
Citation: Hua, D.; Hendriks, W.H.;

Xiong, B.; Pellikaan, W.F. Starch and

Cellulose Degradation in the Rumen

and Applications of Metagenomics

on Ruminal Microorganisms. Animals

2022, 12, 3020. https://doi.org/

10.3390/ani12213020

Academic Editor: Alejandro

Plascencia

Received: 16 September 2022

Accepted: 1 November 2022

Published: 3 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

animals

Review

Starch and Cellulose Degradation in the Rumen and
Applications of Metagenomics on Ruminal Microorganisms
Dengke Hua 1,2, Wouter H. Hendriks 2, Benhai Xiong 1,* and Wilbert F. Pellikaan 2

1 State Key Laboratory of Animal Nutrition, Institute of Animal Sciences,
Chinese Academy of Agricultural Sciences, Beijing 100193, China

2 Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research,
6708 PB Wageningen, The Netherlands

* Correspondence: xiongbenhai@caas.cn; Tel.: +86-(10)-62811680

Simple Summary: Starch and cellulose are the principal components in diets for dairy cows world-
wide, providing the primary energy to the rumen microorganisms as well as the host. Starch and
cellulose degradation in the rumen have always been of key importance for dairy cows to obtain
high production performance. To improve the starch- and cellulose-degrading activities in the rumen,
the amylolytic and cellulolytic microbes and the related enzymes need to be well understood. As
the rapid development of sequencing technologies, bioinformatic tools and reference databases, the
rumen metagenomics have made great progress in mining the rumen microbial community for novel
enzymes, such as the carbohydrate active enzymes (CAZymes). This review will summarize the
ruminal microbes and enzymes involved in starch and cellulose degradation. Recent studies with
metagenomics techniques on CAZymes related to starch and cellulose degradation will be discussed.

Abstract: Carbohydrates (e.g., starch and cellulose) are the main energy source in the diets of dairy
cows. The ruminal digestion of starch and cellulose is achieved by microorganisms and digestive
enzymes. In order to improve their digestibility, the microbes and enzymes involved in starch and
cellulose degradation should be identified and their role(s) and activity known. As existing and
new analytical techniques are continuously being developed, our knowledge of the amylolytic and
cellulolytic microbial community in the rumen of dairy cows has been evolving rapidly. Using
traditional culture-based methods, the main amylolytic and cellulolytic bacteria, fungi and protozoa
in the rumen of dairy cows have been isolated. These culturable microbes have been found to
only account for a small fraction of the total population of microorganisms present in the rumen.
A more recent application of the culture-independent approach of metagenomics has acquired a
more complete genetic structure and functional composition of the rumen microbial community.
Metagenomics can be divided into functional metagenomics and sequencing-based computational
metagenomics. Both approaches have been applied in determining the microbial composition and
function in the rumen. With these approaches, novel microbial species as well as enzymes, especially
glycosyl hydrolases, have been discovered. This review summarizes the current state of knowledge
regarding the major amylolytic and cellulolytic microorganisms present in the rumen of dairy
cows. The ruminal amylases and cellulases are briefly discussed. The application of metagenomics
technology in investigating glycosyl hydrolases is provided and the novel enzymes are compared in
terms of glycosyl hydrolase families related to amylolytic and cellulolytic activities.

Keywords: rumen; starch; cellulose; microbe; enzyme; metagenomics

1. Introduction

The rumen ecosystem harbours a vast number of microorganisms fermenting the
ingested feedstuffs and producing various metabolites to meet the host’s nutritional re-
quirement [1]. Nutritionists, microbiologists and physiologists, among others, have been
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studying the rumen microbial ecosystem in order to improve productivity and health and
reduce the environmental impact of dairy cows.

Unlike ruminants in the wild, starch and cellulose are the principal components in
diets for commercial dairy cows worldwide, providing the primary energy to the rumen
microorganisms as well as the host [2]. Starch and cellulose degradation in the rumen
have always been of key importance for dairy cows with numerous studies investigating
the ruminal microbes and enzymes involved in starch and cellulose degradation [3,4].
Most of this research is based on more traditional approaches which include culturing and
microscopy [4]. Over the last decades, increasingly more knowledge has been generated
with the advancement of existing techniques and introduction of new analytical techniques.

The exploration of the species and enzyme activities involved in ruminal cellulose
and starch digestion has been hampered by the limited number of rumen bacteria that can
be cultured [5]. Metagenomics, a culture-independent analysis technique, has emerged
in recent years as a powerful tool for exploring the collective structure and functioning
of microbial genomes within a complex ecosystem. The application of metagenomics
on rumen samples was first published in 2005 by Ferrer et al. [6] through functional
screening technology. Since that, the metagenomic approach has been widely utilized to
discover rumen microbial communities and enzymes. Li [7] discussed the periodic progress
prior to 2015 of the metagenomics technologies in mining novel enzymes from the rumen
microbiome, including fibrolytic and amylolytic enzymes. As high-throughput technologies
have developed, sequence-based metagenomics combined with a functional metagenomic
approach has been used, through which additional novel enzymes and metabolic activities
were identified by comparison with multiple databases. The purpose of this review is to
describe (1) our current understanding of the microbes and enzymes involved in starch and
cellulose degradation in the rumen of dairy cows and (2) recent developments in technology
where sequence-based and functional metagenomics can contribute to our knowledge of
the structure and function of amylolytic and cellulolytic microorganisms in the rumen of
dairy cows.

2. Starch Degradation in the Gastrointestinal Tract of Dairy Cows

Starch-rich grain is the primary energy component used in the modern diet for dairy
cows, accounting for 20–40% of the ration of high-yielding cows. Due to the relatively
high price of starch-containing ingredients, dietary starch should be used wisely to achieve
cost-effectiveness and efficient production. Starch is a heterogeneous polysaccharide con-
taining two structurally distinct α-linked polymers of glucose: amylose and amylopectin.
The former is a linear D-glucose polymer containing ~99% α-1,4 links and the latter is the
most abundant component of starch with 95% α-1,4 links and 5% α-1,6 links [8].

Unlike non-ruminants, starch degradation mainly occurs in the rumen, partly in
the small intestine with the remainder fermented in the hindgut of ruminants. Starch
degradation in each segment of the gastrointestinal tract is influenced by starch sources
(e.g., corn, wheat, sorghum, barley) and processing (moistening, heating, or mechanical
pressure) of the grain [4]. Data from 87 studies across a wide range of starch intakes
(1–5.7 kg/d) showed that, on average, 71% of the starch intake was digested in the ru-
men [9]. Harmon et al. [10] analyzed data from 16 studies where the starch intake ranged
from 1 to 5 kg/d and reported that ruminal starch digestion/fermentation was typically
75–80% of starch intake, with 35–60% of starch escaping rumen fermentation and digested
in the small intestine. Between 35–50% of the starch that escapes small intestinal digestion
was reported to be fermented in the large intestine. The starch digestion in the small
intestine consists of three processes as reviewed previously [10]. Briefly, intestinal starch
digestion starts in the lumen of the duodenum by the action of pancreatic α-amylase which
hydrolyses amylose and amylopectin into maltose and other branched-chain products. The
second process occurs at the brush border membrane via the action of the brush border car-
bohydrases (e.g., maltase, isomaltase) with the third process being glucose transportation
from the intestinal lumen to the portal circulation [4].
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2.1. Amylolytic Organisms in the Rumen
2.1.1. Amylolytic Bacteria

The main starch-degrading microorganisms in the rumen are amylolytic bacteria,
followed by protozoa and fungi [3]. Previous research has reported that bacterial digestion
activities start with an attachment of bacteria to feed particles. The commonly reported amy-
lolytic bacteria at present include Streptococcus bovis, Ruminobacter amylophilus, Succinimonas
amylolytica, Selenomonas ruminantium and Bifidobacterium spp. (Table 1).

Streptococcus bovis can be easily isolated from the rumen fluid but only account for a
small number of the total bacteria present in the rumen [11]. Streptococcus bovis, producing
lactate as the main end-product, is present only when a large amount of starch or sugar
is available as a substrate and the pH of the rumen fluid is low [12]. When conditions
are favourable with high availability of starch or sugar, this species can grow explosively
which leads to the overwhelming production of lactate and can result in rumen acidosis.
Ruminobacter amylophilus is strictly anaerobic and Gram-negative with multiple shapes,
arrangements and sizes. This species is capable of utilizing three forms of starch: amylose
(linear α-1,4 linked glucose polymer), amylopectin (α-1,6 linkage) and pullulan (linear
polymer of maltotriose residues linked by α-1,6 bonds) [13], mainly producing formate,
acetate and succinate as end products. The starch molecules bind to cell surface receptors
and are transported into the cell and hydrolyzed by intracellular amylase [14]. Succin-
imonas amylolytica is an anaerobic, Gram-negative and straight rod with rounded ends
which can be motile with polar flagella. This species is less abundant among the ruminal
bacteria when cattle are fed forage rations but is among the predominant bacteria when
dietary starch is offered in the form of a grain mixture [15]. This species can hydrolyze
starch producing succinate as the main product as well as a small amount of acetate and
propionate. Selenomonas ruminantium is anaerobic and Gram-negative, and it consists of
motile rods of 0.8–1.0 µm in width and 2–7 µm in length. This species was found to be
more abundant in the rumen when animals were fed cereal grains compared to that fed
roughage [16]. Most strains can ferment a wide range of substrates (Table 1). Lactate
is the major fermentation end-product when high concentrations of glucose are present,
but this is replaced by acetate and propionate at low glucose concentrations [12]. Besides
the abovementioned amylolytic bacteria, some strains of the cellulolytic bacteria such as
Fibrobacter succinogenes, Butyrivibrio fibrisolvens and Clostridium spp. are also capable of
unitizing starch under certain conditions [17,18].

2.1.2. Amylolytic Protozoa

The protozoa are also involved in degrading starch in the rumen. Between 20–45% of
the amylolytic activities in the rumen have been attributed to protozoa [19]. The amylolytic
protozoa digest starch through engulfment producing H2, CO2, acetate, butyrate and glyc-
erol as products. However, the rate of uptake of starch grains varies greatly between species.
The protozoa with high amylolytic activities include Eremoplastron bovis, Diploplastron affine,
Ophryoscolex caudatus and Polyplastron multiesiculatum. The breakdown rate of starch by
protozoa is by approximation determined by the initial starch or amylopectin concentration
inside the protozoa [19]. Protozoa also have the capacity of slowing down the ruminal
starch-fermentation rate because, on one the hand, protozoa ingest amylolytic bacteria
resulting in a decrease in their populations [20] while on the other hand, they need at most
36 h to metabolize the engulfed starch granules [21].

2.1.3. Amylolytic Fungi

Fungi account for a small proportion (~8%) of the rumen biomass where they are
involved in degrading structural carbohydrates by producing a wide range of enzymes [22].
Neocallimastix frontalis was reported to hydrolyze starch by generating an endo-hydrolytic
α-amylase from which maltose, maltotriose and maltotetraose were the major prod-
ucts [23]. Another three fungi species, Orpinomyces joyonii, Neocallimastix patriciarum and
Piromyces communis, were also observed to be capable of digesting cereal grains [24].
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2.2. Ruminal Starch-Degrading Enzymes

Due to their small size, bacteria cannot directly ingest starch granules or high-molecular-
weight starch (e.g., amylopectin), but generate enzymes which specifically cleave the α-1,4
or α-1,6 bonds of amylose and amylopectin. These amylases can be typically classified into
three main categories of hydrolytic activity: endoamylases, exoamylases and debranching
enzymes (Table 2).

Endoamylases cleave the α-1,4 glucosidic linkages in the interior of the starch polymer
or oligosaccharides in a random manner leading to the production of linear and branched
oligosaccharides (Figure 1). α-Amylase is the most popular bacterial endoamylase which
mainly hydrolyzes the internal α-1,4-bonds of amylose. A few types of α-amylases are
also capable of hydrolyzing the α-1,6 bonds of amylopectin [13]. α-Amylases have been
classified into the glycosyl hydrolases (GH) superfamily 13 and 57 based on amino acid
sequence similarity [25]. Exoamylases hydrolyze the α-1,4 linkages at the nonreducing end
of the starch molecule, of which the end-product is one predominant dextrin. β-Amylase
which is classified into GH family 14 is an exoenzyme that liberates maltose by hydrolyzing
1,4-bonds. Because it cannot bypass 1,6-linkages, there always remain some β-limit dextrins
after β-amylolysis. α-Glucosidases are members of GH family 15 and 31 which hydrolyze
the α-1,4 or α-1,6 linkages on the nonreducing end in short saccharides produced by
other enzymes. Glucoamylases have the ability to degrade both 1,4- and 1,6-linkages,
solely forming glucose as an end product. Some debranching enzymes are also capable of
cleaving the α-1,6 glucosyl link [26]. Isoamylases can degrade various branched structures
of amylopectin, glycogen and branched oligosaccharides and dextrins. The pullulanase
cleaves the α-1,6 link of pullulan-producing maltotriose which can then be hydrolyzed by
isopullulanases yielding isopanose.
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Table 1. Fermentation characteristics of main ruminal amylolytic bacteria.

Microorganism Substrate * Fermentation Product Gram Stain

Streptococcus bovis
Starch, maltose, cellobiose, sucrose, glucose, fructose,

galactose, mannose, lactose (pectin, xylose,
arabinose, mannitol, glycerol)

Lactate, CO2 (acetate, formate) Positive

Ruminobacter amylophilus Starch, maltose Formate, acetate,
succinate (lactate) Negative

Succinimonas amylolytica Starch, maltose, fructose Succinate (acetate, propionate) Negative

Selenomonas ruminantium
Maltose, cellobiose, xylose, arabinose, glucose,
fructose, galactose, mannose, lactose, mannitol

(starch, sucrose, glycerol, lactate)

Lactate, propionate, acetate, H2,
CO2 (succinate) Negative

Substrates or products in brackets indicate that they vary between strains. * From Hungate [11], Schaefer et al. [27]
and Holdman et al. [28].
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Table 2. Enzymes involved in starch degradation in the rumen.

Category Linkage Enzyme Substrate 1 End-Product 2

Endoamylase Endo-α-1,4 glycosyl α-amylase Amylose, amylopectin,
(granule, oligomer)

Linear and branched
Oligosaccharides, glucose,

maltose

Exoamylase Exo-α-1,4 glycosyl β-amylase Amylose, amylopectin,
oligomer (granule) Maltose, β-limit-dextrin

Exo-α-1,4 glycosyl α-glucosidase Oligomer (amylose,
amylopectin) Glucose

Exo-α-1,4 glycosyl,
exo-α-1,6 glycosyl Glucoamylase Amylose, amylopectin,

oligomer (granule) Glucose

Debranching enzyme
Endo-α-1,6 glycosyl Isoamylase Amylopectin Linear oligosaccharide
Endo-α-1,6 glycosyl Pullulanase Amylopectin Maltotriose
Endo-α-1,6 glycosyl Isopullulanase Amylopectin Isopanose

The substrate in brackets indicates that fermentation depends on the enzyme source. 1 From Korarski, et al. [29],
Robyt et al. [30], Fogarty [31], Vthinen [32]. 2 From Gomez et al. [33].

2.3. Factors Affecting Ruminal Starch Degradation

The rate and content of ruminal starch degradation vary with the type of cereal grains.
Usually, wheat and barley starch are degraded more rapidly in the rumen than corn or
sorghum starch [34]. Ruminal digestion of starch in the ground, rolled, or cracked corn
(50–90%) or sorghum (42–89%) is generally lower than that in similarly processed barley
(87–90%) [35]. Starch granules within the grain endosperm are surrounded by a protein
matrix. The protein matrix in corn is extremely resistant to the invasion of amylolytic
bacteria and can only be penetrated by some fungi, while for barley and wheat, the
protein matrix is easily penetrated by a variety of proteolytic bacteria. In this regard, the
combination of slowly and rapidly degraded grains was recommended [36].

Physical processing is another factor influencing ruminal starch degradation. Gener-
ally, processed grains are more digestible in the rumen [4]. With the rolling, cracking, or
grinding of barley, a higher ratio of starch (87–90%) was digested in the rumen compared to
the maize or sorghum (50–90%) [29]. Steam-flacking as a processing technology increased
the grain starch degradation in the rumen, resulting in less starch available for the post
ruminal fermentation [37].

Moreover, starch degradation in the rumen is influenced by intricate interrelations
of multiple factors including diet composition, amount of feed consumed per unit time,
mechanical alterations, chemical alterations and adapting degree of ruminal microbiota to
the starch ratios in diet [3].

3. Cellulose Degradation

The rations for dairy cows are predominantly plant-based. The plant cell walls are
primarily composed of cellulose which accounts for 20–30% of the dry weight of the
primary cell wall. Cellulose is a homopolymer of glucose linked by linear 1,4-β-glycosidic
bonds. Cellulose molecules associate with each other to form microfibrils in the form of
crystalline formulations.

3.1. Cellulolytic Organisms in the Rumen

A large number of anaerobic bacteria, protozoa and fungi possess very efficient cel-
lulolytic machinery which enables them to improve the feed conversion efficiency of
cellulose. Cellulolytic organisms are those microbes predominantly digesting cellulose
present in the diet, which were dominated mainly by bacteria, fungi and to a lesser extent
the protozoa [38].

3.1.1. Cellulolytic Bacteria

The Ruminococcus flavefaciens, Ruminococcus albus and Fibrobacter succinogenes are
the major cellulolytic bacteria [38] (Table 3). Fibrobacter succinogenes is one of the most
widespread cellulolytic bacteria in the rumen, which contributes 5–6% of the total prokary-
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otic 16S rRNA in the rumen contents of cattle [39]. The species is strictly anaerobic with
Gram-negative cells. Their growth requires valerate and isobutyrate and partly need bi-
otin and p-aminobenzoic acid [40]. Fibrobacter succinogenes strains have been reported to
degrade cellulose, glucose and cellobiose mainly producing acetate and succinate [41].
Some strains are capable of degrading some cellulose allomorphs which are not susceptible
to degradation by Ruminococcus flavefaciens. Ruminococcus flavefaciens are usually Gram-
positive or Gram-variable and often generate a characteristic yellow pigment, particularly
when grown on cellulose. Most Ruminococcus flavefaciens strains are able to degrade quite
recalcitrant forms of cellulose which is difficult to digest by other species [42]. Previous
research showed that Ruminococcus flavefaciens mainly attach to the cut edges of the epi-
dermis, sclerenchyma and phloem cells when incubated with ryegrass leaves [43], and the
attachment occurred at the epidermis and parenchyma bundle-sheath when incubated with
orchard grass and Bermuda grass [44]. Ruminococcus flavefaciens mostly degrade cellulose
and cellobiose, while some strains can also utilize glucose and other carbon compounds
including maltose, lactose, xylose and starch. The main end products include acetate, succi-
nate, formate and lactate, together with traces of hydrogen and CO2. Ruminococcus albus
cells are usually single or diplococcic, 0.8–2.0 µm in diameter and Gram-negative to Gram-
variable. Generally, in the rumen, Ruminococcus albus is more abundant than Ruminococcus
flavefaciens [45]. Ruminococcus albus strains are able to degrade cellulose and cellobiose
but cannot utilize glucose or other sugars. The main end-products of this degradation
include acetate, ethanol, formate, lactate, hydrogen and CO2 with different combinations
and proportions as the major products. Ruminococcus albus can produce ethanol, while the
Ruminococcus flavefaciens produce succinate instead. The abovementioned three cellulolytic
bacteria share some common features: (1) their growth needs a strict pH range from 6 to 7,
(2) they are all strictly anaerobic and cannot survive when exposed to oxygen, (3) they
digest cellulose by attachment to the cell surface through an extracellular glycocalyx and
(4) these bacteria are majorly restricted to cellulose or the hydrolyzed products of cellulose.

Table 3. Fermentation characteristics of main ruminal cellulolytic bacteria.

Microorganism Substrate 1 Fermentation Product Gram Stain

Ruminococcus albus
Cellulose, xylan, cellobiose (sucrose, xylose,

arabinose, glucose, fructose, mannose,
lactose, mannitol)

Acetate, ethanol H2, CO2
(formate, lactate) Positive

Ruminococcus flavefaciens Cellulose, xylan, cellobiose (sucrose, xylose,
arabinose, glucose, mannose, lactose)

Acetate, succinate, H2, CO2
(formate, lactate) Positive

Fibrobacter succinogenes Cellulose, cellobiose, glucose (starch, pectin,
maltose, lactose)

Acetate, succinate (formate,
propionate, isovalerate) Negative

Butyrivibrio fibrisolvens
Xylan, pectin, arabinose, glucose, fructose,

galactose, mannose (starch, cellulose, maltose,
cellobiose, sucrose, xylose, lactose)

Formate, butyrate, acetate, H2,
CO2 (lactate, succinate) Positive

Clostridium polysaccharolyticum 2 Starch, cellulose, xylan, pectin, maltose, cellobiose,
xylose, arabinose (fructose)

Formate, butyrate, acetate,
H2, (propionate) Positive

Clostridium longisporum 3 Cellulose, pectin, cellobiose, sucrose, glucose,
fructose, galactose, mannose, xylose, arabinose Formate, butyrate, acetate Positive

Eubacterium cellulosolvens Cellulose, maltose, cellobiose, sucrose, glucose,
fructose, lactose (xylan, pectin, galactose)

Lactate, H2 (formate, acetate,
succinate, butyrate) Positive

Substrates or products in brackets indicate that they vary between strains. 1 Substrate from Hungate [11],
Holdman et al. [28], Schaefer et al. [27], van Gylswyk et al. [46]. 2 From van Gylswyk et al. [47], 3 From Varel [48].

Apart from the above three major bacteria, some strains in Butyrivibrio fibrisolvens,
Eubacterium cellulosolvens and Clostridium spp. have also been reported to be involved
indirectly in cellulolytic activities [38]. These cellulolytic bacteria degrade cellulose via
adherence to an extracellular structure, the cellulosome. The processes for the adherence
of bacteria to cellulose were reviewed by Miron et al. [49] and Krause et al. [38]. In short,
the adherence could be defined in four steps: (1) non-motile bacteria are transported to the
substrate, (2) bacteria adhere non-specifically to available sites on the plant cell wall, (3) the
ligands or adhesins on the bacterial cell surface adhere specifically to the receptors on the
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substrate and (4) the adhered bacteria proliferate to create colonies on potentially digestible
sites of a substrate.

3.1.2. Cellulolytic Fungi and Protozoa

Cellulolytic activities have also been reported by fungal and protozoal populations
in the rumen. The ruminal fungi with cellulolytic capacity include Neocallimastix frontalis,
Neocallimastix patriciarum and Neocallimastix joyonii. The fungi also possess cellulosome-like
machinery, which aids in the adherence process to cellulose [50]. Furthermore, cellulolytic
protozoa, such as Eudiplodinium maggie, Ostracodinium album and Epidinium caudatum
degrade cellulose by engulfment [51].

3.2. Ruminal Cellulose-Degrading Enzymes

Most cellulases are GH which are able to hydrolyze the glycosidic bonds within
carbohydrate molecules [52]. In general, the hydrolases cleave the C-O, C-N or C-C bonds
of the glucosides producing sugar and another compound, while cellulases mainly cleave
the 1,4-β-glycosidic bonds between glucosyl moieties in cellulose into its monomers.

Cellulose is hydrolyzed to its monomeric glucose units by the synergistic action of three
major types of cellulases: (1) endoglucanases (endo-1,4-β-D-glucan hydrolases), (2) exoglu-
canases (exo-1,4-β-D-glucan cellobiohydrolases) and (3) β-glucosidases (β-D-glucosidases) [38]
(Table 4). These three cellulases break down cellulose at different sites and work syner-
gistically on cellulose hydrolysis [53] (Figure 2). Briefly, the endoglucanase firstly ran-
domly breaks down the amorphous regions of cellulose creating new chain ends, then
the exoglucanases attack the non-reducing ends of cellulose or cellotetraose produced by
endoglucanase, yielding cellobiose and cellotriose as products. The products are finally
hydrolyzed to glucose by β-glucosidases.

Table 4. Information on cellulose-degrading enzymes in the rumen.

Enzyme Linkage Substrate Action

Endoglucanase 1,4-β-D-glucosidic linkage Cellulose cleave internal bonds at amorphous sites
creating new chain ends

Exoglucanase 1,4-β-D-glucosidic linkage Cellulose, cellotetraose

cleave two to four units from the
non-reducing ends of the cellulose or

cellotetraose molecules produced
by endoglucanase

β-Glucosidase or cellobiase 1,4-β-D-glucosidic linkage Cellobiose, cellotriose hydrolyse the exoglucanase products into
individual monosaccharides (glucose)
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All these abovementioned cellulases have been isolated from the ruminal cellulolytic
microbes and classified into specific GH families, for example, the endoglucanases mainly
belong to the GH family 5 and 9, whereas, exoglucanases are mostly present in the GH
family 6, with the β-glucosidases mainly classified into GH family 3 [54].

4. Application of Metagenomics on Ruminal Microorganisms

To date, only a relatively small fraction of rumen microorganisms has been successfully
isolated and cultured. Therefore, the largely unexplored microorganisms represent a
significant untapped source of novel enzymes, especially those with multiple functions.
Thanks to the development of next-generation sequencing technologies and bioinformatics
tools together with the rapid progress in reference databases, metagenomics has become a
powerful tool to study the rumen microbiome.

With metagenomics technologies, we can acquire the collective genetic structure and
functional composition of rumen microorganisms without culturing their inhabitants. Ac-
cording to amino acid sequence similarity, GH and related enzymes are classified into specific
families with all members in one family possessing the conserved catalytic mechanism. The
public database of Carbohydrate Active enZyme (CAZy) describes the present knowledge on
the enzyme families which build and breakdown complex carbohydrates and glycoconjugates.
These families are classified based on experimentally characterized proteins and populated by
sequences from public databases with significant similarity [55–57]. This database contains
and updates all GH families that have been frequently used to mine enzymes in the rumen
of dairy cows [57]. This section will summarize recent knowledge of the metagenomic
insights into the starch- and cellulose-degrading enzymes in the rumen of dairy cows.

Rumen metagenomics analysis comprises two areas, including (1) functional metage-
nomics, in which the high-throughput screening technique is used for investigating gene
products out of cloned expression libraries established by rumen metagenome DNA and
(2) sequencing-based metagenomics in which the genomes and genes present in rumen
microbes are explored through high-throughput next-generation sequencing.

4.1. Functional Metagenomics

Ferrer et al. [58] first applied the functional metagenomics approach in identifying
hydrolytic enzymes involved in the ruminal digestion of plant polysaccharides, from
which nine endoglucanases and twelve esterases were detected from the metagenomic
library of dairy cows. Since then, more research has been conducted to investigate spe-
cific polysaccharide-degrading enzymes from the rumen through metagenomic libraries.
Morgavi et al. [59] summarized the studies before 2012 about the applications of functional
metagenomics for mining polysaccharide-degrading enzymes from the rumen (Table 5). In
this review, the cellulose-degrading enzymes detected from cow rumen by those studies
mainly belonged to GH families 5, 3 and 26. Li [7] reviewed the publications from 2012 to
2015, particularly on the lignocellulose-degrading enzymes mined from the rumen through
functional metagenomic approaches (Table 5). They concluded that the new screened
cellulases in the cow rumen mostly belonged to GH families 5, 8, 9 and 48. Even though the
abovementioned studies have proven the applications of functional screening technique in
characterizing ruminal enzymes, many challenges remain, e.g., (1) the expression libraries
can only show a small fraction of functional diversity because not all target genes are easy
to be expressed in foreign host systems and (2) the present techniques for detecting and
screening desired functional activities need to be more efficient. To overcome these diffi-
culties, new approaches have been developed. For instance, the habitat biasing methods
were used to fractionate the microbial community in order to decrease the complexity of
the microbiome or to enrich desired activities [60] or the combination of the in vitro com-
partmentalization and fluorescent-activated cell sorting was able to improve the functional
screening of complex microbial ecosystems [6]. With further evolutions of techniques, new
enzymes and metabolic activities will be characterized by the rumen microbiome with
functional metagenomics.
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Table 5. Amylolytic and cellulolytic enzymes mined from the rumen of dairy cows through metage-
nomics approach.

Reference Enzyme Glycoside Hydrolase Family

Gharechahi et al. [61] Amylase 13, 97
Cellulase 4, 5, 8, 9, 124, 128

Endocellulase 74
Shen et al. [62] Amylase 13, 15, 31, 57, 77

Cellulase 97, 9, 5, 88, 45, 95, 44, 48
Zhao et al. [63] Amylase 13, 15, 31, 4, 57, 63, 77, 97, 119

Cellulase 5, 6, 8, 9, 10, 11, 26, 44, 45, 48
Wang et al. [64] Amylase 13, 57

Cellulase 5, 9, 88, 95
Endocellulase 5, 6, 7, 9, 44, 45
β-glucosidase 13, 88

Bohra et al. [65] Cellulase 5, 9, 44, 45
Terry et al. [66] Endocellulase 5, 6, 7, 8, 9, 44, 45, 48

Exocellulase 5, 6, 9, 48
β-glucosidase 5, 9

Jose et al. [67] Cellulase 5
Endocellulase 6, 7, 9, 44, 45
β-glucosidase 1, 3

Shinkai et al. [68] Cellulase 5, 6, 8, 9, 44, 45, 48, 74
Pitta et al. [69] Amylase 13, 27, 77, 88

Cellulase 5, 9, 48, 81
Oligosaccharide degrading enzymes 1, 2, 3, 4, 13, 27, 29, 31, 35, 37, 38, 42, 57, 59, 63, 65, 88

Kang et al. [70] Cellulase 5, 6, 7, 8, 9, 12, 44, 45, 48
Ko et al. [71] Exocellulase 48

Gong et al. [72] Endoglucanase cellulases 5, 8, 9
Hess et al. [73] Unspecified 5, 8, 9, 10, 26
Zhao et al. [74] α-amylase 57
Wang et al. [75] β-glucosidase 3

Endo-β-1,4-glucanase 5
Shedova et al. [76] Endo-β-1,4-glucanase 5
Palackal et al. [77] Glucanase/mannanase/xylanase 5, 26

Ferrer et al. [58] Endo-glucanase 5, 26

4.2. Sequencing-Based Metagenomics

Sequencing-based metagenomics provides the collective genetic composition and
functional activities of a microbial community at the DNA level. The first publication using
next-generation sequencing-based rumen computational metagenomics for cataloguing
the genes and activities involved in ruminal fibre degradation was reported in 2009 [57].
Later, Morgavi et al. [59] compared the contributions of four rumen fibrolytic bacteria to the
GH families involved in plant polysaccharide degradation. The cellulose-degrading GH
families 3, 5, 8, 9 and 51 were represented in the bacteria species of Fibrobacter succinogenes
S85 and Ruminococcus albus. The publications since 2015 on metagenomics application
related to ruminal starch- and cellulose-degrading enzymes of cows are summarized
in Table 5. Most of these studies involved sequence-based metagenomics. Besides the
cellulase GH families mentioned by Li [7], more novel cellulose-degrading enzymes were
detected from rumen microbiomes and mostly belonged to GH families 44, 45, 6, 7, 88,
10, 51 and 95, while the starch-degrading enzymes were mainly from 13, 97, 31, 57, 77
and 15. Pitta et al. [69] characterized the rumen microbiome of dairy cow for functional
pathways by lactation group (lactation 1, 2, 3 and 5) and stage of lactation (3 weeks before
the anticipated freshening date, 1–5 days after the animal freshened, 4 weeks and 8 weeks
into lactation) by a metagenomics approach, in which they found the predominance of
GH13, GH27, GH77 and GH88 families that were actively involved with starch degradation.
There were slight differences between lactation 1 and lactation 2 samples in the distribution
of cellulases, endo-hemicellulases and debranching enzymes, while the oligosaccharide



Animals 2022, 12, 3020 10 of 13

degrading enzymes were numerically higher in lactation 2 compared lactation 1 and
3. Gharechahi et al. [61] compared the fibre-attached rumen-uncultured microbiota and
CAZyme produced after incubation with six lignocellulosic substrates, in which they found
the most abundant GH families containing the GH3, GH31 and GH97 glucosidases and
the GH51 endoglucanases. They also identified proteins that were the main components
of cellulosome complexes but also had the potential to encode the α-amylases (GH13,
GH13_6, GH13_7, GH13_15, GH13_28 and GH97) and cellulases (GH5, GH5_2, GH5_4,
GH9, GH124 and GH128). Terry et al. [66] reviewed that the synergistic action of three
classes of cellulolytic enzymes were involved in the breakdown of cellulose including
endocellulase (GH family 5, 6, 7, 8, 9, 44, 45 and 48), exocellulase (GH 5, 6, 9 and 48)
and β-glucosidase (GH 5 and 9). The literature shows that most metagenomics studies
mainly focus on the ruminal fibrolytic activities and the efforts on starch degradation are
relatively few.

In total, with the assistance of metagenomics tools, comprehensive studies as illus-
trated above will broaden our knowledge of the ruminal microbial structure and enzymatic
activities, which in turn would allow for rumen manipulations to achieve a more efficient
fibre and starch degradation. For instance, (1) as more microbial amylases and cellulases
are identified out of the ruminal microbiome, it will be foreseeable to regulate the ruminal
microbial amylolytic and cellulolytic activities through supplementing exogenous enzymes
in the form of feed additive, (2) newly identified species will promote the process of isolat-
ing microbes out of the rumen and improve the development of microbe-culture techniques
and (3) it will facilitate the commercial applications of rumen enzymes in various industries
including feed additives and biofuel production.

5. Conclusions

This review has summarized the microbes and enzymes involved in starch and cel-
lulose degradation and discussed the state of metagenomics technology in mining novel
cellulase and amylase GH families in the rumen of dairy cows. To date, a number of
amylolytic and cellulolytic microorganisms, their characteristics and their metabolic mecha-
nisms in the rumen of dairy cows have been described. Still, uncharacterized microbes and
enzymes need to be identified. The recently emerging technologies such as metagenomics
have become more efficient in exploring new microbial species and strains, mining novel
enzymes and monitoring microbial and enzymatic activities. This will improve the devel-
opment of new culturing techniques. In turn, the advancement of our knowledge into the
functioning of the microbiota of the rumen can facilitate the directed regulation of specific
microbial activities or supplementation of exogenous enzymes.
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