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Simple Summary: The dairy industry is interested in developing a detection tool for milk produced
from pasture to certify the protected designation of origin of certain dairy products. As the cattle’s
grazing influences the milk composition, the milk mid-infrared (MIR) spectra will be modified.
Therefore, this study aims to develop a predictive model allowing one to use milk MIR spectrometry
to classify milk as produced from a cattle diet either based on grass or not. To achieve this objective,
the collection of grazing calendars from farms is needed. Unfortunately, this is hardly possible, as
this information is rarely recorded. Therefore, the innovation of this research consists of using the
usual farming practices developed in the southern part of Belgium combined with a large-scale milk
database containing 48 milk composition-related traits. Indeed, in this geographical area, the cows are
mainly on pasture between April and September. Therefore, the month of testing can be considered
indirect information about their feeding. The developed models were able to distinguish with a
precision of around 90% the supposed grass-based diet. Therefore, the probability of belonging to the
GRASS class could be used in a tool counting the number of grazing days to confirm the labeling of
dairy products.

Abstract: This research aims to develop a predictive model to discriminate milk produced from a
cattle diet either based on grass or not using milk mid-infrared spectrometry and the month of testing
(an indirect indicator of the feeding ration). The dataset contained 3,377,715 spectra collected between
2011 and 2021 from 2449 farms and 3 grazing traits defined following the month of testing. Records
from 30% of the randomly selected farms were kept in the calibration set, and the remaining records
were used to validate the models. Around 90% of the records were correctly discriminated. This
accuracy is very good, as some records could be erroneously assigned. The probability of belonging
to the GRASS modality allowed confirmation of the model’s ability to detect the transition period
even if the model was not trained on this data. Indeed, the probability increased from the spring to
the summer and then decreased. The discrimination was mainly explained by the changes in the milk
fat, mineral, and protein compositions. A hierarchical clustering from the averaged probability per
farm and year highlighted 12 groups illustrating different management practices. The probability of
belonging to the GRASS class could be used in a tool counting the number of grazing days.
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1. Introduction

In Belgium, mainly in its southern part (i.e., the Walloon Region), as in other geo-
graphical areas such as New Zealand or Ireland, grassland represents a large part of the
useful agricultural surface. In 2019, permanent grasslands represented 42% of the Walloon’s
surface, and temporary grasslands represented 5% of the Walloon’s useful agricultural
surface [1].

Grassland has an important place in our landscape and fulfills many roles. Grasslands
have been shown to play an important role as a natural barrier against desertification
through its root structure and soil cover [2]. Controlling its biomass through grazing allows
for fire prevention and management by limiting the amount of fuel present [3]. Grassland
is also a relatively stable carbon sink, as concluded in [4]. They calculated an average net
annual productivity for the biome of 161 g of carbon per year per m2 over a 5-year study.
In addition to these roles, grassland provides access to a lower-cost feed resource which
requires minimal supplementation for dairy cows [5] and brings many important nutrients
such as fiber and protein [6], which are essential for milk production.

Therefore, producing milk from pasture makes sense, and dairy companies have
realized this. Indeed, many specifications for milk and products with protected designations
of origin (PDOs) require a specified minimum grazing period for cows. For example, in
France, the milk producer CANDIA recommends an average of 150 days of grazing per
year for at least 6 h per day. The “Lait de pâturage” label is based on the same rules but also
requires a minimum grazing area of 10 acres per animal. Finally, the “Grand Pâturage” milk
requires access to a pasture for at least 180 days per year. In Belgium, the “MARGUERITE
HAPPY COW” chain advocates feeding cows with at least 70% grass per ration and at
least 180 days of grazing for a stocking rate of 4 animals per ha. The specifications for
PDO products are sometimes a little vaguer. Indeed, for the PDO cheese “Abondance”,
it is required that the herd’s ration be composed of at least 50% grass grazed during the
summer and mostly hay during the winter, while the PDO cheese “comté” prohibits zero
full grazing, and farmers must put their cows out to pasture as soon as possible and for
as long as the weather permits. Finally, the specifications of the PDO cheese “Laguiole”
specify having at least 120 days of grazing for the cows subscribing to this appellation. The
common denominator of all those labels is the strong presence of a grass-based diet in the
feeding rations of cows during a certain period of the year.

However, even though these specifications exist, there is no factual verification of
these conditions. Thus, recently, the Chronopâture tool was developed to automatically
count the number of days the herd spends grazing using a GPS collar. This tool has been
tested on three farms with three different specifications and three different grazing times to
be respected: milk grazing (120 days for 6 h), the PDO camembert (180 days), and the PDO
“Beurre et Crème d’Isigny” (210 days) [7]. Unfortunately, such equipment can hardly be
developed on a large scale, as it depends on the breeder’s choice. An alternative could be to
observe more specifically the variations in milk composition according to the feed. Indeed,
following [8], grass is the food richest in C18:3 fatty acids (FA). Therefore, its ingestion
by cows will confer a particular composition to the milk. However, this composition is
evolutionary. For example, the authors of [9] showed that the composition of the milk
changed during the transition to pasture, with a progressive decrease in the quantity of milk
produced (38%) and an increase in the fat (5%) and protein (5%) contents. In addition to the
variation in the overall fat content of the milk, its composition is also impacted by grazing.
Indeed, the milk of cows fed with fresh grass in pastures has a higher ratio of unsaturated
to saturated fatty acids. Namely, it has a higher proportion of polyunsaturated fatty acids
and conjugated fatty acids (CLA) than the milk of cows fed with a total mixed ration [10].
A fourfold increase in C18:3 polyunsaturated FAs in milk was observed when the milk was
produced by grazing cows [8], while the concentration of conjugated linoleic acids (CLA) on
pasture was twice as high as when the cows were fed with a total mixed ration [9]. Finally,
there was also an increase in the long-chain FAs and a decrease in the short- and medium-
chain FAs when the cows’ feeding was based on fresh grass [11]. Consequently, as FA
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contents can be predicted by milk Fourier transform mid-infrared (FT-MIR) spectroscopy,
there is no doubt that we can observe changes in the milk FT-MIR spectra related to the
presence of grass in the diet. For example, the authors of [12] demonstrated that it was
possible to predict the cow’s ration composition and identify PDO practices using FT-MIR
analysis of milk.

Unfortunately, collecting the grazing calendars of farms at a large scale is difficult
because they are rarely recorded by the farmers. Therefore, the innovative approach of
this work will consist of confirming if it is feasible to realize an indirect prediction of the
presence of grass in the cattle diet by predicting the grazing period defined from the test
month from a large database containing milk FT-MIR spectra. Then, the second question
in this manuscript will consist of knowing if it is feasible to develop a farm’s large-scale
feeding typology by using the estimated probability of cows grazing.

2. Materials and Methods

The software R version 4.1 (R Core Team, 2021) was used to compute all calculations.
The data flow is summarized in Figure 1.
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Figure 1. Data flow.

2.1. Data

The data came from the FuturoSpectre agreement linking the University of Liège—
Gembloux Agro-Bio Tech (Gembloux, Belgium), the Walloon Research Centre (Gembloux,
Belgium), the milk laboratory “Comité du Lait” (Battice, Belgium), and the Walloon Breed-
ing Association (Ciney, Belgium). Data were collected from 2011 and 2021 at 2449 Walloon
dairy farms as part of the milk payment scheme and represent 3,377,715 observations. The
milk FT-MIR spectra were generated by analysis of the herd’s bulk milk using MilkoScan
spectrometers (Foss Electric A/S, Hillerød, Denmark) at the milk laboratory “Comité du
Lait” (Battice, Belgium) and standardized using the method developed in [13].

To improve the understanding of the prediction of grass-based diets from the test
month, we decided to use 4 predictors given directly by the spectrometer (fat (%FAT),
protein (%PROT), urea, and lactose contents) and 44 predictors derived from equations
developed in the past by the team. Table 1 gives the specifications of those equations. FAs
were formerly predicted in g/dL of milk and then turned into g/100 g of fat to capture the
milk fat composition, which can be more informative in assessing the changes related to a
grass-based diet.
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Table 1. Specifications of equations used to provide the used predictors.

Traits Unit N 1 R2 RMSE 2 Ref. 3

Milk yield kg/day 457 0.69 3.48 NP 4

C4:0 g/dL lait 1371 0.93 0.008 [14]
C6:0 g/dL lait 1371 0.91 0.006 [14]
C8:0 g/dL lait 1371 0.91 0.004 [14]
C10:0 g/dL lait 1371 0.92 0.010 [14]
C12:0 g/dL lait 1371 0.93 0.011 [14]
C14:0 g/dL lait 1371 0.94 0.030 [14]

C14:1 cis g/dL lait 1371 0.71 0.008 [14]
C16:0 g/dL lait 1371 0.95 0.091 [14]

C16:1 cis g/dL lait 1371 0.73 0.013 [14]
C17:0 g/dL lait 1371 0.81 0.003 [14]
C18:0 g/dL lait 1371 0.84 0.056 [14]

Total of C18:1 g/dL lait 1371 0.96 0.060 [14]
Total of C18:1 trans g/dL lait 1371 0.80 0.025 [14]

Total of C18:1 cis g/dL lait 1371 0.95 0.063 [14]
C18:1 cis-9 g/dL lait 1371 0.95 0.061 [14]

Total of C18:2 g/dL lait 1371 0.71 0.014 [14]
C18:2 cis-9, cis-12 g/dL lait 1371 0.75 0.011 [14]

C18:2 cis-9, trans-11 g/dL lait 1371 0.74 0.010 [14]
C18:3 cis-9, cis-12, cis-15 g/dL lait 1371 0.69 0.004 [14]

SFA g/dL lait 1371 0.99 0.072 [14]
MUFA g/dL lait 1371 0.97 0.059 [14]
PUFA g/dL lait 1371 0.79 0.021 [14]
UFA g/dL lait 1371 0.97 0.064 [14]
SCFA g/dL lait 1371 0.93 0.025 [14]
MCFA g/dL lait 1371 0.97 0.104 [14]
LCFA g/dL lait 1371 0.95 0.110 [14]

Branched FA g/dL lait 1371 0.77 0.013 [14]
Total of omega-3 g/dL lait 1371 0.68 0.006 [14]
Total of omega-6 g/dL lait 1371 0.74 0.014 [14]
Total of odd FA g/dL lait 1371 0.84 0.016 [14]
Total of trans FA g/dL lait 1371 0.82 0.029 [14]

Lactoferrin mg/L milk 5541 0.55 139.01 [15]
Casein alpha-s1 g/L milk 135 0.81 0.58 NP

Casein alpha-s2 + K g/L milk 135 0.81 0.36 NP
Casein beta g/L milk 133 0.75 1.13 NP
Lactalbumin g/L milk 138 0.38 0.15 NP

Lactoglobuline g/L milk 134 0.81 0.25 NP
Total of casein g/L milk 133 0.84 1.56 NP
Sodium (Na) mg/kg of milk 1019 0.44 50.98 [16]
Calcium (Ca) mg/kg of milk 1094 0.82 53.38 [16]

Phosphorus (P) mg/kg of milk 1083 0.75 58.71 [16]
Potassium (K) mg/kg of milk 1090 0.55 88.14 [16]

Magnesium (Mg) mg/kg of milk 1124 0.72 6.53 [16]
1 N = number of records. 2 RMSE = root mean squared error. 3 Ref = reference. 4 NP = not published.

2.2. Models

The dataset was split into calibration and validation sets. Given the large amount of
available data, only 30% of farms were randomly included in the calibration set, keeping
the others in the validation set. The model ought to predict the presence of grass in the
diet. However, as no grazing calendars or feeding schemes were available, the innovative
aspect of this work consisted of assessing the grass level indirectly by creating an indirect
relationship with the trait based on the test month. In Wallonia, nearly all cows graze
from April to September. However, grazing is an evolutive process, and the full grazing
time globally takes place between May and August. Therefore, three different variables
were created using the test month. To balance the modalities of those traits, the same
number of months was used for the considered GRASS and NOGRASS periods. Those
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variables were named GRASS [i], with “i” being a placeholder taking value in the (1, 2,
3) set. GRASS1 considered the cows from May, June, July, and August as grass-based for
feeding, while those in November, December, January, and February were not grass-based.
All other month-related records were flagged as “others”. GRASS2 moved the May and
November records into the “others” group, and GRASS3 further restricted the grass-based
and not grass-based groups by also moving into “others” the June and December records.
In conclusion, GRASS3 was a special case of GRASS2, which was a special case of GRASS1
(i.e., GRASS3 ⊂ GRASS2 ⊂ GRASS1).

According to prior conducted studies [17–20], the use of discriminant analysis using
partial least squares (PLS DA) provides good predictive performance to detect the diets of
cows. Therefore, through the R caret package [21], PLS DA was used to predict the created
traits related to the period in which cows received a grass-based diet (i.e., GRASS, with
NOGRASS and OTHERS removed). The optimal number of PLS DA latent variables was
set based on a random cross-validation stratified following the 2 modalities using 10 groups.
However, this number was bounded to not exceed 30 to limit the risk of over-fitting. The
cross-validated sensitivity, specificity, and area under the curve (AUC) in receiver operating
characteristic (ROC) analysis were estimated to assess the quality and robustness of the
developed models. To validate the models on the same basis for all traits, the validation
accuracy was calculated using only the records collected in December or January (i.e.,
NOGRASS) and in July or August (i.e., GRASS).

To assess the similarities between the three built models, Pearson correlation values
were calculated between the probabilities of belonging to the GRASS modality obtained
from the models. Finally, to interpret the reasons for predicting the GRASS modalities, the
Variables Importance in Projection (VIP) score was calculated for each predictor and model.
This score was based on the obtained PLS DA coefficients.

We can hypothesize that the probability value of belonging to a GRASS cluster is indirectly
related to the grass growth, which is affected by the meteorological conditions. Therefore, signifi-
cant correlations were expected between the GRASS probability and traits related to the meteoro-
logical conditions, and the humidity (%), the temperature (◦C), the rate of clouds in the sky (%),
as well as the amount of rain (mm) observed in Brussels were recorded for the entire studied pe-
riod from the “Historique-Météo.net” website. The temperature humidity index was then calcu-
lated as follows: (0.8 × temperature) + ((humidity/100) × (temperature −14.4)) + 46.4. Finally,
the Pearson correlations were calculated with those meteorological traits and the averaged
GRASS probability estimated per year and month.

2.3. Feeding Typology of Farms

The working hypothesis is that the probability of belonging to the GRASS modality
indirectly represents the level of grass in the diet. Therefore, this probability was studied
throughout the year and also between farms. The probabilities were thus averaged per
month and year to study the feeding typologies of the different farms. Hierarchical clus-
tering using the Ward.D2 method was performed on the dataset. Then, after fixing the
number of clusters from the heights observed in the dendrogram, the means of probability
of the GRASS modality per month were averaged and plotted by cluster to highlight the
differences between farms.

3. Results and Discussion

For all the built models, the number of PLS latent variables was equal to 30. Based on
the AUC, sensitivity, and specificity values mentioned in Table 2, we can conclude that all
models had a good ability to discriminate between the GRASS and NOGRASS modalities,
which was confirmed by the external validation conducted, providing accuracies ranging
from 89.35% to 90.54% (Table 2).
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Table 2. Performances of discriminant analysis performed on the three created traits related to the
grazing season. The validation set contained 721,192 records.

TenFold Stratified Cross-Validation Validation

N AUC 1 Sensitivity Specificity Accuracy

GRASS1 533,786 94.71 ± 0.07 86.78 ± 0.17 88.61 ± 0.17 89.66
GRASS2 397,409 96.21 ± 0.08 88.41 ± 0.27 90.84 ± 0.19 90.95
GRASS3 265,876 97.43 ± 0.08 90.55 ± 0.18 92.99 ± 0.21 91.40

1 AUC = area under the curve.

As mentioned in [12,18], PLS DA has a very good ability to predict a cow’s diet from
the milk FT-MIR spectrum. Very similar results (even if slightly lower) were obtained
by replacing the FA content in milk with their related milk fat content (data not shown).
The feeding fingerprint explains this capacity to discriminate the grass-based diet in milk
FT-MIR spectral data. According to [8], fresh grass is the richest food in C18:3 FA. Therefore,
its ingestion by cows confers a particular composition for the milk. A literature review [10]
revealed that the milk of cows fed with fresh green forage has a higher ratio of unsaturated
to saturated fatty acids and contains a higher proportion of polyunsaturated FAs and CLA
than the milk of cows fed with a total mixed ration (TMR). Even if the prediction accuracy
for those FA traits by FT-MIR spectroscopy is moderate (Table 1), the same trends were
observed from our predicted FA values during the grazing period (Figure 2).
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Figure 2. Yearly evolution of the ratio of predicted unsaturated to saturated fatty acids and the
predicted content of C18:2 cis-9, trans-11 and C18:3 cis-9, cis-12, cis-15 in milk fat.

Moreover, an increase in long-chain FAs and a decrease in short- and medium-chain
FAs in the milk fat when the feeding of cows was based on fresh grass was observed in [11].
Again, this was also confirmed by our predicted FA values (Figure 3).

The most informative traits were all related to the fat composition. Indeed, by de-
creasing order of importance, the most informative markers were the predicted contents
of C18:2 cis-9, cis-12, C16:0, C10:0, C6:0, and medium-chain FA in the milk (Figure 4).
The fat content, which is the fraction of milk that varies the most during the passage to
pasture [22], was also an important trait, even if it was not the most informative. The
presence of short- and medium-chain FAs in the most informative predictors was expected,
as those FAs are produced in the mammary gland during the de novo synthesis. The
long-chain FAs are instead derived from the ingested feed [17]. The lower importance
of polyunsaturated and long-chain FAs depicted in Figure 4 was therefore related to the
strong opposite relationship existing between these groups of FAs. For example, C16:0, the
second-most-informative trait, had a higher content in pasture-based milk. Moreover, in
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line with [23], which highlighted the higher content in grazing cows’ milk of C17:0 and total
trans C18:1, Figure 4 reveals the importance of these variables in detecting a grass-based
diet (VIP score greater than 60).
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Figure 3. Yearly evolution of the predicted content of short-, medium-, and long-chain fatty acids in
milk fat.
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In addition, we included in this study as predictors in the model other traits related to
the milk mineral and protein composition. In particular, we used as grass diet detection
indicators (1) the content of Ca, which proved to be informative in discriminating the
GRASS and NOGRASS modalities, and (2) the contents of Mg and P, although with lower
informative relevancy (Figure 3). The authors of [24] also observed the impact of grass-
based diets on the contents of Ca and P in milk. However, these authors found no link with
Mg. The casein composition and the protein content were also important for discriminating
milk samples produced from grass-based diets (Figure 4). This was also highlighted in [24].
Even if we used traits predicted by FT-MIR spectrometry with a fluctuating accuracy in this
study, the relevancy of the predicted traits to discriminating the GRASS and NOGRASS
modalities agreed with the literature. The initial model used 48 predictors that could be
reduced to 22 by applying a VIP threshold of 50 to keep the most informative variables.
For all GRASS traits, the prediction accuracy decreased. For instance, for GRASS1, the
sensitivity decreased from 87 to 78%, and the specificity decreased from 89 to 79%, which
was significantly lower and encouraged keeping all 48 initial predictors.

Even if the discrimination between grass- and non-grass-based diets seems feasible,
there is no sharp discontinuity between those feeding strategies in the yearly grazing cattle
routine. Instead, the cows are gradually put to (or removed from) pasture, favoring the
animals’ adaptation. Therefore, dichotomously affecting a record for either the “GRASS”
or “NOGRASS” cluster would lack the transition-in and out-grazing information. The PLS
DA can provide a probability of belonging to a specific cluster, allowing observation of
the feeding transition period within and between farms. For all built models, we observed
an increasing probability value for grass-based feeding from spring to summer and then
a decreasing value (Figure 5), suggesting the models’ ability to recognize the feeding
transition period despite not being trained using such examples. If the cows are fed with a
higher proportion of grass (i.e., a higher probability value), this means that the grass growth
has reached a sufficient level to support this need. Therefore, we can hypothesize that the
probability value of belonging to the GRASS cluster is indirectly related to the grass growth.
From Irish data, the authors of [25] observed that grass growth is highly affected by the
temperature and solar radiation. Peak grass growth was observed in late spring and early
summer. Then, the growth decreased in the late summer and autumn due to a decrease
in temperature and solar radiation. This evolution is in line with the one observed from
the probability values of belonging to the GRASS cluster (Figure 5). The meteorological
conditions can therefore explain the variation in values observed between and within the
years. The correlation between the GRASS probability and the relative humidity was low
(−0.34). However, by combining the ambient temperature and the relative humidity into
the temperature humidity index (THI), the obtained correlation was high (0.88) and equal
to the one observed with the temperature, confirming the strongest influence of the heat
on the probability values. As expected, a negative correlation (−0.56) was observed with
the presence of clouds, which can influence grass growth. A small positive correlation was
also calculated with the monthly amount of rain (0.15). Moreover, some proportion of the
observed variability in the probability values could be related to changes in the floristic
pasture composition and the grass composition itself.

The differences in the AUC values were small between models, suggesting a similarity
between models’ performances (Table 2). Moreover, the correlation values, estimated
from the entire validation set (N = 2,365,113), between the probabilities of belonging to
the GRASS modalities were high between the 3 models (within the range [0.95, 0.98]),
suggesting common information given by all models. However, by looking at the evolution
of the probability throughout the studied years, we can observe that the trend for GRASS1
probability was slightly different from the two other trends (GRASS2 and GRASS3; Figure 4).
This could be due to the more extensive range of months used to build GRASS1 model.
Indeed, this could better cover the variability in grass quality and quantity. Unfortunately,
no reference information is available to confirm this hypothesis. If this hypothesis is true,
then the GRASS1 model must be more appropriate.
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Using the developed models, we could estimate the probability of belonging to the
GRASS cluster for each test day to distinguish the feeding patterns between farms. The
obtained probabilities for GRASS1 were averaged by farm, year, and month. Only the farms
having 12 values per year (i.e., full-year representation) were studied, and their averaged
probability values for belonging to the GRASS class were introduced in hierarchical clus-
tering. The obtained dendrogram is illustrated in Figure 6, and the respective descriptive
statistics are mentioned in Table 3. The annual trend of their average probability values
within the year is depicted in Figure 7. Twelve groups could be isolated, with some of them
being very close. Indeed, clusters 1, 4, and 5 were related to the farms having a feeding
ration for more intensive production (Figure 7).

Those clusters were related to higher milk production and a lower content of long-
chain FAs. The farms belonging to this group of clusters could move within those clusters
between years. Therefore, the differences between 1, 4, and 5 could mainly be related to
external factors such as the meteorological conditions, leading to different grass production,
or the economical context of the feed prices, which could also influence the kind of feeding.
However, as expected, based on the annual trend depicted by those clusters, we can
hypothesize that they also put their cows out to pasture during the grazing period. Indeed,
in each pattern, we can observe an increasing probability value from spring to summer.

However, the intensity was different, which can probably be explained by the meteo-
rological conditions influencing the grass production and the potential economical context,
which can influence the feed purchase. Cluster 8 had a constant annual evolution (Figure 7)
with a high probability value. However, based on Table 3, this group would be related
to farms that have analyzed skimmed milk. Indeed, the level of fat was nearly equal to
zero. By extracting the fat from the milk, the milk matrix was modified. Therefore, the
predictions performed for those spectral data could not be considered. This cluster was
therefore not interesting. Clusters 6, 7, 2, 11, and 10 would be related to a group of farms
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given a feed ration for more extensive production. The feed will be richer in long-chain FAs,
as confirmed by the higher probability values observed for those farms during the non-
grazing period. The last group of clusters was harder to classify, as cluster 12 corresponded
to intensive farms (Table 3) whose production mainly occurred during 2021. This year had
a different pattern than the others (Figure 5), with an annual evolution showing a rapid
increase in grazing probability (Figure 7). This could be related to adequate meteorological
conditions for grass growth and quality. However, this hypothesis must be confirmed by
experts. Clusters 3 and 9, which were siblings of cluster 12, seemed to be an intermediate
status between the previous groups (Table 3). Consequently, we could detect the presence
of grazing by estimating the GRASS probability. The model could also assess the farm’s
intensive or extensive practices throughout the allotted time. Suppose we set to −1 the
“intensive” group (i.e., clusters 4, 5, and 1) and to 1 the “extensive” group (i.e., clusters
6, 7, 2, 11, and 10), and “intermediate” group (i.e., clusters 3, 12, and 9). In that case, we
could sum those values per year to appreciate the intensive character of a farm. A total
of 1601 farms had 11 years of data collection. Of those farms, only 6.8% were always in
the intensive group, and 4.3% of them were in the extensive group. The remaining farms
were intermediate. As mentioned in [26], some farms can also make a transition between
intensive and extensive characteristics.
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Table 3. Descriptive statistics for the farm clustering (SFA = saturated fatty acids, MUFA = monoun-
saturated fatty acids, and LCFA = long-chain fatty acids).

Cluster
Name

N Sample % Sample
Milk % Fat % Protein g/100 g Fat

kg/Day g/100 g g/100 g SFA MUFA LCFA

1 4239 16.41 26.46 4.14 3.46 69.14 26.73 39.55
2 1498 5.80 25.98 3.96 3.40 67.24 28.41 41.94
3 3316 12.84 26.20 4.09 3.43 68.22 27.72 40.68
4 2483 9.61 26.90 4.33 3.55 70.24 25.35 37.28
5 3092 11.97 26.37 4.24 3.49 69.26 26.52 39.18
6 1321 5.11 25.51 3.89 3.38 66.85 29.01 42.34
7 989 3.83 25.22 3.74 3.36 65.49 30.35 44.52
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Table 3. Cont.

Cluster
Name

N Sample % Sample
Milk % Fat % Protein g/100 g Fat

kg/Day g/100 g g/100 g SFA MUFA LCFA

8 257 0.99 28.34 0.25 3.54 50.05 45.55 63.37
9 3902 15.11 25.49 4.12 3.44 67.91 27.54 40.87

10 1954 7.56 25.45 3.95 3.40 66.31 28.82 42.29
11 1660 6.43 25.41 4.04 3.41 67.27 28.55 42.01
12 1121 4.34 27.75 4.21 3.48 67.53 27.19 38.63
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4. Conclusions

The development of an easy method of detection of milk produced from grass-based
diets is of interest due to the labeling existing in the dairy market for promoting this kind
of healthier milk product. The innovative aspect of this study consisted of using usual
farming practices in the southern part of Belgium to define the traits related to grazing. The
assumption of the grass-based diet from the month of milk testing seemed to be relevant
after examining the information relevancy of each predictor with regard to the literature.
The good discrimination of the GRASS milk samples was mainly related to the changes in
the milk fat composition and the modifications of the mineral and protein contents. Even if
the models were not trained using milk samples produced during the feeding transition
periods, they were able to highlight the evolution to a full grass diet thanks to the increase in
the probability value for belonging to the GRASS modality. By averaging this value by farm,
month, and year, we confirmed the different feeding strategies existing in the southern part
of Belgium, where nearly all herds realized grazing but with different levels of intensity.



Animals 2022, 12, 2663 12 of 13

Even if the global annual trend were similar, the intensity can vary due to meteorological
conditions. The composition of the pasture could also influence the probability value.
However, to confirm this statement, the collection of field information would be necessary.
This will be the objective of our future work. Having those results first will allow us to
select the farms of interest more efficiently. Moreover, using predictors instead of milk
MIR spectra allowed for a better interpretation of the occurring discrimination. This was
important to have an indirect validation of the models’ relevancy. Finally, the long-term
objective of the research described in this paper is the creation of a tool that will be able to
automatically estimate the grazing periods of cattle down to counting the exact number of
days spent by cows on pasture.
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