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Simple Summary: Vector-borne diseases (VBDs) cause heavy economic losses in the livestock sector.
Among these VBDs, babesiosis is the second most common disease, causing high morbidity, mortality,
and reproductive and productive losses in cattle. The causative agents of this disease are globally
distributed across tropical and subtropical countries. In the current study, B. bigemina was propa-
gated in vivo in rabbit for attenuation and evaluated for its virulence periodically. This attenuated
B. bigemina was then inoculated to naive calves for the evaluation of clinical parameters. Increased
parasitaemia and temperature were observed in rabbits following the inoculation of B. bigemina-
infected red blood cells. The naive calves did not show symptoms of parasitaemia or temperature
elevation when inoculated with rabbit-propagated B. bigemina-infected RBCs. Furthermore, this
study also demonstrated that infected cattle periodically had a decreased PCV profile, along with
increased temperature and parasitaemia. Moreover, this study also revealed correlations between the
temperature, parasitaemia, and packed cell volume of inoculated, infected, and control group calves.

Abstract: Bovine babesiosis (BB) is a vector-borne disease (VBD) that affects cattle in tropical and
subtropical areas, caused by the haemoprotozoa Babesia bovis and Babesia bigemina. It is transmitted
by tick bites belonging to the genus Rhipicephalus and is clinically characterized by high fever, depres-
sion, anorexia, decreased milk and meat production, haemoglobinemia, haemoglobinuria, jaundice,
and pregnancy loss. In this study, the propagation of B. bigemina was evaluated by intraperitoneally
inoculating 3 × 106 red blood cells infected with B. bigemina into rabbits. The study showed that
variations in rabbit body temperatures are related to induced bovine babesiosis. A significant increase
in temperature (39.20 ± 0.23 ◦C) was observed from day 4 onwards, with the maximum temperature
(40.80 ± 1.01 ◦C) on day 9 post-inoculation. This study included susceptible cross-bred calves for
in vivo attenuation, and they were compared with an infected group. The calves in the infected group
showed a significant increase in temperature (38.79 ± 0.03 ◦C) from day 3 onwards and a maximum
temperature (41.3 ± 0.17 ◦C) on day 11. Inoculated calves showed a gradual rise in temperature
post-inoculation, but the difference was not significant. Inoculated calves did not show parasitaemia,
whereas 32% of infected calves displayed parasitaemia. As compared to inoculated calves post-
inoculation, packed cell volume (PCV) decreased (16.36 ± 1.30) for infected calves. However, there
were statistically significant differences (p ≤ 0.05) in temperatures, parasitaemia, and PCV in both
inoculated and infected calves. The current study aimed to attenuate B. bigemina in rabbit models
and evaluate the pathogenic potential of this organism in naive calves. In conclusion, B. bigemina
proliferation was attenuated in rabbits. The rabbit model can be used to study B. bigemina in vivo in
order to reduce its pathogenicity.
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1. Introduction

Victor Babes first described the parasite that is usually found in the blood of cattle and
causes haemoglobinuria, which was later renamed B. bovis in his honour [1–3]. Similarly,
Smith and Kilborne identified a tick-borne haemoparasite (Boophilus annulatus) in 1893
responsible for the transmission of Texas Fever to cattle [4]. This parasite was named
B. bigemina [5,6].

Babesiosis is the leading haemoparasitic disease of animals, causing heavy economic
losses in endemic areas [7]. BB is a vector-borne disease of cattle that is prevalent in the
tropics and subtropics. It is caused by a haemoprotozoan of the genus Babesia. There
are two economically important species of Babesia that cause Babesiosis, namely, B. bovis
and B. bigemina. It is transmitted by the bite of ticks in the genus Rhipicephalus, including
R. microplus, R. annulatus, and R. decoloratus [8–10]. VBDs are estimated to cost the global
economy USD 13.9–18.7 billion per year [11]. BB threatens approximately 1–2 billion cattle
worldwide [7]. BB is clinically characterized by fever, depression, anorexia, decreased milk
and meat production, haemoglobinemia, haemoglobinuria, jaundice, abortion, and mor-
tality [7,12–14]. Usually, it is diagnosed using a microscopic examination of blood smears,
clinical examination, and serological tests (IFAT, CFT, and PCR) [9,15,16]. VBD can be
controlled with chemoprophylaxis, vector control, and immunization [17].

The artificial control of tick populations has been suggested. Despite the fact that
vector control is achieved by using chemoprophylaxis with acaricides, their prolonged use
may generate resistance [18]. One of the two most commonly used babesicides, imidocarb
at a dose rate of 3 mg per kg, has been found to provide an adequate premunition against
B. bigemina and B. bovis upon the inoculation of a bivalent Babesia vaccine after 21 and
61 days, respectively [19]. Imidocarb needs to be eliminated because it has residues in
human food and is used as a preventative measure when cattle are exposed to babesiosis
during their protective period [20–22]. As a result, alternative strategies for safer and more
effective control are required.

Attenuation refers to a decrease in the virulence of pathogenic species. There are two
different methods that are most commonly used for attenuating pathogenic species of cattle,
which are in vivo and in vitro. It has been reported that successive passages of B. bovis
result in progressively less severe signs of disease and reduced virulence in splenectomized
calves. After eight to twenty calf passages, B. bovis attenuation was observed [23]. Standard
vaccines have been prepared by inoculating attenuated strains of Babesia species into
splenectomized cattle, followed by the collection of blood [24,25]. A microaerophilic
stationary phase (MASP) culture technique has been developed for attenuating B. bovis [26].
In the MASP technique, B. bovis is cultured continuously in a layer of bovine RBCs in a
culture medium under low oxygen pressure. It has been shown that B. bigemina can be
propagated in vitro through continuous culture [27]. B. bigemina was continuously cultured
in bovine RBCs with 60% medium 199, 40% bovine serum, pH 7, 10% PCV, and 5% CO2
at 37 ◦C. In a rabbit model, T. annulata has been propagated in vivo and attenuated in
cross-bred calves [28].

To the best of our knowledge, B. bigemina has not yet been propagated in a rabbit
model for the purposes of attenuation. Therefore, the aim of the present study was to
propagate B. bigemina in rabbits and evaluate its attenuation in naive cross-bred calves.

2. Materials and Methods
2.1. Source of Parasite

Using the methodology adopted earlier [29], with modifications, a local strain of
B. bigemina was isolated from infected cross-bred cattle, and the infection was sustained
in calves. An EDTA-containing vacutainer was used to collect blood aseptically from
cattle calves diagnosed with babesiosis (acute stage) exhibiting clinical symptoms (41.1 ◦C,
anaemia, and haemoglobinuria). Blood was collected from restrained cattle calves by
puncturing their jugular veins with a sterile syringe and antiseptic gauze. It was transferred
to a vacutainer containing EDTA. Blood smears were prepared after Giemsa staining and
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observed at 100× magnification (oil-immersion lens). These blood samples were subjected
to polymerase chain reaction (PCR) to confirm the presence of B. bigemina-specific primers.

2.2. Inoculation into Rabbit

Six healthy male rabbits (Oryctolagus cuniculus) up to six months old and weighing
1350–1750 g, were purchased from a local market [30]. Each individual was quarantined
on its own and given food ad libitum, fresh water, and standard palate feed. A micro-
scopic examination and PCR were used to screen blood samples from the rabbits’ ears
for haemoparasites such as Babesia, Theileria, and Anaplasma. Both microscopy and PCR
showed no evidence of infection in these rabbits. The G-STORM Thermocycler (catalog
no. GS04822; G-STORM, Somerset, UK) was used to perform PCR following the condi-
tions of [31,32], with slight modifications based on specific primers of the 18srRNA gene
(B. bigemina F = 5-AGAGGGACTCCTGTGCTTCA-3, B. bigemina R = 5-GACGAATCGGAA-
AAGCCACG-3) in order to obtain a product length of 321 bp for confirmed B. bigemina.
For the PCR recipe, a final volume of 25 µL was prepared. The denaturation process was
carried out at 95 degrees for 1 min, followed by 37 cycles of PCR. Each cycle included
denaturation (95 ◦C for 30 s), annealing (56 ◦C for 30 s), extension (72 ◦C for 30 s), and final
elongation (72 ◦C for 5 min). The DNA fragments were analysed on agarose gel with a
1.5% concentration.

A dose of 3 × 106 red blood cells (RBCs) infected with B. bigemina from cattle in the
acute stage were inoculated intraperitoneally into rabbits simultaneously following the
protocol used earlier [33], with slight modifications of parasitaemia estimation at every
4-day interval. The piroplasm of B. bigemina was observed in blood samples of rabbits.
The body temperatures of rabbits were monitored daily. The blood samples were collected
for their microscopy, parasitaemia monitoring, and PCR every 4 days up to 4 weeks [34].
Blood was collected from rabbits and subjected to PCR on day 8 post-inoculation [35].

2.3. Inoculation of Parasite into Calves

During the study, (n = 15) cross-bred 4–8-month-old male calves (weighing about
60–80 kg) were purchased from a local market and evaluated for any infection using
microscopic and PCR analysis. The calves were acclimatized in an animal research station
at UVAS, Lahore, by providing ad libitum feed and water. After screening, the calves
were categorized into three groups (five calves/group): inoculated (attenuated B. bigemina),
infected (virulent B. bigemina), and control (uninfected).

Parasitized blood was collected from six rabbits by saphenous vein puncture, and a
calculated dose of rabbit-attenuated B. bigemina-infected RBCs (2 × 106 iRBCs) with 4% PPE
were separated and subcutaneously inoculated on the 7th day into the inoculated group.
Infected calves were intravenously administered virulent B. bigemina (5 × 108 iRBCs) de-
rived from an experimentally infected calf following a previously published protocol [29].
The control group was inoculated with a similar dose of uninfected RBCs from a healthy
rabbit. All the groups (inoculated, infected, and control) were monitored daily for tempera-
ture, while parasitaemia and packed cell volume (PCV) were measured at intervals of the
4th day and 7th day post-inoculation up to 4 weeks [36].

2.4. Statistical Analysis

Based on the results of the infected and inoculated calves, a statistical analysis was
performed using the t-test and analysis of variance (ANOVA). Data were analysed us-
ing GraphPad Prism version 6 software (GraphPad Software 7825 Fay Avenue, Suite 230,
La Jolla, CA, USA). An unpaired t-test was used to compare differences between indepen-
dent groups, while a repeated measures ANOVA was used to compare the mean differences
between infected and inoculated calves [37].
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3. Results
3.1. The Effect of Babesiosis on Body Temperature and Parasitaemia in Rabbits

The results revealed a correlation between induced Babesiosis and fluctuations in tem-
perature in rabbits with parasitaemia. As early as day 4 post-inoculation (39.20 ± 0.23 ◦C)
up to day 9, there was an increase in body temperature among all experimental rabbits.
On the 9th day post-inoculation, a maximum increase in body temperature (40.80 ± 1.01 ◦C)
was observed, whereas on the 10th day post-inoculation, body temperature (38.65 ± 0.10 ◦C)
and parasitaemia gradually decreased. Among all experimental rabbits, parasitaemia de-
veloped on the 4th day PI and reached 24% by the 9th day, as indicated in Figure 1. After
28 days post-inoculation, parasitaemia was not observed. Rabbits B1 and B2 exhibited
positive bands on PCR for the persistence of Babesiosis on day 8 post-infection, as shown
in Figure 2.
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Figure 2. The expression of infection on PCR in experimental rabbits. Lane M: molecular weight
marker of 100 bp, Cat. # SM0323; lanes B1–B3: rabbit blood samples; lane −VE: DEPC water; lane +VE:
positive control of B. bigemina, 321 bp (Animal Disease Research Unit and Department of Veterinary
Microbiology and Pathology, Washington State University).

3.2. The Effect of Babesiosis on Body Temperature, Parasitaemia, and Packed Cell Volume in
Experimental Calves

The calves in the infected group showed significant increases in body temperature
(38.79 ± 0.03 ◦C) on the third day and a maximum temperature (41.3 ± 0.17 ◦C) on the
11th day. During the 21st and 28th day of the calves lives, two calves expired among the
infected group. This study observed high fever, anaemia, and haemoglobinuria as clinical
signs. A post mortem examination revealed intravascular haemolysis, splenomegaly,
hepatomegaly, a dark reddish colour in the kidneys, and reddish-brown urine in the
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bladder. Statistically, there was no significant difference between inoculated and control
group calves regarding temperature PI, as shown in Figure 3A.
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All the calves in the infected group revealed parasitaemia in blood smears from the
4th day onwards. There was an increase in parasitaemia of 32%. Both the inoculated and
control group calves did not exhibit parasitaemia compared to those of the infected group,
as indicated in Figure 3B.

A reduction in packed cell volume (PCV) was observed in infected calves post-
inoculation compared with inoculated calves. A normal PCV was recorded for cattle
that had been inoculated and control group. PCV differed significantly between inoculated
and infected calves as shown in Figure 3C.

4. Discussion

In the present study, B. bigemina was propagated successfully in a natural mammalian
host (rabbit) with the intent of attenuation. Moreover, while several effective aspects were
associated with the attenuation of B. bigemina in calf by passages, some serious drawbacks
limited the use of this method. It is also possible that the blood of donors contains the
bovine leucosis virus, which requires the adoption of strict prophylactic measures [38].
Using a rabbit model, B. bigemina infections of bovine red blood cells were administered
intraperitoneally to induce parasitaemia. Several previous studies confirmed that circu-
lating blood is the primary site of parasitic proliferation. A previous study examined
the proliferation of T. sergenti in intact spleen SCID mice after the inoculation of bovine
RBCs infected with T. sergenti intraperitoneally (IP), intravenously (IV), or subcutaneously
(SC) after periodic transfusions with 1 mL of blood from healthy cattle. On day 20 after
intravenous inoculation, up to 20% of mice had parasitaemia. Peak parasitaemia of 40%
was recorded on the 30th day. In mice inoculated intravenously with T. sergenti, rapid para-
sitaemia development indicated that the blood was the primary proliferation site instead of
the peritoneal cavity [33]. Our study determined that parasitaemia existed in rabbits for
28 days and increased to 2–4% on the fourth day post-inoculation. Similar findings were
reported based on a premonition naturally developed in young animals when exposed to
B. bigemina [39].
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In this study, clinical parameters were assessed in inoculated, infected, and control
group cattle calves. B. bigemina-infected calves showed high fever during this period,
which was similar to previous studies showing fever and anaemia in cattle infected with
Babesia [36,40]. All infected calves showed elevated body temperatures beginning on the
3rd post-infection day and reaching a maximum of 41.3 ◦C on the 11th post-infection day.
The results of this study support those of the previous study in terms of the persistence of
peak temperature increases from the 3rd to 11th days in calves carrying mixed infections
of T. annulata and B. bigemina [31]. Moreover, parasitaemia increased significantly among
infected calves from day 4 to day 9. The results are in line with earlier reports describing
a gradual increase in parasitaemia, along with an increase in body temperature in calves
that were infected with T. annulata [41]. In this study, the body temperature, parasitaemia,
and packed cell volume (PCV) of both inoculated and control group calves were normal
compared to infected calves. We also observed a slight rise in body temperature among in-
oculated calves without the manifestation of parasitaemia and variation in PCV. It has been
reported that reduced PCV correlates with anaemia due to Babesiosis and the phagocytosis
of parasitized and healthy RBCs by macrophages [42,43]. There was also a correlation
between body temperature, parasitaemia, and PCV in cattle infected with B. bovis [42].
B. bigemina-infected calves showed decreased PCV from the 7th day onwards, with a mini-
mum decrease on the 14th day. Similar results with reduced PCV were also reported [44] in
clinically infected calves with B. bigemina.

5. Conclusions

In conclusion, this study aimed to attenuate B. bigemina in rabbit models used as
unnatural hosts. A significant rise in parasitaemia and temperature was observed in rabbits
following the inoculation of red blood cells infected with B. bigemina. The naive calves
did not show symptoms of parasitaemia or temperature elevation when inoculated with
rabbit-propagated B. bigemina-infected RBCs. Furthermore, this study also demonstrated
that infected cattle periodically had a decreased PCV profile along with an increased
temperature and parasitaemia. In the future, this study will be beneficial in the development
of rabbit-attenuated B. bigemina isolates for further immunological studies.
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