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Simple Summary: Dairy cows are often exposed to stressors during the lactation cycle. Nutritional
stressors could be caused by rich-grain diet, leading to ruminal pH reduction and subsequent systemic
inflammation. This metabolic pathology impacts animal health and productivity. Feed additives
could provide beneficial effects on innate immune function in dairy cows, especially during stressing
periods. The goal of this study was to determine the effect of OmniGen-AF on measures of immunity,
inflammation, and liver function in lactating dairy cows fed a high-starch, low-fiber diet. Changes in
rumination, pH, and volatile fatty acids were recorded. Treated cows resulted in better rumen volatile
fatty acids profile and also showed shifts in hematological parameters compatible with a prompter
regeneration of red blood cells, greater proportion of neutrophils, lower levels on GGT, PON, and
BHB. These results show evidence of the nutritional stress induced by feeding a high-starch, low-fiber
diet, and suggest that the fed additive tested modulates some of the metabolic and immunological
responses to sub-acute ruminal acidosis.

Abstract: Dairy cows are often exposed to multiple stressors in a lactation-cycle, with sub-acute
ruminal acidosis (SARA) a frequent example of nutritional stress. SARA affects ruminal and intestinal
equilibrium resulting in dysbiosis with localized and systemic inflammation impacting animal health
and productivity. OmniGen-AF (OMN, Phibro Animal Health Corporation, Teaneck, NJ, USA) is
a feed product recognized for modulating innate immune function, especially during periods of
stress. The objective of this study was to determine the effects of OMN in lactating dairy cows
fed a high-starch, low-fiber diet. Twenty-four blocked cows were assigned to control or treatment
(55 g/d). After the additive adaptation (49 d) cows were fed the challenge diet (28 d). Milk, rumination
and pH were continuously recorded; components, rumen fluid, and blood were taken in multiple
time-point and analyzed. Results showed that the challenge decreased the rumination, shifted
ruminal fluid composition, decreased milk production and the components, and slightly increased
the time below pH 5.5, with no differences between groups. The treatment produced greater rumen
butyrate and lower lactate, prompter regeneration of red blood cells, increase of neutrophils, lower
paraoxonase, gamma-glutamyl-transferase, and β-hydroxybutyrate, with no differences on other
tested inflammatory markers. Results show that OMN helps modulating some of the metabolic and
immunological responses to SARA.

Keywords: dairy cows; stressors; immune modulation; rich grain TMR; SARA

1. Introduction

Dairy cows are exposed to multiple stressors during their life [1], especially during
the periparturient period [2–4] and lactation [5]. Examples of stressors experienced by the
high producing dairy cow include overcrowding and group changes, high environmental
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temperature, and feeding errors. The effect of these stressors negatively influences pro-
ductive and reproductive performance [1]. Moreover, stress may affect metabolism and
immune functions [6,7]. Severe or chronic stress disrupts homeostasis, altering biological
functions and predisposing animals to several pathologies [8].

Digestive disorders created by high-grain diets and lack of physically effective fiber
from forages are the main responsible for the subacute ruminal acidosis syndrome
(SARA) [9–11], that negatively affects performance resulting in substantial economic losses
to farmers [12].

An impaired rumen epithelium is not able to prevent the simultaneous entry of mi-
crobes and luminal toxins into the systemic circulation [13,14]. SARA could lead to a failure
in the selective rumen epithelium barrier function, thereby enabling luminal immunogens
to translocate into the blood supply and lymphatic system [15]. More specifically, various
luminal toxins such as endotoxins and biogenic amines seem to interfere with the epithelial
constraint function by altering the structure and function of the tight junction barrier,
thereby disrupting the integrity of epithelial cells and enabling their translocation changing
cellular pathways [14]. There is a growing body of evidence that indicates that SARA leads
to enhanced growth and lysis of Gram-negative bacteria followed by the release of great
amounts of lipopolysaccharides (LPS) [16,17]. The gastrointestinal LPS, is a potentially
pro-inflammatory molecule that has been investigated widely relatively to the immune sys-
tem [16,18]. Once gastrointestinal LPS enters into circulation, a pro-inflammatory cascade
is triggered and characterized by moderate elevation of serum acute-phase proteins (APP)
with LPS-binding protein, interleukins, and serum amyloid A [19] being the main markers
of the ruminal LPS translocation in cattle [17,20].

The development of uncontrolled acute or chronic inflammatory responses to LPS
may not only cause damage to host tissues but also costs in terms of energy, changing the
prioritizations of nutrients, influencing the energy balance, and reducing animal growth
and productivity (1). The first barrier against pathogens is represented by gastro-intestinal
epithelia (14), secondary the immune system [21], which is fundamental in the modulation
of the inflammatory response. The resilience provided by an efficient immune system
is essential to limit disorders and consequently, the use of antimicrobial drugs in food
producing animals [22], in line with the guidelines suggested by EU legislation [23].

Different nutrients are known to modulate the response of the immune system, and
commercial preparations are available, e.g., OmniGen-AF (OMN; Phibro Animal Health
Corporation, Teaneck, NJ, USA). This blend of ingredients is a combination of several
ingredients of which yeast cell wall material is one. The yeast cell wall does contain
mannans and glucans which are known to stimulate or activate an immune response
through the gastro-intestinal tract, and they have been shown to benefit rumen fermentation.
The use of yeast cell wall also has been shown to reduce inflammation during pathogenic,
physiological, and immunological challenges [24,25]. In actual fact, OMN has been effective
in supporting immune function in dairy cattle under different stressors, even if the intimate
mechanisms of action have not been fully elucidated. Brandão et al. [26] administered
LPS to lactating cows and found greater levels of haptoglobin and tumor necrosis factor
alpha when animals were fed OMN. Ortiz-Marty et al. [27] reported maintained neutrophil
function in OMN fed mice during a dexamethasone and LPS challenge. Dry cows fed
OMN during heat stress had greater mammary gland tissue regeneration and produced
more milk [28]. Mezzetti et al. [29] observed OMN promoted rumination recovery, and
reduced lipid mobilization and ketogenesis. Mammi et al. [30] evaluated the effect of OMN
supplementation in dairy cows and found fewer health events, lower somatic cell count
(SCC), and reduced involuntary culling rate in treated animals.

Despite the evidence of OMN supplementation effects listed in previous studies [26–29],
to our knowledge, no studies have analyzed the effects of this immunomodulant product
in lactating dairy cows exposed to a high concentrate diet challenge in a longitudinal trial.
The aim of our study was therefore to study the mitigation effects in zootechnical and
immunological parameters.
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2. Materials and Methods
2.1. Experimental Design, Housing and Diets

This study was conducted at the University of Bologna dairy research farm. The
experimental design is outlined in Figure 1.
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Figure 1. Experimental design. 1 Divided on 3 consecutive blocks. 2 Control group. 3 Treated group
(cows receiving OmniGen-AF, 55 g/d).

According to the capability of the University of Bologna dairy and research barn,
twenty-four lactating multiparous Italian Holstein-Friesian cows were distributed in
two treatment groups balanced by parity, DIM, milk yield and components (Table 1),
and the groups were randomly assigned to treatment. Cows in the OmniGen AF treatment
(OMN) were fed 55 g/d of OmniGen AF (Phibro Animal Health Corporation, Teaneck, NJ,
USA) and cows in the control treatment (CON) received no supplement.

Table 1. Characteristics of the cows assigned to CON and OMN treatment groups at the beginning of
the experiment (Covariate) and before the challenge period (T0) (mean ± SD).

Cows’ Characteristics Beginning Experiment Beginning Challenge

CON OMN 1 CON OMN 1

Age, y 2.65 ± 0.66 2.62 ± 0.52 2.78 ± 0.79 2.75 ± 0.65
Lactation, n 1.64 ± 0.65 1.67 ± 0.65 1.64 ± 0.65 1.67 ± 0.65

DIM 2 51.5 ± 28.9 52.3 ± 30.5 100.5 ± 28.9 101.3 ± 30.5
BW 3, kg 630 ± 58.3 633 ± 64.1 644 ± 73.2 634 ± 70.4

Milk yield, kg/d 40.0 ± 7.74 40.4 ± 7.78 41.77 ± 6.85 43.0 ± 9.06
Fat, % 3.91 ± 0.74 3.89 ± 0.54 3.59 ± 0.18 3.53 ± 0.15

Total protein, % 3.30 ± 0.24 3.28 ± 0.23 3.24 ± 0.18 3.26 ± 0.20
Lactose, % 4.95 ± 0.17 5.02 ± 0.10 4.96 ± 0.17 5.03 ± 0.08

MUN 4, mg/dL 8.27 ± 2.90 8.35 ± 3.26 9.79 ± 1.99 9.15 ± 1.99
SCC 5, log10/mL 1.45 ± 0.32 1.63 ± 0.42 1.78 ± 0.29 2.20 ± 0.32

1 OmniGen-AF supplemented at 55 g/d. 2 Days in milk. 3 Body weight. 4 Milk urea nitrogen. 5 Somatic
cell count.

The experiment consisted of three phases listed as covariate, pre-challenge, and chal-
lenge phase. In the pre-trial and pre-challenge phase cows were housed in free-stall pens
(OMN or CON) and group fed a TMR (Table 2); during the covariate phase, cows were
sampled and data recorded in order to balance groups. After that, OMN was supplied
since the beginning of the trial (pre and challenge periods) and mixed into the TMR of the
OMN group. The ration was formulated to mimic a standard Parmigiano Reggiano ration,
based on dry forages and approved concentrates, and it was balanced using a software
based on the CNCPS model (DinaMilk5; Fabermatica, Ostiano, Italy).
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Table 2. Composition of experimental diets.

Diets’ Composition Pre-Challenge Diet SARA Challenge Diet

Ingredients 1, kg/cow/d, as fed

Grass hay, finely chopped 9.5 6.0
Wheat straw, finely chopped 1.0 1.0

Corn flakes 6.0 13.0
Concentrate 2 7.5 8.0
Liquid feed 3 1.0 1.0

Grass hay, long Ad libitum -
Forage:Concentrate 45.4:54.6 24.8:75.2

Chemical composition, %DM

DM 87.22 ± 3.00 88.11 ± 0.74
Ash 7.50 ± 1.28 6.25 ± 0.43

Ether extract 3.21 ± 0.47 2.78 ± 0.65
aNDFom 4 35.94 ± 4.16 29.00 ± 2.80

ADF 24.55 ± 2.56 18.86 ± 1.64
ADL 5.27 ± 1.09 4.65 ± 0.19

uNDF240h
5 9.93 ± 3.32 8.05 ± 0.96

Starch 22.95 ± 2.62 33.62 ± 2.45
peNDF1.18mm

6 17.56 ± 1.35 13.80 ± 0.98
1 Additionally, 55 g/d of OmniGen-AF was added to the diet of cows in the OMN treatment. 2 Concentrate:
29.6% wheat bran, 29.4% sorghum grain, 21.6% canola meal, 14.7% flaked fullfat soybean, 2.2% calcium carbonate,
1% sodium chloride, 0.4% magnesium oxide, 0.9% sodium bentonite, and 0.3% vitamin and mineral premix
(providing 40,000 IU/kg af vitamin A, 4000 IU/kg af vitamin D3, 30 mg/kg af vitamin E 92% α-tocopherol,
5 mg/kg af vitamin B1, 3 mg/kg af vitamin B2, 1.5 mg/kg af vitamin B6, 0.06 mg/kg af vitamin B12, 5 mg/kg
af vitamin K, 5 mg/kg af vitamin H1 (para-aminobenzoic acid), 150 mg/kg af vitamin PP (niacin), 50 mg/kg
af choline chloride, 100 mg/kg af Fe, 1 mg/kg af Co, 5 mg/kg af I, 120 mg/kg af Mn, 10 mg/kg af Cu, and
130 mg/kg af Zn). 3 Cane and beet pulp molasses blend fully characterized for composition, sugars and
digestibility [31,32]. 4 Amylase- and sodium sulfite-treated NDF with ash correction. 5 Unavailable NDF
estimated via 240 h in vitro fermentation. 6 Physically effective NDF (aNDFom*pef), calculated using the
Ro-Tap system.

Diets were mixed and fed once daily at 0900 h and offered ad libitum (approx.
*1.1 expected intake). Additionally, grass hay was available ad libitum during the co-
variate and pre-challenge phase and not available during the SARA challenge phase. Cows
were milked twice daily in a 2 × 5 herringbone parlor. Milk yield and BW were recorded at
every milking (Kibbutz Afikim, Israel). The covariate phase lasted 14 d. The pre-challenge
phase lasted for 49 d, which is the time that previous research [33] has shown is needed
to demonstrate differences in immune function to feeding OMN; in Wu et al. [15], this
time was effective in increasing the gene neutrophil expression of the adhesion molecule
SELL and the cytokine CXCL8. The pre-challenge phase was followed by a 28 d SARA
challenge phase. Cows were exposed to the challenge in three consecutive time blocks
of eight cows each (four cows per treatment). During the challenge, cows were housed
in tie-stalls bedded with sawdust, and they had free access to individual feed bunks
and water dispensers. The diet consisted of a TMR made with the same ingredients fed
during the pre-challenge phase, but the inclusion rates of some ingredients were modi-
fied to increase starch, while decreasing aNDFom, peNDF, and uNDF240 (Table 2). The
starch raised from 22.95 to 33.62% DM thanks to the increase in corn flakes content (from
6 to 13 kg/cow/day as fed). Fibrous fractions decreased from 35.94, 17.56, and 9.93 to
29.00, 13.80, and 8.05% DM of aNDFom, peNDF, and uNDF240, respectively, thanks to the
reduction of grass hay (from 9.5 to 6 kg/cow/day as fed). OMN (55 g/d) was top dressed
to the corresponding cows immediately after the ration delivery. DMI was measured by
weighing feed offered and orts, and water intake was automatically recorded by flow
meters. For milking, cows were moved to the same milking parlor previously described;
each milking lasted for approx. 45 min.
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2.2. Feed and Milk Sampling

Samples of feedstuffs, diets, and orts were collected twice weekly throughout the
experiment (Mondays and Thursdays), dried in a forced-air oven at 65 ◦C. Samples were
firstly checked by NIR techniques (TANGO FT-NIR Spectrometer, Bruker Optics GmbH,
Ettlingen, Germany, [34]) and analyzed for DM, CP, aNDFom, ADF, peNDF, and starch
as previously described [35,36]. In vitro aNDFom digestibility (24 h and 240 h) was deter-
mined in buffered media containing ruminal fluid [37]. Digestibility was performed on
forages and TMR according to the procedure described by Palmonari et al. [38]. In vitro
aNDFom digestibility at 240 h was performed using the Tilley and Terry modified tech-
nique [39]. Milk samples from two consecutive milkings from each cow were collected on
d −14 and −3 prior to start of the experiment, on d 0, 7, 14, 21, and 28 of the SARA chal-
lenge (Figure 1) and analyzed by a certified laboratory (Associazione Provinciale Allevatori
Bologna) for fat, total protein, lactose, and SCC. ECM was then calculated.

2.3. Rumen Sampling and Measurements

Cows were monitored for reticular pH with an indwelling wireless transmitting unit
(SmaXtec Animal Care Sales GmbH, Graz, Austria), a system previously validated in
rumen-cannulated dairy cows [40]. These devices (3.5 cm i.d., 12 cm long, and weighing
210 g) were calibrated following the manufacturer instructions and manually inserted into
the rumen via the esophagus one week before the start of the pre-challenge period. Previous
research has showed that these devices tend to sit in the ventral reticulum area [40]. pH
and temperature were recorded every 10 min and data transmitted real-time to a base
station using the ISM band (433 MHz). Data were then collected using an analog-to-digital
converter and stored in an external memory chip. Reticular pH data were aggregated as
daily means, and a pH threshold of 5.5 was used to calculate time and dispersion below
that threshold [41,42]. Rumen fluid was collected via esophageal tube at 0845 h on d 0, 14,
and 28 of the SARA challenge. The first 500 mL of rumen fluid collected were discarded be-
fore taking samples. Rumen fluid was analyzed for volatile fatty acid (VFA) concentrations
by gas chromatography [43]; ammonia was assessed using a commercial kit (urea/BUN—
color, BioSystems S.A. Barcelona, Spain); and L-lactic acid and D-lactic acids were deter-
mined with a commercial kit (K-DLATE, Megazyme Co., Wicklow, Ireland). Commercial
standards were used for the calibration of the kits. Rumination time was continuously
monitored during the entire experiment using the Hi-Tag rumination monitoring system
(SCR Engineers Ltd., Netanya, Israel).

2.4. Blood Sampling

Blood was collected from the coccygeal vein at 0845 h on d −14, −7, and −3 prior the
start of the experiment, on d 0, 1, 2, 3, 7, 14, 21, and 28 of the SARA challenge. Samples were
taken into vacuum tubes containing either EDTA (for complete blood counts), clot-activator
(silicate, for serum assays), or Li-heparin (for plasma assays) (Vacutest, Kima, Padova,
Italy). EDTA tubes were kept at 4 ◦C after collection and blood counts were performed
within 4 h. Clot-activator and Li-heparin tubes were centrifuged at 2000× g for 20 min
and 3000× g for 10 min to obtain serum and plasma, respectively (Centrifugette 4203,
ALC International Srl, Cologno Monzese, Italy). Serum and plasma samples were stored
at −80 ◦C until analysis. Complete blood counts (CBC) were performed at the Clinical
Pathology Laboratory University of Bologna Veterinary Hospital using an automated
hematology system (ADVIA 2120, Siemens Healthcare Diagnostics, Tarrytown, NY, USA)
according to previous studies [44,45]. The CBC listed several parameters: hemoglobin (HG),
haematocrit (HTC), erythrocytes (ERT), reticulocytes (RET), mean corpuscular haemoglobin
concentration (MCHC), mean corpuscular volume (MCV), red cell distribution width (RWI),
leukocytes (LEU), lymphocytes (LYM), neutrophils (NEU), and eosinophils (EOS). Plasma
samples were analyzed at the Università Cattolica del Sacro Cuore (Piacenza, Italy): a
clinical auto-analyzer (ILAB-650, Instrumentation Laboratory, Lexington, MA) was used to
determine the concentration of beta hydroxybutyrate (BHB), gamma-glutamyl transferase
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(GGT), haptoglobin (HAPT), ceruloplasmin (CRP), albumin (ALB), and cholesterol (CHOL)
following Calamari et al. [46]. Reactive oxygen metabolites (ROM) and ferric reducing
antioxidant power (FRAP) were determined according to Jacometo et al. [47]; and paraox-
onase (PON) was determined according to Bionaz et al. [48]. Calibrations were performed
through commercial standards for CRP, ALB, BHB, ROM and FRAP, and through internal
standards for the rest. Four different quality controls were used to test the repeatability and
precision for each parameter. Furthermore, plasma samples were used to determine IL-1ß
and serum amyloid A (SAA) using a multi-detection microplate reader (BioTek Synergy 2,
Winooski, VT, USA) and commercial ELISA kits specific for the bovine species (Pierce,
Thermo Scientific, Rockford, IL, USA) for IL-1ß, or TP-802 (Tridelta D.L., Ireland) for SAA.
Serum samples were analyzed at the Istituto Zooprofilattico Sperimentale della Lombardia
e dell’Emilia Romagna (Brescia, Italy). Commercial kits were used on these samples to
measure IL-6 (DuoSet ELISA, cat. no. DY8190, R & D Systems, Minneapolis, MN, USA)
and γIFN (BovigamTM TB Kit, cat. no. 63,320, Thermo Scientific Prionics AG, Schlieren,
Zurich, Switzerland). In both cases, the calibrations were performed through standard
solutions according to the manufacturer’s instructions. Full methodologies including the
coefficient of variation are reported in Calamari et al. [46].

2.5. Data Analysis

Data were analyzed using the software JMP v15.1 (SAS Institute Inc., Cary, NC, USA).
Linear mixed effects models were used. Model main fixed effects were treatment, diet and
interaction. Data related to reticular pH and temperature, rumination time, milk yield,
and BW were analyzed considering only the last 28 d of the pre-challenge phase in order
to balance the model. Data related to rumen fluid parameters, milk components, and
blood parameters were analyzed as repeated measurement (first-order autoregressive AR1)
considering the sampling day as the time effect, and using the baseline established prior
to the start of the experiment (d −14, −7, and −3) as covariate depending on scheduled
sampled (Figure 1). Data of DMI and WI were recorded only during the tie stall period; thus,
only the treatment effect was considered. A preliminary analysis including blocks as fixed
effect was conducted and resulted in no significance; thus, this factor was included as nested
effect into the random factors. Each cow within block and treatment was considered as
experimental unit and used as random variable for all analyses. Normal distribution of the
data was checked for the residuals resulted from an initial mixed model, and normalized,
when necessary, by BoxCox transformation. Means are reported as least square mean
and pairwise multiple comparisons were performed using Student t-test as post hoc test
when a p-value ≤ 0.10 was detected. A p-value ≤ 0.10 was considered a tendency; a
p-value ≤ 0.05 was considered statistically significant; and a p-value ≤ 0.01 was considered
highly significant.

3. Results
3.1. Intake and Milk Production

As formulated, the diet fed during the SARA challenge contained, vs. the standard
diet, considerably more starch (34% vs. 23%), and less aNDFom (29% vs. 36%), peNDF
(14% vs. 18%), and uNDF240 (8.1% vs. 9.9%) (Table 2). The results of intakes, BW and
production are reported in Table 3. No differences were detected between the treatment
groups during the SARA challenge neither on DMI (25.8 vs. 25.7 kg/d in CON and OMN,
respectively, p = 0.99) nor water intake (144 vs. 147 L/d in CON and OMN, respectively,
p = 0.70). Milk yield was similar between treatment groups (41.7 and 42.0 kg/d for CON
and OMN, respectively, p = 0.94) but decreased equally in both groups in the SARA chal-
lenge period (−2 kg/d of milk, p < 0.01). A drop in milk fat and total protein yields
were recorded during the SARA challenge (−287 and −93.4 g of fat and total protein
yields, respectively, p < 0.01) with no differences between treatments (1310 vs. 1223 and
1332 vs. 1367 g of fat and total protein yields in CON and OMN, respectively, p = 0.35 and
0.73). Somatic cell count and MUN did not vary between treatments but the somatic cell count
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increased (+0.59log10 cells × 1000/mL, p < 0.01) and MUN decreased (−3.9 mg/dL, p < 0.01) when
the SARA challenge diet was fed. BW did not change throughout the experiment or between
treatment groups (644 and 628 kg, in CON and OMN, respectively, p = 0.61).

Table 3. Effect of the dietary challenge on intakes, rumination time, reticular pH and temperature, milk
yield and components in CON 1 or OMN 2 cows when fed the pre-challenge or SARA challenge diets.

Item
Pre-Challenge Diet SARA Challenge Diet

SEM
p-Values

CON 1 OMN 2 CON OMN TRT Diet TRT x D

DMI, kg/d - - 25.8 25.7 1.25 0.99 - -
WI, L/d - - 144 147 10.4 0.70 - -
BW, kg 646 617 641 639 17.2 0.61 0.31 0.11

Rumination time, min/d 502 488 434 405 13.8 0.23 <0.01 0.27
Reticular pH 6.05 6.05 6.04 6.05 0.02 0.91 0.69 0.19

Reticular pH < 5.5, min/d 35.6 40.2 57.2 57.1 12.5 0.65 <0.01 0.64
Reticular temperature, ◦C 37.8 38.8 37.9 38.9 0.11 0.52 <0.01 0.91

Milk yield, kg/d 42.3 43.4 41.1 40.6 3.20 0.94 <0.01 0.12
Fat yield, g/d 1455 1365 1165 1081 9.48 0.35 <0.01 0.90

Protein yield 3, g/d 1351 1441 1312 1293 10.1 0.73 <0.01 0.11
ECM, kg/d 38.2 39.5 34.3 34.9 2.57 0.72 <0.01 0.35

MUN, mg/dL 10.13 9.16 6.04 5.46 0.72 0.23 <0.01 0.28
SCC, log10 cells/mL 1.78 2.20 2.45 2.71 0.29 0.52 <0.01 0.34

1 CON is control cows. 2 OMN is cows receiving OmniGen-AF (55g/d). 3 Total protein.

3.2. Ruminal Parameters

Results of rumination time and reticular pH and temperature are reported in Table 3.
Rumination time decreased during the SARA challenge (−76 min/d, p < 0.01) in both treatment
groups with no differences between treatments. No significant differences were observed
in daily average reticular pH neither between diets nor treatment groups. However, time
below pH 5.5 increased in both treatment groups going from the pre- to the challenge diet
(+19.26 min/d, p < 0.01). Even if very slightly, reticular temperature increased during the SARA
challenge diet (+0.01 ◦C, p < 0.01). Results of VFA concentrations are reported in Table 4. Total
rumen VFA concentrations and propionic acid increased when fed the challenge diet (+16.2
mmol/L of VFAs, p < 0.01 and +5.6% mmol of propionic acid, p < 0.01), while acetic and
nor-butyric acid decreased (−3.3% mmol of acetate, p = 0.03 and −1.9% mmol of nor-butyrate,
p < 0.01). The treatment did not modify total VFA (101.0 vs. 99.3 mmol/L in CON and OMN,
respectively, p = 0.71) and ac. Acetic (53.2 vs. 55.0% mmol in CON and OMN, respectively,
p = 0.13). The use of OMN was associated with the decrease of propionic acid (p = 0.04) mainly on
d 14 (−6.3% mmol, p ≤ 0.10), and increased iso-butyrate proportion on d14 (+0.11% mmol,
p≤ 0.05). Additionally, both L- and D-lactic acid were lower in OMN animals since the beginning
of the SARA challenge period (−32 mg/dL and −65 mg/dL, p = 0.09 and p = 0.02, respectively).

Table 4. Evolution of rumen VFAs (acetic, propionic, iso-butyric, nor-butyric) and lactic acid concen-
tration in CON 1 or OMN 2 cows when fed the pre-challenge or SARA challenge diets.

Item
D 0 D 14 D 28

SEM
p-Values

CON 1 OMN 2 CON OMN CON OMN TRT Time TRT x T

Total VFA, mmol/L 89.4 89.3 110.2 103.0 103.4 105.5 5.16 0.71 <0.01 0.62
Acetic, %mmol 56.6 56.0 52.5 55.5 50.5 53.5 1.34 0.13 0.03 0.30

Propionic, %mmol 27.8 28.4 36.0 a 29.7 b 37.1 32.0 1.76 0.04 <0.01 0.08
Iso-butyric, %mmol 0.50 0.36 0.36 B 0.47 A 0.42 0.47 0.06 0.12 0.69 <0.01
Nor-butyric, %mmol 13.1 12.3 9.8 b 11.5 a 10.6 11.2 0.55 0.33 <0.01 0.08

L-lactic, mg/dL 151 119 187 155 154 121 25.1 0.09 0.35 0.99
D-lactic, mg/dL 172 125 241 147 174 121 37.2 0.02 0.41 0.81

1 CON is control cows. 2 OMN is cows receiving OmniGen-AF (55g/d). A,B is p ≤ 0.05 and a,b is p ≤ 0.10 for
differences among means within time point of sampling.
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3.3. Hematological, Metabolic, and Immunological Parameters

The SARA challenge had strong effects on metabolic, health, and immunological
parameters in all cows (Figures 2–6). Most of RBC, WBC, inflammatory, metabolic, and
oxidative status parameters were affected by the SARA challenge. In particular, the levels
of HG, HTC, ERT, MCHC, LEU, NEU, CHOL, ALB, BHB, and FRAP declined progressively
along the SARA challenge period, while MCV, RWI, EOS, CER, SAA, ILs, GGT, PON, and
ROM increased. Among CBC parameters, OMN increased RET (0.061 vs. 0.045%, in OMN
and CON, respectively, p = 0.09, Figure 2d) and NEU (44.88 vs. 40.26%, in OMN and CON,
p = 0.02, Figure 3b), while LYM resulted decreased (46.32 vs. 50.58%, in OMN and CON,
p = 0.02, Figure 3c). A treatment effect was also shown on inflammatory and metabolic
parameters: CORT increased (11,537 vs. 9319 pg/mL, in OMN and CON, respectively,
p = 0.02, Figure 4a), while PON (96.75 vs. 87.65 U/mL, in CON and OMN, respectively,
p = 0.01, Figure 6a) and GGT (−2.16, U/L, in OMN, p = 0.01, Figure 5d) resulted lower
in OMN cows compared to CON cows. Finally, BHB, compared to CON cows, was
lower in OMN cows during the last days of the challenge (0.49 vs. 0.40 mmol/L d21 and
0.48 vs. 0.41 mmol/L d 28, in CON and OMN, respectively, p = 0.05, Figure 5c).
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4. Discussion

The present trial deals with the mitigation of the stress responses to a high concentrate
diet challenge in lactating dairy cows by the supplementation of an immunomodulatory
feed additive.

Regarding the results showing the effect of the challenge in the enrolled animals the
rumination time, rumen pH, production, and blood markers changed consistently. The
decrease in rumination time in response to the dietary challenge may be related to the
levels of starch and aNDFom in the diet (34% and 29% of DM, respectively), rather than the
content of peNDF (13.8% of DM). The latter was lower than min. levels recommended by
other authors [49], but previous experience with feeding diets similar to the one fed in this
trial, a diet based on hay and straw as required in the Parmigiano Reggiano production
area [50,51] has shown it is possible to decrease the level peNDF to 11.2% of DM without
compromising rumen health [52–54]. In all those examples the starch content of the ration
(avg. 23.2% DM) was lower than in the SARA challenge diet, and comparable to the
pre-challenge diet, fed in this trial. At the same time, a min. safe level of 9% uNDF of DM
has been recommended [54,55], while this was 8% in our SARA challenge diet. Therefore, a
high starch content, combined with a low uNDF content, were likely the reasons for the
drop observed in rumination time, which has been identified as a marker for SARA [56,57].

Daily mean reticular pH was not as low as expected and did not change because of
the dietary challenge, but time below reticular pH 5.5 slightly increased (Table 3). Ru-
men pH thresholds suggested to indicate SARA were not reached in the present study
(e.g., 330 min/d of pH < 5.6, [16]; or <5.8, [49]). However, the definition of rumen acido-
sis in terms of rumen pH thresholds is still under discussion and rumen pH cannot be
seen as the sole marker for this digestive and metabolic disorder [11]. In addition, the
absence of a marked decrease in pH during the challenge could also be related to the
measurement system used: pH was recorded at the reticulum, and previous research has
shown limited comparability between pH recorded at the reticulum and the rumen [58].
Mensching et al. [59] found a difference of about 0.4 points pH higher in the reticulum than
in the rumen. Moreover, the pH in the reticulum is more stable compared to the pH in
the rumen [60]. Other signs of SARA, all of which were seen in the present study, include
milk yield decrease, milk fat depression, and inversion of fat-protein ratio [12,61]. All these
reasons could be a limitation of our study.

Some immune and metabolic markers increased over the dietary challenge: EOS, CER,
SAA, ILs, GGT, PON, and ROM. Acute phase proteins are produced mainly in the liver and
are considered sensitive markers of inflammation. The positive APP, including CER and
SAA, have a protective role against pathogens, e.g., in neutralizing enzymes, scavenging
free hemoglobin and radicals, and in modulating the host’s immune response [62]. The
increase in CER (Figure 4b), even if not specific, is an expression of a systemic and innate
reaction of the organism to inflammation triggered by external (pathogens, toxins, etc.)
or internal (tissue damage, etc.) stimuli [63]. Moreover, SAA (Figure 4c) is reported as a
marker of the ruminal LPS translocation in cattle [17,20]. This increase could be related
in our study to the dietary challenge, probably because of a translocation of LPS out of
the digestive tract into the portal circulation [17,63]. The increase in positive APP was
also seen in previous nutritional challenge trials [64,65], in which an increase in plasma
concentrations of positive APP were observed when rumen pH was below 5.8 for at least 6 h
a day. On the contrary, ALB, a negative APP, slightly decreased over the dietary challenge
(Figure 5a) which is likely the consequence of a shift towards production of positive APP
in the liver [66,67]. CHOL, another marker of cow wellbeing, diminished in the challenge
phase of our study (Figure 5b) and this supports the impact of the dietary challenge on
immune function and metabolism. Previous studies [68] reported a lower level of plasma
CHOL in farms with high prevalence of SARA; CHOL was used in that study as an index
of the CHOL binding protein, a negative APP related to an inflammatory response.

In addition, the challenge diet was associated with a decrease in red blood cell (RBC)
parameters, mostly HG, HTC, ERT, MCV, MCHC, and RWI (Figure 2), highlighting the
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stress experienced by the animals. During chronic stress mature red blood cell forms
decrease and more immature forms (RET) are released [69]. RET usually have higher
volume and lower content in HG, which are likely the reasons for the decrease observed in
MCHC and the increase in RWI in this trial. Altogether, the changes observed in rumination
parameters and production, and in metabolic and immune markers suggest that the diet
fed during the SARA challenge was effective in creating the intended nutritional, metabolic
and immunological stress.

Regarding the effect of the immunomodulant product in treated animals limited
interesting results has been collected. Cows in the OMN treatment tended to have a
higher percentage of RET throughout the nutritional challenge (Figure 2d), suggesting
a prompter response in in replacing damaged ERT with immature red blood cells (RET).
Mezzetti et al. [29] observed similar effects on RBC in transition cows fed OMN. As reported
by other authors, OMN exerts effects on white blood cells [15,24,33,70]. In the present
study, we observed a change in the proportion of white blood cells species in OMN treated
cows, with a decrease in LYM (Figure 3c) compensated by an increase in NEU (Figure 3b).
These results are consistent with previously reported findings related to an increase in
NEU and phagocytic activity of polymorphonuclear cells upon feeding OMN [15,71,72].
Other studies have reported positive effects of this product on leukocyte function and gene
expression of L-selectin [24,73,74]. CORT, another stress marker, was greater in the OMN
treatment, another finding that under certain circumstances has been previously reported
for this product by other authors [24,71,72] and suggests some modulation of the innate
immune system [75,76]. On the other hand, on some previous studies the supplementation
of OMN was associated by equal or lower levels of CORT [29,33,74]. These differences on
CORT recorded levels could be related with the high variability of this parameter and low
sampling frequency applied in this research. Moreover, it is proposed that the functional
metabolites, organic acids, vitamins, and antioxidants present in the yeast cells’ wall, one
of the active ingredients in OMNG, may either be used as nutrients by the rumen and gut
microbiota or act as signaling molecules affecting interactions between microbes and the
immunological response [77].

During the SARA challenge BHB gradually decreased in all animals, probably because
of the highly energetic diet. However, this reduction was more evident in OMN fed cows
during the second half of the challenge, becoming significantly greater than in CON cows
at d 21 and 28 (Figure 5c). This suggests a better energy balance of OMN fed cows, as
previously suggested by Wu et al. [15,78] and could be explained by the energetic cost
of inflammation. Inflammation changes the prioritization of nutrients, affecting energy
balance and performance [22]. At the same time, depletion of energy storages, excess of
NEFA and BHB result in fatty liver and ketosis which have negative effects on the immune
function [21,79] and productive performance [80] of early lactating cows. GGT, a marker
related with the liver function and index of cholestasis [81] was lower in OMN fed cows
during the challenge, suggesting healthier liver function in those cows (Figure 5d).

As antioxidant capacity directly depends on liver activity [22], dysregulation on the
liver functions reflects on blood concentrations of such biomarkers. Among oxidative
status markers, PON, which is also a negative APP, was lower in the OMN treatment
(Figure 6a) although levels observed were higher than the minimum indicated by Trevisi
and Minuti [62], suggesting no depletion of this compound. ROM had no overall variation
due to the treatment (Figure 6c); different results were reported by Mezzetti et al. [29] where
this marker was found at lower levels in OMN fed cows. Finally, FRAP was not affected
by the treatment (Figure 6b); this compound is known to exert antioxidant activity and
provides a measurement of antioxidant power via blood concentration of bilirubin, uric
acid, proteins, and vitamins C and E [82].

Finally, in literature the effects of the tested immunomodulatory feed additive are
greater during the transition period [15,28,29], a really risky phase for dairy cows [4]. In
the present research, the enrolled cows were, at the beginning of the challenge period,
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around 100 DIM. In this phase their physiological status is more stable and less susceptible
to external stressors [1].

5. Conclusions

In conclusion, these results show evidence of the nutritional stress induced by feeding
a high-starch, low-NDF challenge diet, with measurements of digestive, metabolic, and
immunological markers. The digestive impact was markedly seen as a decrease in rumina-
tion time and a shift in acetate and propionate proportions, even if reticular pH was barely
impacted. Not all metabolic and immunological markers were impacted to the same degree
but CER, GGT and ROM increased while ALB and BHB decreased along the challenge,
reflecting the metabolic and immunological impact of this type of diet. Cows fed OMN
showed a modulated metabolic and immune response to the challenge diet, as reflected by
hematological changes compatible with a more reactive regeneration of red blood cells, a
greater proportion of neutrophils in WBC, higher CORT, and lower PON, GGT, and BHB.
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