0 , h∗1 , · · · , h∗m

]
.

In order to facilitate the description of the function in Equation (2), C(B) could be
expressed as:

C(B) = AT ·M (3)

In Equation (3), the sequence matrix, composed of the lengths of edges the feeding
robot passed through, is A = [d0, d1, · · · , dm]

T . The sequence matrix composed of the total
weight of the feeding robot, corresponding to edges the feeding robot passed through, is
M = [w + Q, w + Q− q1, · · · , w]T . In order to minimize C(B) to find LB, the two sequences
should be arranged in opposite ways based on the sequence inequality theory [25]. The
sequence in M is decreasingly aligned, and each element in the sequence has three constants,
w, Q and q. For the q in the sequence elements, we could decrease rank sequence F in order
to construct a completely decreasing sequence matrix:

M∗ =

[
w + Q, w + Q− q∗1 , · · · , w + Q−

m−1

∑
i=1

q∗i , w

]
(4)

The decreasing sequence F* is
{

q∗0 , q∗1 , · · · , q∗m
}

, (q∗0 = 0). Thus, for any path B, we
have the following relation:

C(B) = AT ·M ≥ AT ·M∗ (5)

The edge length increasing sequence matrix of A is A∗ =
[
d∗0 , d∗1 , · · · , d∗m

]
. Based on

the sequence inequality theory, for any path B, we have the following relation:

C(B) = AT ·M ≥ (A∗)T ·M∗ (6)
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Then, (A*)T·M* is the lower bound of the current path, not the lower bound of all
paths. For a complete work process of the feeding robot, regardless of how the feeding
robot plans the path, the weight of the feed bucket shortage is fixed, so M* in Equation (4)
is determined. To find the lower bound of energy consumption of all paths, we need to
find the relatively short edge sequence; for each item within A* and each item in H*, there
is such a relationship:

d∗i ≥ h∗i , d∗i ∈ A∗andh∗i ∈ H∗ (7)

The reason is that when the edge hi in the set H is shortest corresponding to vi (i.e., eij
is the shortest edge in the set corresponding to vi, and eij is not shortest corresponding to
vj), and di is one of the edges in the set A corresponding to vi, so for each element of the
same index number in both sequences, there is di ≥ hi. When there exist edges in the set A
that are the shortest edges of their corresponding points, and the edges corresponding to
these points in the set H are also the shortest edges, it is obvious that di ≥ hi. Sometimes,
there exist edges in set A that are the shortest edges of their corresponding points, and
these edges in set H are not the shortest edges of their corresponding points, i.e., eij in set A
is the shortest edge (di = eij) corresponding to point vi, but in set H, eij is not the shortest
edge corresponding to point vi, and eji must be the shortest edge corresponding to vj,
i.e., di = eji. Therefore, although di < hi, dj ≥ hi and di = hj must also be true.

From Equation (7), it is known that for any path B there is the following relation:

C(B) = (A)T ·M ≥ (A∗)T ·M∗ ≥ (H∗)T ·M∗ (8)

Therefore, the lower bound on the energy consumed by the feeding robot to complete
the entire feeding task is given by Equation (9):

LB = (H∗)T ·M∗ (9)

2.2.4. Solution of the Partial Lower Bound for the Energy Consumption

In the process of branch and bound, the path points could be divided into determined
path points and undetermined path points; for example, assume a path has 7 points (it
include the starting point), the determined path of the feeding robot is {e05, e52, e23} and
the path which will pass points v1, v4 and v6 is undetermined. If the global LB is still used
for the process of branching and bounding, the efficiency of the branch and bound algo-
rithm will be greatly reduced, so the partial lower bound (PLB) for possible paths need to
be calculated.

The calculation of PLB is divided into two parts. The first part is the calculation of
energy consumption C(Bk) of the determined path, and the second part is the calculation
of lower bound LBm−k of the energy consumption of the undetermined path, so the PLB
could be expressed as Equation (10):

PLB = C(Bk) + LBm−k (10)

In order to facilitate the description of the calculation, assume that the set of path
points of the determined path is Vk = {v0, v1, · · · , vk} (Vk ∈ Vm), and the partial determined
path is Bk =

{
e01, e12, · · · , e(k−1)k

}
. Bk contains at least two points (i.e., k ≥ 1), and the

sequence of the weight of feed required for each bucket is Fk = {q0, q1, · · · , qk}. The C(Bk)
could be calculated by Equation (11):

C(Bk) = d0(w + Q) + d1(w + Q− q1) + · · ·+ dk−1(w + Q−
k−1

∑
i=1

qi) (11)

The calculation of the undetermined path is same as that of LB for the total path. The
undetermined path is Bm−k =

{
ek(k+1), · · · , e(m−1)m, em0

}
, the decreasing sequence of the

feed bucket missing weight is F∗m−k =
{

q∗k , q∗k+1, · · · , q∗m
}

and the decreasing sequence



Animals 2022, 12, 3089 9 of 22

matrix consisting of the total weight of the feeding robot on the corresponding edges is as
follows in Equation (12):

M∗m−k =

[
w + Q−

k

∑
i=1

q∗
i
, w + Q−

k+1

∑
i=1

q∗
i
, · · · , w + Q−

m−1

∑
i=1

q∗
i
, w + Q−

m

∑
i=1

q∗
i

]T

(12)

The sequence matrix of undetermined path points corresponding to the set of shortest
edges is Hm−k =

[
hk, hk+1, · · · , hm−1, hm

]T , and the decreasing sequence matrix of the

Hm−k is H∗m−k =
[
h∗k , h∗k+1, · · · , h∗m−1, h∗m

]T . Therefore, the LBm−k could be calculated by
Equation (13):

LBm−k = (H∗m−k)
T ·M∗m−k (13)

2.2.5. Solution of the Upper Bound of Energy Consumption

For branch and bound algorithms, there is generally only one value of upper bound
UB in the search process. When the value of the lower bound of any point is larger than the
value of UB, the point cannot be extended, and when the value of energy consumption of
the complete path is less than the value of UB, the upper bound is updated to the current
value of optimal path energy consumption.

The UB for the energy consumption of the feeding robot will be obtained based on
Christofides’s heuristic algorithm [26]. Christofides’s heuristic algorithm is an approxima-
tion algorithm for combinatorial optimization problems with an approximation ratio of
3/2, which is the best approximation ratio in the general metric space. The bound of the
ratio between the value of upper bound and the value of the optimal energy consumption
will be calculated and re-proven.

The steps of the Christofides’s Heuristic algorithm will be briefly described as follows
and its simulation process is given in Figure 5.
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Step 1: For a complete graph G = (V, E), find the minimum spanning tree T with the
origin as the root point by the Prim algorithm (spanning tree: m − 1 edges, connecting m
points in G, minimum spanning tree: the spanning tree with the shortest total length).

Step 2: Add all points of odd degree in T to the point set O (degree: the number of
edges connecting a point).

Step 3: Construct the minimum perfect matching R of the point set O on the original
complete graph.

Step 4: Take and merge the edge set R and edge set T to construct a re-graph I, which
will satisfy that every point in graph I is of even degree and that graph I can form an Euler
circuit X.

Step 5: Skip the duplicate points in the Euler circuit in the previous step and transform
the heavy graph I in Step 4 into a Hamiltonian circuit graph S, which is the final path which
we find by Christofides’s heuristic algorithm.

For the path S derived by Christofides’s heuristic algorithm, there are clockwise and
anti-clockwise travel modes for the feeding robot, and the energy consumption of clockwise
and anti-clockwise travel modes are denoted as C(Sx) and C(Sy), respectively. We assume

that the path S is
{

e01, · · · , e(m−1)m, em0

}
, di is the length of eij and the weight set of the

missing feed for each feed bucket is Fm = {q0, q1, q2, · · · , qm}(q0 = 0). Therefore, the C(Sx)
could be expressed as follows:

C(Sx) = (w + Q)
m

∑
i=0

di −
[

q1

m

∑
i=1

di + q2

m

∑
i=2

d2 · · ·+ qm−1

m

∑
i=m−1

di + qmdm

]
(14)

The C(Sx) could be expressed as follows:

C(Sy) = (w + Q)
m

∑
i=0

di −
[

qm

m−1

∑
i=0

di + qm−1

m−2

∑
i=0

di + · · ·+ q2

1

∑
i=0

di + q1d0

]
(15)

The sum of the energy consumed by the two travel modes is as follows:

C(Sx) + C(Sx) = 2(w + Q)
m
∑

i=0
di − (q1 + q2 + · · ·+ qm)

m
∑

i=0
di

= (2w + Q)
m
∑

i=0
di

(16)

Without loss of generality, let the C(Sx)≤ C(Sy), so we can derive the following relation:

C(Sx) ≤ C(Sx) + C
(
Sy
)
= (2w + Q)

m

∑
i=0

di (17)

We assume that the optimal path S* is
{

e∗01, · · · , e∗(m−1)m, e∗m0

}
, d∗i is the length of

e∗i (e∗i ∈ S∗), the weight set of the missing feed for each feed bucket is F∗m =
{

q∗1 , q∗2 , · · · , q∗m−1
}

,
and the minimum value of the elements in the set F∗m is q∗min. The C(S*) could be expressed
as follows:

C(S∗) = (w + Q)
m

∑
i=0

d∗i −
[

q∗1
m

∑
i=1

d∗i + q∗2
m

∑
i=2

d∗i + · · ·+ q∗m−1

m−1

∑
i=1

d∗i + q∗md∗m

]
(18)

If the number of feed buckets to be fed is even, there is the following relationship:

C(S∗) ≥ (w + Q)
m
∑

i=0
d∗i −

(
min

{
q∗1 , q∗m

}
+ min

{
q∗2 , q∗m−2

}
· · ·+ min

{
q∗m/2, q∗m+1/2

}) m
∑

i=0
d∗i

≥
(
w + Q− m

2 q∗min
) m

∑
i=0

d∗i
(19)
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If the number of feed buckets to be fed is odd, there is following relationship:

C(S∗) ≥ (w + Q)
m
∑

i=0
d∗i

−
(

min
{

q∗1 , q∗m
}
+ min

{
q∗2 , q∗m−2

}
· · ·+ min

{
q∗(m−1)/2, q∗(m+1)/2

}
+ q∗(m+1)/2

) m
∑

i=0
d∗i

≥
(

w + Q− m−1
2 q∗min

) m
∑

i=0
d∗i

(20)

The following relations could be obtained by combining Equations (19) and (20):

C(S∗) ≥
(

w + Q− m
2

q∗min

) m

∑
i=0

d∗i (21)

Since the maximum ratio of the length of path edge to the optimal length of path edge
solved by Christofides’s heuristic algorithm is 3/2, there exists the following relationship
between two lengths of paths:

m
∑

i=0
di

m
∑

i=0
d∗i

≤ 3
2

(22)

Combining Equations (17), (21) and (22), the relationship between the value of path
energy consumption calculated by Christofides’s heuristic algorithm and the value of
optimal path energy consumption could be found as follows:

C(S)
C(S∗)

≤

(
w + Q

2

) m
∑

i=0
di(

w + Q− m
2 q∗min

) m
∑

i=0
d∗i

=
3
(

w + Q
2

)
2
(
w + Q− m

2 q∗min
) (23)

From Equation (23), we find the worst case of the path energy consumption derived
by Christofides’s heuristic algorithm. The path consumption calculated by Christofides’s
heuristic algorithm could be used as the initial upper bound.

The steps of the branch and bound algorithm in this study are as follows and its
simulation process is given in Figure 6.
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Step 1: Calculate the initial upper bound of the energy consumption of the feeding
robot path, take the root point (start point of feeding robot) as the parent point, calculate
the partial lower bound of its child points, cut off the child points whose value of the lower
bound is larger than that of the upper bound, and keep the child points whose value of the
lower bound is smaller than that of upper bound.

Step 2: Select the child points with the shortest partial lower bound in Step 1 and
repeat the operation in Step 1 until reaching the last point.

Step 3: When reaching the last point, if the energy consumption value of the complete
path is less than the current upper bound value, the original upper bound value will be
replaced by the energy consumption value of the complete path. Then, the new upper
bound is compared with the partial lower bound of all uncut child points again; the child
points whose value of the partial lower bound is larger than that of the new upper bound
will be deleted. After that, branching and cutting will continue on other points, and
when the value of upper bound is equal to the energy consumption value of the current
complete path, the search process will stop and the path will be regarded as the optimal
one. Otherwise, the optimal path will be obtained after each point has been branched
and cut.

Step 4: If the energy consumption value of the complete path is larger than the current
upper bound value, the current upper bound value is retained and the branching and
cutting of other points will be continued. If the energy consumption value of the complete
path is smaller than the current upper bound value, Step 3 is repeated.

From the above steps, the path corresponding to the shortest energy consumption of
the feeding robot can be found.

2.3. Large Scale Feeding Point Path Planning

The problem of this study can only be solved by two types of methods: one is the
exact algorithm and the other is the heuristic algorithm. With the increase in the number of
feeding buckets lacking feed, the time spent by the branch and bound algorithm will be
greatly increased, and it will not be able to complete the computation in the specified time.
Thus, when the number of feed buckets lacking feed becomes larger, the path planning can
only be performed by the heuristic algorithm. It is well known that the genetic algorithms
search the optimum from a population of points in parallel and possess more chances to
find the global optimum than other heuristic algorithms such as the ant colony algorithm,
the cuckoo algorithm, etc. The robustness of the search process and the effectiveness of their
genetic operators, such as crossover, mutation, selection, etc., show that this method is full
of vitality [27]. In addition, the heuristic algorithm can only compute the approximation of
the exact solution, and the accuracy of the calculation results is inferior to that of the exact
algorithm. Therefore, a double-crossing operator genetic algorithm based on the upper
bound of energy consumption is proposed to solve the problem in this study.

In this study, a double-crossing operator genetic algorithm based on the upper bound
of energy consumption is proposed to solve the large-scale feeding point path planning.
The upper bound-based double-crossing operator is used to improve the global search
ability and local search ability at the same time.

2.3.1. Determination of the Fitness Function

The fitness function of the genetic algorithm is criteria to evaluate the chromosome,
and a well-designed fitness function will be able to reflect the individual differences more
easily, which will ensure a better operation of the selection operation and prevent the early
convergence condition.

In this study, what we need to solve is minimizing the energy consumption in the
complete process of feeding performed by the feeding robot. Therefore, the reciprocal of
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the Equation (2) will be used as the fitness function, and the fitness function is as follows in
Equation (24):

f (B) =
1

d0(w + Q) + d1(w + Q− q1) + · · ·+ dm−1(w + Q−
m−1
∑

i=1
qi) + dmw

(24)

2.3.2. Double Choice Operator

At the beginning of each cycle of the genetic algorithm process, individuals are selected
from the current population using the appropriate selection operator, and these individuals
are used as parents of the next generation of individuals. This selection is based on
probability, and the probability of being selected is related to their fitness, so individuals
with higher fitness have a higher chance of being selected.

In order to improve the global search ability of the algorithm and to increase the
convergence speed of the algorithm, the tournament algorithm is used first to ensure the
convergence speed of the algorithm, i.e., to keep a small group of individuals with the
largest fitness value. For the remaining individuals in the population, the roulette selection
operator is also used to keep a small group of individuals, and it improves the global
search ability of the algorithm. Roulette selection is a put-back random sampling approach,
i.e., the probability of each individual entering the next generation is the ratio of its fitness
value with the sum of the fitness values of the individuals in the entire population, so the
individuals with higher fitness values have a higher probability of being selected.

2.3.3. Double Cross Operator Based on Upper Bound on Energy Consumption

The traditional crossover operator has only one certain search advantage, either a
strong global search capability or a strong local search capability [28]. In order to have both
of the advantages of the operator, a double-crossing operator based on the upper bound of
energy consumption is proposed. The upper bound on the energy consumption calculated
in the third part is taken as the bound we currently need. For paths corresponding to
fitness values larger than the upper bound, the difference between the fitness value and the
minimum energy consumption value is larger, and the gene sequences corresponding to
their chromosomes are also different from those corresponding to the minimum energy
consumption chromosomes, so a crossover operator with strong global search capability is
needed to act on the chromosomes. Conversely, for those paths corresponding to fitness
values less than the upper bound value, the difference between the fitness value and
the minimum energy value is relatively small, and the gene sequences corresponding to
their chromosomes are less different from those corresponding to the minimum energy
chromosomes, so it is only necessary to crossover chromosomes using crossover operators
with strong local search ability.

This study uses real number encoding for the chromosomes. The order crossover
operator OX has a better global search capability [29]; it works by randomly selecting the
start and end positions in two parent chromosomes. It copies the middle region of the start
and end positions of the parent1 chromosomes to the same position in the offspring1. The
genes missing in the offspring1 of the parent2 chromosome are inserted into offspring1 in
order, and the offspring2 is obtained in the same way as the offspring1. Therefore, when
f (B) > UB, the OX will be used for cross operation.

The OX first chooses the same starting and ending positions in both parents. Then, the
middle region of the start and end positions of the two parents are extracted and copied to
the two proto-children, its process of extracting proto-child is shown in Figure 7.

Next, the missing genes from the chromosome of proto-child1 in the parent2 are filled
into the proto-child1 in order, while the missing genes from the proto-child2 in the parent1
are filled into the proto-child2 in order, and the result is shown in Figure 8.
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The cycle crossover operator CX has a strong local search capability [30]; it works by
randomly selecting a gene on one parent and finding the gene value on the corresponding
position of the other parent. Then, it returns to the first parent to find the gene position
with the same value, repeating the previous work until a cycle is formed. After exchang-
ing the selected genes of the two parents, two offspring are formed. Therefore, when
f (B) > UB, the CX will be used for cross operation. The result after the operation of CX is
shown in Figure 9.
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Mutation operators are applied to offspring after selection and crossover operations.
Genetic mutations are probability-based, and usually occur with exceptionally low proba-
bility. An elevated mutation probability prevents evolutionary stagnation and ensures the
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diversity of the population. On the other hand, if the mutation probability is excessively
elevated, the genetic algorithm will lose its usefulness to a random search algorithm, so the
selection of mutation probability is particularly important [31].

In order to prevent evolutionary stagnation and to ensure population diversity, for
individuals with fitness function values larger than the upper bound, the mutation proba-
bility will be set to P1 = 0.02. For individuals with fitness function values smaller than the
upper bound, the mutation probability wil1 be set to P2 = 0.05.

For the selection of the mutation operator, the exchange mutation is chosen as the
mutation operator, which will randomly select two genes and exchange their values, the
mutation process is shown in Figure 10.
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2.3.5. Flow of the Large Scale Feeding Point Path Planning Approach

The steps of the double-crossover operator genetic algorithm based on an upper bound
on energy consumption are as follows and its simulation process is given in Figure 11.
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Step 1: Obtain feed weight information and coordinate information of the feed bucket,
which are transmitted to the feeding robot through the infinite communication module of
the feed bucket.

Step 2: Randomly generate the initial population and determine various parameters
related to it, such as the number of selected individuals N = 10 and the upper bound value
of energy consumption. The crossover probability is Pc = 0.8, the mutation probabilities is
P1 and P2 and the maximum number of iterations is Tmax = 1000, with a population size
S = 500.

Step 3: N/2 individuals are selected from the population by the tournament algorithm,
while N/2 individuals are selected by the roulette wheel algorithm, and the selected N
individuals are subjected to the crossover operation.

Step 4: Perform crossover operation for N parents, perform order crossover for indi-
viduals with a value of fitness larger than that of upper bound, and perform cycle crossover
for individuals with a value of fitness smaller than the value of the upper bound.

Step 5: The generated offspring are subjected to mutation based on the upper bound
of energy consumption, and the individuals with value of fitness larger than that of upper
bound are subjected to exchange mutation with a probability of P1 = 0.02. The individuals
with value of fitness smaller than the value of upper bound are subjected to exchange
mutation with a probability of P2 = 0.05.

Step 6: Determine whether the termination condition is satisfied: if it is satisfied, then
the operation ends and the optimal solution is output; if it is not satisfied, then return to
step 3 and continue iteration.

3. Results

According to the above algorithm steps, the algorithm was designed and implemented
in Pycharm using Python 3.1. The CPU used was inter(R) Core(TM) i7-9570H with a main
frequency of 2.6 GHz and 8 GB of RAM memory.

Before the sample experiment, we set the net weight of the feeding robot to 75 kg.
The total number of feed buckets was 30, the horizontal and vertical coordinates of the
feed buckets were randomly generated from 0–350 m, the missing weight was randomly
generated from 5–20 kg, and the loading weight of the feeding robot was the total missing
weight of each feed bucket to be fed on the smart farm.

Sample 1: Experimental verification of the proposed lower bound of energy consump-
tion. When the sample experiment started, the number of feed buckets was 8, the line LB1
was the lower bound, obtained by using the approach proposed in this study, the line LB2
was the lower bound of energy consumption, obtained by the minimum spanning tree
algorithm [32], and the line R was the exact result of energy consumption. The experimental
results are as follows.

From Figure 12, it could be seen that all the value of lower bound of energy consump-
tion for each experiment is smaller than the final result (line R). The comparison between
LB1 and LB2 shows that the experimental result of LB1 for each experiment is larger
than that of LB2. For the branch and bound algorithm, the more accurate the lower bound
(i.e., the larger the lower bound), the stronger the solution capability of algorithm. Therefore,
the lower bound of energy consumption solved by the algorithm proposed in this study is
better than the minimum spanning tree algorithm under the same parameter conditions.

Sample 2: Experimental verification of the upper bound on energy consumption
proposed in this study. When the sample experiment started, the number of feed buckets
was 8. Line UB1 was the upper bound of energy consumption obtained by the Christofides’s
heuristic algorithm, line UB2 was the upper bound of energy consumption obtained by the
greedy algorithm [33], and line R was the exact result of the energy consumption of each
experimental path. The experimental results are as follows.

From Figure 13, it can be seen that the final result (line R) of each experiment was less
than the upper bound of energy consumption obtained by the other two algorithms. The
comparison between UB1 and UB2 shows that the experimental result of each experiment of
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UB1 was less than that of UB2. For the branch and bound algorithm, the more accurate the
upper bound of energy consumption (i.e., the smaller the upper bound), the more effective
the branch and bound algorithm was in solving the problem. Therefore, the proposed
algorithm for finding the upper bound on energy consumption in this study is better than
the greedy algorithm under the same parameter conditions.
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Sample 3: A sample experiment with three branch and bound algorithms was per-
formed, and a comparison was made. B-B1 was the branch and bound algorithm proposed
in this study, B-B2 changed the calculation method for obtaining the upper bound of B-B1
to the greedy algorithm and the rest was the same as B-B1. B-B3 changed the calculation
method of obtaining the lower bound of B-B1 to the minimum spanning tree method, and
the rest was the same as B-B1. The time limit of the algorithm operation is 300 s. The results
of the three branch and bound algorithms are shown in Figure 14.

From Figure 14, it can be seen that the operation results of the B-B3 have a significant
gap compared with those of B-B1 and B-B2. For each additional point from the second
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point onward, the operation time of B-B3 increased substantially, and when the number
of points reaches 13, it exceeded the time limit, and the B-B3 algorithm was finally able to
calculate the energy consumption of 12-points path.
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The B-B1 and B-B2 algorithms took approximately the same amount of time for the
initial five experiments, and the time limit was exceeded when the number of experimental
computing points of the B-B2 algorithm reached 17. The B-B2 algorithm was finally able
to calculate the energy consumption of the 16-points path. From the fifth point onward,
the B-B1 algorithm took significantly less time than the B-B2 algorithm for each experi-
ment, and the time limit was exceeded when the number of points of the B-B1 algorithm
reached 18, so the B-B1 algorithm could finally calculate the energy consumption of the
17-points path.

From Sample 1 to Sample 3, we can conclude that the bounds of the branch and
bound algorithm proposed in this study were performed more accurately; thus, when more
accurate bounds are applied to the branch and bound algorithm, its computing power
will also be improved, and we can verify this conjecture by the results of Sample 3. In
summary, the B-B1 algorithm can produce experimental results more quickly than the other
two algorithms under the same experimental conditions; thus the B-B1 algorithm is more
powerful for small-scale feeding points.

Sample 4: When the number of feed buckets with a feed shortage exceeded 18, a
double-crossover operator genetic algorithm based on the upper bound of energy consump-
tion was used to perform the operation experiment, and the coordinates of the points and
the weight of the feed bucket to be fed were obtained in the same way as in Sample 1.

We used three genetic algorithms as the experimental control group and compare their
calculated energy consumption values. GA-1 was the double-crossing operator genetic
algorithm based on the upper bound of energy consumption described in this study. GA-2
only used the order crossover operator as its crossover operator, and the rest was the same
as GA-1. GA-3 only used cycle crossover operator as its crossover operator, and the rest
was the same as GA-1.

As can be seen from Figure 15, the energy consumption calculated by GA-2 and GA-3
under the same conditions does not differ much with the increase in the number of feeding
points. However, the energy consumption calculated by GA-1 is much less compared with
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GA-2 and GA-3, so GA-3 could obtain more accurate results when the energy consumption
of the path with a large scale of feeding points is calculated.
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4. Discussion

The algorithm proposed in this study can calculate the minimum energy consumption
path of different scale feed buckets lacking feed in the specified time. For small-scale
feed buckets lacking feed, the minimum energy consumption travel path was obtained
by the branch and bound algorithm, and the lower bound of the branch and the bound
of the energy consumption was obtained by the approach of preferred selection of the
set of shortest edges combined with the sequence inequality. The upper bound could
be obtained based on Christofides’s Heuristic algorithm. The experiment results show
that it could calculate the minimum energy consumption path of 17 points in 300 s. For
large-scale feed buckets lacking feed, a double-crossover operator genetic algorithm based
on an upper bound on energy consumption was proposed to calculate the minimum
energy consumption travel path. The method of calculating the upper bound of energy
consumption in the branch and bound algorithm was combined. Different crossover
operators were innovatively proposed to perform crossover operations with the upper
bound of energy consumption as the bound, so that the calculation results of the genetic
algorithm could converge twice and improve the accuracy of the results. The experiment
results show that it could calculate the minimum energy consumption travel path within
30 points in 60 s.

At present, most solutions to problems similar to that in this study are dominated
by the length of the path and plan a path with the shortest travel length [34]. Although
the method can solve the problems that appear in the paper, the scope of application of
the method is limited. Compared with the method of this study, for tasks of different
scales, two algorithms are not used for separate calculations. Thus, the final travel path
which is sought cannot guarantee either the shortest travel path or the minimum energy
consumption. Therefore, the method proposed in this study is more applicable. In the
literature [35], a branch and bound algorithm is used to solve the problem of UAV delivery.
It can indeed solve the path planning problem of UAV delivery, but the solution of the
boundaries in the algorithm is not as accurate as the boundaries obtained in this study,
and it can only plan the path of at most 15 target points. Moreover, the algorithm is still
dominated by the length of the path, and the energy consumption of the UAV is not taken
into account, so the efficiency of the battery energy use of the UAV in delivery does not
reach the optimum. The literature [36] solves the UAV flight cost problem by building an
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integer programming model, which is faster for small scale target point tasks, but as the
number of target points gradually increases, the solution time will increase exponentially.
Compared with the method of this study, the minimum energy consumption travel path
under two different conditions was obtained by two different algorithms in our study. This
can reduce the production cost of feeding robot to a certain extent.

5. Conclusions

In this study, we described and analyzed the path planning problem for the feeding
task of different scale feed buckets lacking feed in poultry smart farms. Considering
the importance of energy consumption for feeding robot, energy consumption was used
as the optimization objective. For small-scale feed buckets lacking feed, a branch and
bound algorithm was proposed to find the minimum energy consumption travel path.
The lower bound of the branch and bound on the energy consumption was obtained
by the approach of preferred selection of the set of shortest edges combined with the
sequence inequality, and the upper bound was obtained based on Christofides’s heuristic
algorithm. Finally, we verified its efficiency through experimental simulation and found its
maximum number of operations for feed buckets lacking feed. For large-scale feed buckets
lacking feed, a double-crossover operator genetic algorithm based on an upper bound
on energy consumption was proposed to find a path with approximation of minimum
energy consumption. The different crossover operations in this algorithm were performed
according to the relationship between the fitness value and the upper bound of energy
consumption. In the experimental part, it was verified that the energy consumption of
the path is lower than that of the single-crossover genetic algorithm by using the double-
crossover genetic algorithm, based on the upper bound of energy consumption.

The method proposed in this study still has some defects: the bounds of the branch
and bound algorithm are not solved with particularly high accuracy, resulting in limited
computing performance of the branch and bound algorithm, and the accuracy of the upper
bound on energy consumption also affects the computational efficiency of the genetic
algorithm proposed in this study.

In the future, new methods will be explored in order to improve the accuracy of the
bounds and to enhance the computing performance of the path planning algorithm for
feeding robots in smart farms.

This paper is a study on the path planning of the feeding robots in smart farms, which
also provides a theoretical basis for the path planning of the feeding robots in subsequent
practical operations.
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Abbreviations

G a complete graph representing the smart farm
V the set of feed buckets in the farm
E the set of edges of the complete graph G
LB the lower bound
UB the upper bound
Gm a complete graph representing the smart farm with feed buckets lacking feed
Vm the set of feed buckets lacking feed in the farm, include the starting and the final

return point of the feeding robot
V1 the set of feed buckets in the farm
Em the set of edges of the complete graph Gm
B a complete path of the feeding robot
PLB partial lower bound
LBm−k lower bound of energy consumption of non driving path points
C(Bk) energy consumption of the determined path
Vk the determined path that feeding robot has traveled
Bk the undetermined path that feeding robot has not traveled
OX order crossover operator
CX cycle crossover operator
LB1 the lower bound obtained by using the approach proposed in this study
LB2 the lower bound of energy consumption obtained by the minimum spanning

tree algorithm
R the exact result of energy consumption
UB1 the upper bound of energy consumption obtained by the Christofides’s

Heuristic algorithm
UB2 the upper bound of energy consumption obtained by greedy algorithm
B-B1 the branch and bound algorithm proposed in this study
B-B2 change the calculation method of obtaining the upper bound of B-B1 to the

greedy algorithm, and the rest is same as B-B2
B-B3 change the calculation method of obtaining the lower bound of B-B1 to the

minimum spanning tree method, and the rest is same as B-B2
GA-1 the double-crossing operator genetic algorithm based on the upper bound of

energy consumption described in this study
GA-2 genetic algorithm with only use order crossover operator as its crossover operator
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