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Simple Summary: Uncertainty regarding “cage-free” housing guidelines have left egg producers
unsure about how to transition to cage-free housing. A primary driving force behind cage-free
housing is the perceived animal welfare concerns for caged birds. Therefore, it is of great importance
to perform a systematic investigation on specific cage-free facility types with an emphasis on bird
comfort assessment. Thus, the goal of this study was to investigate alternative ventilation schemes
of a cage-free house to provide practical designs for a comfortable interior environment at the hen
level. By modeling four different ventilation schemes in a one-eighth section of a typical floor-
raised layer house—indoor temperature, air speed, and static pressure were compared and analyzed
quantitatively. Distribution contours and quantitative analysis of airflow, temperature, and pressure
suggested that indoor conditions could be maintained at a suitable range uniformly, especially at
the hen level. In addition, the ventilation rates of the hen house within four ventilation schemes
fell at the higher end of the desired ventilation range, indicating that the barn could be expected to
maintain good air quality during cold weather. This study demonstrated that computational fluid
dynamics modeling was a powerful tool that facilitated researchers to address animal welfare issues
in animal housing designs.

Abstract: This work investigated alternative ventilation schemes to help define a proper ventilation
system design in cage-free hen houses with the goal of assuring bird welfare through comfortable
conditions. Computational fluid dynamics (CFD) modeling was employed to simulate indoor and
outdoor airflows to quantify the effectiveness of ventilation systems in maintaining suitable and
uniform living conditions at the hen level. Four three-dimensional CFD models were developed
based on a full-scale floor-raised layer house, corresponding to ventilation schemes of the standard
top-wall inlet, sidewall exhaust, and three alternatives: mid-wall inlet, ceiling exhaust; mid-wall inlet,
ridge exhaust; and mid-wall inlet, attic exhaust with potential for pre-treatment of exhaust air. In a
sophisticated and powerful achievement of the analysis, 2365 birds were individually modeled with
simplified bird-shapes to represent a realistic number, body heat, and airflow obstruction of hens
housed. The simulated ventilation rate for the layer house models was 1.9-2.0 m?3/s (4100 £t3/min) in
the desired range for cold weather (0 °C). Simulation results and subsequent analyses demonstrated
that these alternative models had the capacity to create satisfactory comfortable temperature and air
velocity at the hen level. A full-scale CFD model with individual hen models presented robustness in
evaluating bird welfare conditions.

Keywords: ventilation system; cage-free hen housing; computational fluid dynamics; full-scale
simulation; indoor air conditions; bird welfare
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1. Introduction

Poultry facilities are going through significant transitions to cage-free production
modes to address bird welfare concerns with caged housing. Aviary systems, convertible
cages, and floor housing systems are three representative cage-free housing systems that are
commonly used [1]. Apparently, each configuration has its merits with regard to stocking
densities, mortality rates, and disease control, yet with nuisances, such as eggs laid outside
of nest-boxes (a.k.a. floor eggs). The lack of unified guidelines and industry conflict
regarding what “cage-free” means have left egg producers without clear understanding
about how to proceed the transition to cage-free housing, or to which particular system to
switch. Furthermore, both egg producers and poultry house contractors are confronting
difficulties in finding the most effective designs of cage-free facilities to maintain optimal
production along with excellent bird comfort and welfare [2]. Thereby, current ventilation
systems have not necessarily kept pace with the new poultry buildings in this era due to a
lack of performance-based systematic design procedures.

Environmental control ventilation systems are vital in cage-free poultry production [1].
A bird’s homeothermic condition is highly determined by air temperature, relative humid-
ity, thermal radiation, and air movement inside the poultry house. Hens are homeothermic
animals, which are susceptible to heat or cold stress that cause physiological disorders. In
fact, any key environmental factor that is off its optimal range may undermine bird welfare
and production performance [3]. In addition to maintaining a desired thermal condition,
uniform indoor environmental conditions in poultry housing are crucial, particularly con-
sidering the increasing size of commercial poultry barns [4]. Therefore, the design of a
ventilation system is of paramount importance since the characteristics and uniformity of
environmental parameters are driven by indoor airflow patterns [5]. In fact, fluctuating
production rate is commonly found with cage-free housing due to unevenly distributed
indoor environmental influences, such as uneven free-roaming hen density.

Computational fluid dynamics (CFD) has been used as a powerful tool to model fluid
flow in diverse applications. For decades, CFD modeling has been employed to address
indoor environmental problems and optimize the design of ventilation systems in a variety
of agricultural facilities [6]. Most environment influencing factors are controllable in the
CFD model and universal outputs of interest can be obtained. Moreover, CFD modeling
is relatively low-cost in terms of time and computational expenses compared to testing
constructed facilities. Numerous studies have demonstrated that CFD models can reliably
predict airflow, heat, and mass transfer in animal housing systems [7-10].

The need to address indoor environment problems in poultry housing has encouraged
researchers to improve the design of ventilation systems by CFD modeling. Research
conducted by Mistriotis and Jong investigated a broiler house with natural ventilation
by developing a two-dimensional CFD model, and the simulation results revealed that
the uniformity of indoor temperature and air velocity distribution was improved by
installing a solar chimney [6]. Blanes-Vidal, Guijarro, Balasch, and Torres (2008) conducted
four CFD simulations of airflows in a mechanically ventilated commercial poultry house
to evaluate whether air velocities in European poultry houses fell within the optimal
zone [11]. Seo et al., (2009) modeled four modified ventilation systems for a naturally
ventilated broiler house, and they found that the model with a diffuser beneath the chimney
inlet had the optimum performance [12]. CFD models have also been used to optimize
ventilation systems for extreme weather conditions to address heat stress and cold stress
issues [13,14]. All of these studies have demonstrated that CFD models were capable of
investigating ventilation options for a variety of poultry houses. However, one of the
most challenging hurdles is the bird. Limited studies have evaluated housing performance
with an emphasis on bird welfare at a full-scale, since modeling individual birds requires
significant computational resources. Additionally, to accommodate the shift to cage-free
production, improved and dedicated ventilation designs are in great demand from a bird
welfare perspective.
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This study applied CFD simulations in characterizing three alternative ventilation
schemes applied to a floor-raised layer house, in comparison with the standard ventilation
scheme [1] by evaluating indoor environmental conditions within each design. Simulation
results of critical environmental parameters for bird comfort assessment, including air
speed and temperature, along with the driving force for ventilation air exchange (static
pressure difference), were analyzed visually and quantitatively at the whole house and hen
levels. The goal was to assess the performance of these ventilation options for cage-free
poultry houses to maintain a desired and comfortable indoor microclimate that satisfies
the needs of production demand and ensures good bird welfare. Conditions during
cold weather were modeled since it was the most challenging period for maintaining
comfortable, healthy indoor conditions for hens, due to low ventilation air exchange and
fresh air distribution inside the hen house.

2. Materials and Methods

Four CFD models and corresponding simulations were conducted using the commer-
cial software package FLUENT v19.1 [15]. The standard k — ¢ turbulence model [16,17]
with enhanced wall functions was adopted for the development of CFD models, based on
previous investigations [18-21]. Simulations were conducted on the Pennsylvania State
University’s Institute for Computational and Data Sciences’ Roar supercomputer.

2.1. Development of CFD Model
2.1.1. The Floor-Raised Layer House

The modeled layer house was located at Lititz, Pennsylvania, with a typical floor-
raised housing configuration [1,22]. The length and width of the layer house were 162.15 m
(532 ft) and 13.72 m (45 ft). The sidewall was 2.73 m (8.96 ft) tall, and its thickness was 0.19 m
(7.5 in.). In addition, the layer house had a flat interior ceiling and shallow 4/12 exterior
roof slope. Typically, almost 20,000 hens were housed in the barn with a stocking density
of 0.11 m?/bird (1.20 t? /bird).

The current ventilation system of the layer house included 84 rectangular ventilation
inlets [each 1.17 m (46 in.) by 0.20 m (8 in.)] located at the top of each sidewall near the
eaves along both sides of the building. Four exhaust fans (0.91 m (36 in.) in diameter)
installed along one long sidewall of the barn were operated during brooding, and for cold
and mild weather. In addition, a tunnel ventilation system was equipped (not modeled in
this study) for warmer and hot weather. Fresh outdoor air was drawn into this negative
pressure house through the inlets under the barn eaves with sidewall exhaust fans in the
standard ventilation scheme used in North America that we referred to as “top-wall inlet
sidewall exhaust” [TISE] [1].

2.1.2. Establish the Computational Domain

Initially, a two-dimensional computational domain was employed to simulate the
indoor air conditions within TISE ventilation scheme, though the real ventilation per-
formance of the layer house could not be accurately reflected [22]. Thereby, subsequent
three-dimensional models of the study barn with standard and alternative ventilation
schemes were developed to approach more accurate and realistic simulations [1,22].

A three-dimensional geometry was developed with realistic dimensions provided by
collaborators to represent one-eighth of the entire layer house, resulting in a reasonable
model size with ventilation features that included an exhaust fan and the proportional
quantity of inlets. Only a central section of the layer house was modeled to minimize
end-wall effects. The house was modeled using dimensions obtained from construction
blueprints. Details of the barn dimensions were described in our previous publication [1].

The computational domain of each model included the barn itself and ambient air to
properly simulate airflows inside and outside the building (Figure 1). All models shared the
same size computational domain where the height was 24.4 m (80 ft) and the width 128.2 m
(420.6 ft). A constant wind speed of 2.0 m/s (4.5 mph) was assigned perpendicular to the



Animals 2021, 11, 2352

40f21

barn sidewalls, blowing from left to right across the computational domain. Note that an
extended domain far from the target layer house at the downwind side was designed to
minimize reverse flows at domain boundaries [23].

Wind Direction

Left

PN >
DN

Figure 1. The modeled layer house within the computational domain (TISE).

Right

2.1.3. Design of Ventilation Schemes

Four ventilation schemes were modeled and investigated (Figure 2). Other than the
standard TISE model [1], three alternative ventilation systems were designed, including
“mid-wall inlet ceiling exhaust” [MICE], “mid-wall inlet ridge exhaust” [MIRE], and “mid-
wall inlet attic exhaust” [MIAE] (Figure 2) [24]. Inlets of MICE were positioned with the
base 1.5 m (60 in.) above the floor and had a wall-plate at the top (Figure 2) to direct
incoming air horizontally from the inlet opening baffle. The exhaust fan of MICE was
positioned at the middle of the ceiling cross-section. Note that the fan chute was modeled
as an attached duct whose length was 2.9 m (112.5 in.). Inlets of MIRE and MIAE were
modeled identically with those of MICE. However, the major differences between three
alternative designs were the positions of exhaust fans. The MICE configuration resembled
some ventilation designs more common in European construction, while no ceiling was
included in MIRE and its exhaust fan was placed at the middle of the roof, 3.3 m (131 in.)
above the nest-boxes, with a short duct length of 1.6 m (64.5 in.). MIAE had a partial
ceiling, forming an “attic space” with a 2.3 m (90 in.) opening along the central length of
the layer house. The exhaust fan of MIAE with an attached duct length of 2.5 m (100 in.)
was positioned at the middle of the roof ridge at a distance of 2.4 m (95.5 in.) above the
nest-boxes.

2.1.4. Modeling Individual Hens

A significant aspect of the study was to determine conditions at the hen level for
welfare comfort conditions, in addition to overall environment patterns in the building air
space. For this reason, hen models were included in the simulation. In total 2365 individual
hen models were included in each model to represent approximately 1/8 of the total
hens housed in the 1/8 house section. Assuming all hens were evenly distributed [1,22],
an estimated distance was calculated based on the stocking density shown in Figure 3a.
Each hen with an approximate body weight of 1.6 kg (3.5 Ib.) was modeled as a heated,
simplified hen torso-head-tail-shape [25] with dimensions in Figure 3b. The surface of each
hen model was defined with a constant hen body temperature of 42 °C (107.6 °F) and a
heat generation rate of 4467 W/ m3 [23].
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Exhaust Fan Exhaust Fan

Exhaust Fan Exhaust Fan

Figure 2. Geometry of the study layer house with the standard ventilation scheme (TISE) and three alternative ventilation
designs (MICE, MIRE, and MIAE). Arrows indicate locations of inlets and the exhaust fan.

Hen Model Dimension
Length 0.25m |

11 cm Width 0.15m
Height 0.20m
. .1 5cm . . z Distance above floor 0.07 m
)
(

Surface area 0.11 m?
a) (b)

Figure 3. (a) Top view of eight evenly distributed hen models; (b) dimensions of a single hen model with simplified

geometry from isometric view [1]. Reprinted with permission from ref. [1]. 2020. Chen et al.

2.1.5. Boundary Conditions

For this study, the temperature of the atmosphere was specified as 0 °C (32 °F). Six
types of boundary conditions or cell zones were adopted in the CFD simulation inside and
outside the layer house [1,22]:

e  “Walls”: the ground, ceiling, roof, slatted floor, nesting area, litter area, inlet baffles,
sidewalls, animal surfaces, and the top surface of the computational domain [1].
Note that all “walls” were defined as non-slip walls except for the top surface of
the computational domain, which was defined as a zero-shear stress wall with no
resistance along the surface. One precondition was made by assuming all the walls
and roof were ideally insulated. The surface of each hen model was defined with
a constant hen body temperature of 42 °C (107.6 °F) and a heat generation rate of
4467 W/m3 [23].

e  The front and back surfaces of the computational domain along the z-axis and both
near and far ends of the house were defined as “symmetry” boundary conditions,
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whereas those surfaces represented internal faces that accounted for 1/8 of the ac-
tual scenario.

e  Two faces of each inlet that were perpendicular to the wind direction and two faces
(functioning parts) of the exhaust fan were assigned boundary conditions of “interior”
to represent an interior portion of the computational domain through which air could
flow [1].

e  “Velocity inlet” was assigned to the left end of the entire domain with a specified wind
magnitude of 2.0 m/s (393.7 ft/min) along the positive x-axis (Figure 1).

e  “Pressure outlet” was assigned to the right end of the entire domain representing
where the flow exits to atmospheric pressure (0 Pa).

e A ”“3D fan zone” was assigned to the body of exhaust fan where the entire fan volume
was considered a fluid cell zone, which simulated the effect of an axial fan by applying
a distributed momentum source [15]. Constant pressure jump values of 18 Pa (0.072 in.
of water), 20 Pa (0.080 in. of water), 16 Pa (0.064 in. of water), and 15 Pa (0.060 in.
of water) were applied across all the cells in the fan zone of TISE, MICE, MIRE, and
MIAE models, respectively [1].

2.2. Simulation Procedure

ANSYS meshing was employed to perform discretization of the computational domain.
Prior to launching CFD simulation, index of mesh skewness was checked to assess meshing
quality. In addition, standard mesh convergence studies were performed using the Grid
Convergence Index (GCI) method [26]. GCI value was calculated using Equations (1)—(3):

3¢l

GCl= 5y (1)

e = (fl]:lfz) (2)
N ine 1/3

' (chorurse) (3)

where ¢ is a relative error indicator, f; is the variable value calculated using a fine mesh,
and f is the variable value at the same point calculated using a coarse mesh. The mesh
refinement ratio r is calculated in Equation (3), where Nﬁne and N oarse are the total number
of cells of the fine and coarse mesh, respectively.

Three mesh files of TISE model corresponding to 6.9, 12.1, and 20.7 million cells were
generated. Thereby, r = 1.2 was the mesh refinement ratio from the middle mesh to the
coarse mesh, and r = 1.4 was the ratio from the fine mesh to the coarse mesh. The GCI
at three selected points P1, P2, P3 were analyzed and compared with the variables of air
speed, temperature, and pressure, respectively. The GCI value decreased when r increased
from 1.21 to 1.44 (Table 1), indicating the mesh refinement offered improvement [20].
However, the finest mesh demanded excessive computer power, which was not feasible
and affordable practically. Therefore, the middle mesh with cell count around 12 million
was adopted. The number of total cells for TISE, MICE, MIRE, and MIAE was 12.1 million,
12.4 million, 12.3 million and 12.3 million, and the average skewness was 0.21, 0.21, 0.22,
and 0.22, respectively.

To perform steady-state simulations, standard k — & turbulence model with enhanced
wall functions was used for all the simulations. A designated material “layer-body” was
created to represent hens with referenced parameters [27]. The air was modeled as an
incompressible ideal gas. Numerical solutions were fully converged by 2500 iterations
when both the monitoring variable at these selected points and the residual values were
stabilized [24].
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CJPlane I (z=2.7 m)

[JPlane N (z=9.5 m)
[ Plane F (z=20.1 m)

Table 1. GCI calculated for common values of mesh refinement ratio (r) with second order upwind
scheme (TISE).

Location GCI
Points
X y Z r=1.44 r=1.20
P1 252 105 108 121.75% 224.07%
P2 0 50 373 1.99% 4.06%
P3 0 85 500 5.02% 6.73%

2.3. Post-Processing

Three two-dimensional planes were created to adequately represent all locations in
the entire domain (Figure 4a) [1]. These parallel cross-sectional slices along the z-axis
represented locations impacted by different ventilation features [1,24]. In each plane, a
row of bird models was crossed to examine indoor environmental conditions from an
bird welfare perspective. In addition, five hen-occupied zones were specified to quantify
the environmental parameters (Figure 4). The dimensions of each zone were depicted
in the previous publication [1]. Those five hen-occupied zones play an important role in
evaluating ventilation scheme performance in ensuring bird welfare, in terms of indoor air
conditions and hen comforts.

Zone-4

2006000008008 ZoneS

(a)

(b)

Figure 4. Important locations are shown for data processing and analysis at: (a) three designated two-dimensional planes;

(b) front view of five hen-occupied zones (Plane I, TISE).

2.4. Bird Welfare Assessment

Simulated indoor air conditions were assessed upon specific comfort criteria from
a perspective of bird welfare to evaluate if a certain ventilation scheme could satisfy the
requirement. Those requirements [1,3,24] included a desired temperature range between 18
and 24 °C (64 to 75 °F); a range between 0.25 and 1.0 m/s (49 to 197 ft/min) of the air speed
at hen level; and a normal static pressure difference of —25 to —10 Pa (—0.10 to —0.04 in. of
water) [28] for this type of negative pressure ventilation system.

For cold weather, the desirable range of ventilation rate for the modeled layer house
ought to be 0.39 to 1.95 m®/s (1404 to 4131 ft3/min) [1,24]. Each inlet modeled in
this study had an identical opening height [24] to maintain an adequate static pressure
difference [28,29].

2.5. Statistical Analysis

Predicted environmental data of CFD simulations were quantitatively compared
across five hen-occupied zones at every single reference plane. Note that only one data
output was exported at a given location since it did not vary with time after convergence
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for a steady-state analysis. Therefore, exported data points in each zone were treated as
repeated measurements captured throughout that hen-occupied zone. The simulation data
were fit to a mixed-effects model as shown in Equation (4):

Yijk = B+ T+ Bj + (TB)j + €ijic 4)
i=1, ey aE;j:1, ey bE;kZL ..., CE
eijk iid. N(O, 0'12)

To compare the simulation data between models, the primary interest was testing
whether different models had different results at the same plane. Thus, the interpretation
for Equation (4) is: 4 was the mean of a parameter (air speed, temperature, pressure), T;
was the effect of the ith model, §; was the effect of the jth zone, (T,B)l-]- was the interactive
effect of model and zone. Herein, ¢;; was the random error in terms of independent
and identically distributed (i.i.d.) random variables. In addition, E took a value in {1,2,3}
and referred to the number of a particular plane. The values ar and b were 4 and 5,
representing the number of levels of factors: model and zone. The value of cg referred to
the number of levels of the data points, varying over the three planes. Furthermore, the
null hypotheses were:

a.  Hy: there was no difference in the means of factor Model.
b.  Hy: there was no difference in the means of factor Zone.
C. Hy: there was no interaction between factors Model and Zone.

The hypotheses were tested using analysis of variance (ANOVA) using R Studio
v1.2 [30]. A p-value significance level & = 0.05 was used for determining whether Hy would
be rejected. In addition, pairwise analysis between means of interest were conducted with
Tukey’s multiple comparison procedure [31].

3. Results

Four ventilation schemes were analyzed and compared with contours of airflow pat-
terns, temperature distribution, and static pressure difference. In addition, environmental
data of five different zones at hen level were statistically analyzed to compare and assess
the bird welfare suitability of indoor air conditions provided by each design.

3.1. Airflow Analysis

Three-dimensional rendering of air velocity magnitude of the entire layer house and
velocity vectors at each reference plane were created to visualize indoor airflow patterns
(Figure 5). In general, fast incoming air jets were observed from both inlets in all four
ventilation schemes, and gradually decreased their magnitudes approaching the nest-boxes
area. Although incoming air jets of the upwind inlet showed longer trajectories compared
to those of downwind inlets, obvious air circulations were observed throughout the house
within four schemes (Figure 6).

The patterns of indoor airflow varied with the type of ventilation schemes at Plane I.
The standard TISE ventilation system possessed the strongest incoming air jets compared
to three alternative designs, because the TISE model had inlets at the top of the sidewalls
along a flat ceiling (Figures 5 and 6). Without the ceiling along which the air jets could
move, the fresh air trajectories in the other three models more quickly dropped towards
the hen occupied area after traveling fairly horizontal paths for a short distance. Another
observation was that the incoming air from the downwind (right-side) inlet had relatively
smaller size except for the MIAE model (Figure 6). In addition, strong and numerous air
circulations were observed throughout the house in all models. For the three alternative
designs, circulations accumulated particularly at the central area, while the majority of
air circulations concentrated at areas close to both sidewalls in TISE model. In contrast,
hen-occupied area over the slatted floor, besides nest-boxes in MICE, MIRE, and MIAE had
fast moving airflows derived from incoming air jets (Figure 6).
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Velocity

Figure 5. Isometric view of the study layer house showing the location of three reference planes as
indicated in (1), and overall airflow patterns and air velocity magnitudes within four ventilation
schemes: (a) TISE, (b) MICE, (c) MIRE, (d) MIAE.

BN ]

“MICE”

Velocity [m s?-1]

Figure 6. Indoor air velocity vector contours at Plane I of four models.
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Air movement patterns varied dramatically at Plane N that contained no ventilation
features (Figure 7). Vigorous airflows moved from the upper right to the lower left of the
house in TISE [1]. In the MICE model, strong air movements were observed at the right
portion of the house close to the sidewall, moving towards the central nest-box area. There
was also a small portion of fast airflow at the upper left in MICE, which is close to an
obvious swirl nearby. The MIRE model had strong airflows starting from the left portion
of the house, where the position and the trajectory of the airflows were coincident to the
upwind incoming air jet. Even vigorous airflows with similar trajectories were observed in
the MIAE model from both sides. Sufficient internal airflow mixing and the impact from
incoming fresh air nearby resulted in an overall suitable air movement at Plane N. Because
Plane N represented the majority (69%) [1] of cross-sectional locations in the layer house,
air movements in this Plane would be more representative of overall house conditions.

o o S
A

0 1 2 3 4
| | |
Velocity [m s™-1]

Figure 7. Indoor air velocity vector contours at Plane N of four models.

The air movement patterns at Plane F exhibited the influence of the exhaust fan
on performance of each model (Figure 8). The TISE model presented different patterns
compared to the other three models due to the distinct sidewall location of the fan. Air
speeds at the right portion of the layer house increased gradually as approaching the fan
area in TISE. However, a vigorous horizontal airflow was observed within the left portion
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of the house with even higher magnitudes. For models MICE, MIRE, and MIAE, uniform
patterns of air movement were found towards the upper portion of the house because of
the driving force from the exhaust fan. However, some slanted airflows were observed
in the MICE model moving from the nest-box area to the upper left corner. In the MIAE
model, most of the attic space was filled with airflows moving upwards, excluding some
airflows close to the duct and fan areas. Unlike the air circulations that formed close to the
left sidewall in the TISE model, strong air circulations were observed largely in the MICE
model and the attic area of MIAE. Simulations confirm the importance of relative locations
of inlets and exhaust fans in determining overall indoor airflow patterns. However, note
the limited influence of a fan beyond a few meters (fan diameters) into the hen house.

“MIRE” ’ ;
G

Velocity [m sA-1]
Figure 8. Indoor air velocity vector contours at Plane F of four models.

3.2. Temperature Analysis

Although no artificial heating was supplied in the layer house in a cold weather,
indoor temperature was maintained warm due to birds’ body heat. The distribution of
temperature at each plane was analyzed by temperature contours (Figure 9).



Animals 2021, 11, 2352

12 of 21

L — -
Inlet ‘
o b | | . P ey I e o [ Fan
lsessesf losssed levsses ! v ) D T
Fan
L
Inlet f e ‘
Kot dmmmm‘ujilu’ T LTy NPT, Lot aaeansessesaal ﬂu_&s.u_u_‘.’_«_ﬁw_.ﬂl

[ |
d -
Inlef] N R e [ | e . { ............. o Raseeensiest
BT leesnes] ismnasal lecesssl [saananf ledesass Fan
0 4 8 12 16 20 24 28
1 1 1 1 l
Temperature [C]

Figure 9. Indoor temperature contours of four models, from top to bottom rows: TISE, MISE, MICE,
and MIAE at three reference planes (columns from left to right: Plane I, Plane N, and Plane F).

The incoming fresh air (dark blue) with an initial temperature of 0 °C (32 °F) at both
inlets ran into a quick color transition after mixing with indoor air, approaching the nest-
boxes area (Figure 9). At Plane I, larger regions of orange and yellow warmer temperatures
were observed in the TISE model, particularly at the hen level and the center upper portion
of the layer house. An explanation is that buoyant currents lifted warm air from ground,
which was then not adequately mixing with the incoming cold air. However, for all three
alternative ventilation systems, the incoming cooler air was introduced quite directly to the
hen-occupied slatted floor area at both sides of the nest-boxes (Figure 9). Some portions at
the hen level in three alternative models were observed at temperatures (approximately 14
to 16 °C; 57.2 to 60.8 °F) lower than desirable range, yet warm air accumulated at the litter
area close to both sidewalls. Unlike MICE and MIRE, relative warmer portions were at the
upper right corner and nest-boxes area in the MIAE model.

The reason for the different patterns between the TISE model and the other three
models was the position of inlets. The inlet at a lower, mid-wall position in the house
of MICE, MIRE, and MIAE provided cold air that was quickly mixed with the warm air
that was heated by the birds. Hence, the warmed air did not have a chance to rise toward
upper areas of the interior due to mixing into the cooler inlet air. Otherwise, the incomplete
mixing of cold incoming air and warm house air in TISE left warmer air stratified near
the ceiling location of low airflow. This explained why the obvious warm region was not
observed in the other models.

The indoor temperature distribution at Plane N (Figure 9) contained larger green
(12 to 16 °C; 53.6 to 60.8 °F) area in TISE at the upper portion and the hen level on the
left side, compared to the other models. The three alternative designs tended to have
similar patterns that were found at Plane I (Figure 8), demonstrating the incoming cold
air from adjacent inlets had solid impacts on indoor temperature distribution. Most warm
regions were observed at the hen level, although of varied locations in each model. For
instance, the largest warm area in TISE was located close to the right sidewall, while the
MICE and MIAE models had their warmest region close to the left sidewall and nest-boxes.
The distinguishable warmest area in MIRE was found at the center of nest-boxes region.
However, one common issue at Plane N might be the undesired low temperature regions
at some bird-occupied areas in each model (Figure 9).

The temperature contours of TISE at Plane F showed large areas of relatively low
temperature (10 to 16 °C; 50 to 60.8 °F) with the majority of the house appearing green on
the color-temperature scale (Figure 9). The three alternative designs had larger areas with
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warm temperature compared to TISE, particularly at the hen-occupied region at both sides
of the layer house rather than central areas. Moreover, clear temperature gradients can
be seen in contours of MICE, MIRE, and MIAE at both sides. The fan zone and the duct
space had temperatures about 18 to 20°C (64.4 to 68 °F), and the distribution was quite
uniform as illustrated. In general, the uniformity of indoor temperature of the TISE model
was better than the other three models. However, the temperature on average was warmer
at the hen level within three alternative ventilation schemes. Quantitative analysis was
conducted to interpret these differences (Section 3.4).

3.3. Pressure Analysis

Static pressure difference between interior and exterior of the study layer house
varied slightly over four ventilation schemes with a total range from —30 to 0 Pa (the
atmospheric pressure was set at 0 Pa) (Figure 10). The uniformity of static pressure
was acceptable for individual models, while slight differences were observed between
distinguishable ventilation systems. Overall, the static pressure was very uniform within
each ventilation scheme.
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Figure 10. Indoor pressure contours of four models, from top to bottom rows: TISE, MICE, MIRE,
and MIAE at three reference planes (columns from left to right: Plane I, Plane N, and Plane F).

Indoor static pressure in the TISE model was —24.3 Pa at Plane I on average. The
redness at both inlets indicated the attachment to outdoor atmosphere. The pressure of
MICE and MIRE fell in the range of —20 to —24 Pa, while the indoor static pressure of MIAE
had the smallest magnitude, ranging between 18 to 22 Pa. Overall average static pressure
fell in a normal range [29]. Identical ranges and uniformity of indoor static pressure were
also observed from the contours at Plane N within all four ventilation schemes (Figure 10).

In addition, the indoor static pressure at Plane F showed similar patterns compared to
the other two planes excluding the white region close to the exhaust fan where the static
pressure lower than —30 Pa (—56 Pa, —59 Pa, —75 Pa, —73 Pa for TISE, MICE, MIRE, and
MIAE, respectively).

3.4. Hen Comfort Assessment

Environmental conditions in terms of air speed, temperature, and static pressure at
the hen level were analyzed quantitatively to evaluate the performance of each ventilation
scheme in ensuring hen comfort. Simulation outputs were analyzed at each hen-occupied
zone separately. Because all these data varied by indoor locations, referring to the type of
planes, comparisons across four models ought to be conducted at the same plane. Thereby,
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statistical analyses were performed to test the significance of key factors’ effects on the
simulation data, including the type of model, the zone, and their interactive effects.

At Plane I, in total, 35,340 data points were exported for thorough analysis from
four models’ simulation results. The ANOVA analysis suggested that for all environment
parameters, the effects of model type, hen-occupied zone, and the interactions among them,
were statistically significant (Table 2) according to the F-value and p-value, accordingly.

Table 2. ANOVA of environmental data from five hen-occupied zones at Plane I.

Parameter Factor Degree of Sum of Mean F-Value Pr GF)
Freedom Squares Square
Model 3 32 11 403 <22 x 10716
Aj Zone 4 155 39 1474 <22 x 10716
ir speed —16
Model x Zone 12 161 13 510 <22 x 10
Residuals 35,320 928 0.03
Model 3 24,506 8169 406 <22 x 10716
T Zone 4 25,069 6267 311 <22 x 10716
emperature 16
Model x Zone 12 26,273 2189 109 <22 x 10
Residuals 35,320 711,278 20
Model 3 64,188 21,396 1,452,264 <22 x 10716
P Zone 4 3419 855 58,018 <2.2 x 1071°
resstre Model x Zone 12 69 6 390 <22 x 10716
Residuals 35,320 520 0
Same ANOVA procedure was conducted to analyze the data at Plane N and Plane F
exported from simulation results of each model (Tables 3 and 4). The data set size varied
slightly as 34,986 and 34,178 data points from Plane N and Plane F, respectively. Results
of ANOVA analyses in Tables 3 and 4 demonstrated the effects of model type and zone,
and their interactions were statistically significant. All these analyses showed that the
ventilation schemes and the hen-occupied area were both crucial to the indoor environment.
Table 3. ANOVA of environmental data from five animal-zones at Plane N.
Parameter Factor Degree of Sum of Mean F-Value Pr (>F)
Freedom Squares Square
Model 3 41 14 622 <22 x 10716
Aj Zone 4 389 97 4408 <22 x 10716
ir speed ~16
Model x Zone 12 105 9 399 <22 x 10
Residuals 34,966 771 0.02
Model 3 1637 546 31 <22 x 10716
T Zone 4 47,323 11,831 682 <22 x 10716
emperature -16
Model x Zone 12 19,390 1616 93 <22 x 10
Residuals 34,966 606,596 17
Model 3 57,891 19,297 142,316 <22 x1071°
P Zone 4 3418 855 63,049 <22 x 10716
ressure Model x Zone 12 45 4 278 <22 x 10716
Residuals 34,966 474 0

As follow-up analyses, Tukey’s tests were applied in pairwise comparisons for pa-
rameters of interest. The results of Tukey’s test were reflected in Tables 5-7 and graphed
in Figures 11-13 by comparing the average value of each parameter between individual
models at the same plane.
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Table 4. ANOVA of environmental data from five animal-zones at Plane F.
Parameter Factor Degree of Sum of Mean F-Value Pr (>F)
Freedom Squares Square
Model 3 3 1 141 <22 x 10716
. Zone 4 27 6 797 <22 x 10716
Air speed 16
Model x Zone 12 30 3 353 <22 x 10
Residuals 34,158 243 0.007
Model 3 64,525 21,508 767 <22 x 10716
T Zone 4 44,765 11,191 399 <22 x 10716
emperature —16
Model x Zone 12 12,750 1063 38 <22 x 10
Residuals 34,158 957,499 28
Model 3 53,896 17,965 1,701,164 <22 x 10716
P Zone 4 3573 893 84,583 <22 x 10716
ressure Model x Zone 12 83 7 656 <22 x 10°16
Residuals 34,158 361 0

Table 5. Means of environment parameters at Plane I in four models. Note all the differences are
statistically significant (ANOVA and subsequent Tukey’s test, p < 0.01) in this table.

Number of

Static Pressure

Model Data Points Air Speed (m/s) Temperature (°C) Magnitude (Pa)
TISE 8747 0.26 22.90 24.67
MICE 8737 0.28 20.64 21.87
MIRE 8578 0.31 21.16 22.45
MIAE 9278 0.34 21.53 21.05

Table 6. Means of environment parameters at Plane N in four models. Note all the differences
without annotation are statistically significant (ANOVA and subsequent Tukey’s test, p < 0.01) in

this table.
Number of . o Static Pressure
Model Data Points Air Speed (m/s) Temperature (°C) Magnitude (Pa)
TISE 8630 0.35 ab 20.84 c 24.53
MICE 8646 0.27 214 21.91
MIRE 8579 0.34a 21.04d 2243
MIAE 9131 0.35b 2091 cd 21.05

Table 7. Means of environment parameters at Plane F in four models. Note all the differences without
annotation are statistically significant (ANOVA and subsequent Tukey’s test, p < 0.01) in this table.

Number of . o Static Pressure

Model Data Points Air Speed (m/s) Temperature (°C) Magnitude (Pa)
TISE 8494 0.19a 20.10 24.45
MICE 8439 0.19a 23.05b 21.96
MIRE 8440 0.17 23.65 22.47
MIAE 8805 0.18 2297b 21.02

At Plane I, MIAE had the fastest average air speed in hen-occupied area compared
to the other models (Table 5), and the slowest average air speed was observed in TISE.
Relatively swift air speeds were observed in the middle of the house for all models, referring
to zones 2, 3, and 4 as illustrated in Figure 12. This might be explained as the incoming
air jets likely reached these zones after mixing with house air circulations (Figure 6). Note,
gentle airflow at 0.25 m/s (50 fpm) was observed at hen level and was desired during cold
weather as adequate air movement was provided without chilling the hens. At Zone-1
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and Zone-5, no significant difference was observed between the standard design and
three alternatives. However, TISE had the fastest air speeds at the center next-box Zone-3,
compared to the alternatives. At Zone-2 and Zone-3, MIAE and MIRE possessed the
maximum average air speeds, respectively. Generally, these results were consistent with
the paths of air jets in Figure 5.
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Figure 11. Environmental parameters of hen-occupied zones at Plane I in four models. Crossbars indicate No statistically
significant differences at 95% family-wise confidence level. Error bars stand for the standard deviation.
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Figure 12. Environmental parameters of hen-occupied zones at Plane N in four models. Crossbars indicate no statistically
significant differences at 95% family-wise confidence level. Error bars stand for the standard deviation.
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Figure 13. Environmental parameters of hen-occupied zones at Plane F in four models. Crossbars indicate no statistically

significant differences at 95% family-wise confidence level. Error bars stand for the standard deviation.

Average temperature of TISE was the warmest at Plane I, about 22.90°C at the hen level,
which was 2.26 °C higher than the lowest of MICE. Interestingly, the average temperature
of MIAE was the second highest, though it had the fastest air speed on average. Average
temperature at each zone was exceptionally close between four models as several crossbars
indicating the lack of statistical significance at Plane I (Figure 11). For instance, at Zone-1,
no pairwise difference was statistically significant. Air temperature at hen-occupied areas
with the standard ventilation scheme (TISE model) tended to be slightly warmer than
the other three models at Zone-2 and Zone-4, although the average temperature within
MIAE model was the highest at Zone-3 and Zone-5. These analyses showed consistent
results with Figure 8, as yellowish and reddish warm regions were fairly obvious in
corresponding positions.

Indoor static pressure averages at hen level were of extraordinary uniformity within
each zone for individual model as small standard deviations suggested (Figure 11). More-
over, the magnitudes from different models presented exceptional consistency with a range
of only 3.62 Pa (Table 5). Indoor pressure of the standard TISE configuration possessed the
maximum magnitude with statistical significance. All four models showed pressure ranges
per the evaluation criteria [28,29].

Simulation data from Plane N revealed different patterns at hen-occupied zones
(Table 6). Interestingly, the average air speeds slightly increased except for MICE, compared
to those of Plane I. One overall pattern was relatively higher air speeds at Zone-2 and -4 for
all the models, referring to the regions beside the center nest-boxes, where vigorous airflows
existed (Figure 7). Moreover, the difference between TISE and MIAE had no statistical
significance, nor did the velocity between TISE and MIRE. As Table 6 suggests, the average
air speed was 0.27 m/s within the MICE ventilation scheme, which was the lowest at hen
level among the four models. In general, more still air was observed at Plane N, which was
not surprising since no ventilation features existed at this plane. Particularly, the air speeds
within MICE configuration were relatively slower than the others at four zones expect for
Zone-4, which was reasonable as weaker air movements were observed at those regions as
Figure 7 suggested. Another overall pattern was relatively higher air speeds at Zone-2 and
-4 for all the models, referring to the regions aside the center nest-boxes, where vigorous
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airflows existed (Figure 7). Recalling Plane N represented 69% cross-sections of the entire
poultry house, the air speeds from this plane were actually higher than those of Plane I,
which means sufficient air mixing can result in robust air movements at hen level even
without direct incoming air.

The average temperatures of each model were fairly uniform at Plane N. The highest
mean temperature was in the MICE model as it had the slowest air speed on average
(Table 6). Additionally, no statistical significances were found between temperature means
of TISE and MIAE, nor between MIRE and MIAE. The trend of temperature distribution
among five zones showed the reverse trend to that of air speed in general. Average
temperature at Zone-1 and Zone-5 were slightly higher than those of the other zones, which
worked for all models. At Zone-3, three alternative models had extremely close mean
with no statistical significance. At symmetrical Zone-2 and -4, the average temperature
within standard TISE configuration showed no statistically significant difference with that
of MIAE. In addition, the warmest temperature on average at Zone-4 and Zone-5 were both
found within TISE, while the coolest was observed within MICE and MIRE, respectively.
As Figure 9 depicts, almost no warm yellowish or reddish regions can be observed at
Zone-2 for TISE, resulting in a clear lower temperature on average (Figure 12).

The static pressure at Plane N was identical to the performance at Plane I for each
model. The lowest pressure magnitude on average was 21.05 Pa from the data of MIAE,
which was the same with that of Plane I. Additionally, the highest magnitude was 24.53 Pa
of TISE model.

Simulation results at Plane F suggested all four models have fairly uniform air speeds
with relatively smaller magnitudes (Table 7). All four models had statistically identical air
speeds at Zone-1. At Zone-3, the highest mean of air speeds was observed in the standard
TISE mode, while the other three models had statistically identical results (Figure 13).
Similarly, the TISE model had the highest average air speed at Zone-5 with large variation,
which reflected the drastic influence from the exhaust fan nearby. In addition, TISE showed
the slowest average air speeds at Zone-2 and -4 among the four models due to a lack of
robust airflows as illustrated in Figure 7. Although the exhaust fan would have a strong
impact on airflows at this plane, the air speeds at hen level turned out to be considered
still air.

Average temperature at Plane F increased slightly due to slower air speeds overall.
The temperature of TISE was the lowest on average about 20.10 °C, while MIRE had the
highest temperature of 23.65 °C, which was consistent with its low average air speeds
(Table 7). The differences between five hen-occupied zones were quite small. Temperatures
tended to decline at the middle of Plane F, so the average temperature at Zone-3 was the
lowest of each model. In addition, the temperature at hen level within the standard TISE
model was lower than the alternative models at all five zones with statistical significance
as depicted in Figure 13.

Indoor static pressure at hen level at Plane F was identical to the other two planes
(Table 7) and was quite uniform within each ventilation scheme with rather small variations
at different zones (Figure 13).

4. Discussion

Three alternative ventilation schemes presented comparable performances with the
standard TISE, in terms of sufficient indoor airflow and air mixing. By observing air
velocity vector contours, MICE, MIRE, and MIAE were able to provide strong incoming
air jets that can reach the central region of the house almost as well as the TISE model.
Simulation results of the four ventilation schemes revealed a total ventilation rate of
1.97 m3/s (4174 £t3 /min), 1.93 m3 /s (4089 ft3 /min), 1.96 m3/s (4153 ft3 /min), and 1.91 m3/s
(4047 £t> /min) for the study layer house respectively, which were on the high end of the
recommended range (0.39 to 1.95 m3/s). Furthermore, the alternative designs provided
indoor air movements similar to the standard model, even better at the hen level (Plane I).
Air speeds on average were maintained at 0.35 m/s (69 ft/min) at hen level in the majority
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of the house for TISE, MIRE, and MIAE. Airflow pattern visualization showed two large
circular air eddies that included the incoming air jets in TISE whereas the alternative
models had these large eddies along with more numerous, smaller circulation patterns.

Temperature contours of individual models indicated that the uniformity of indoor
temperature distribution was satisfactory overall. The entire indoor temperature was kept
above 15 °C on average, assuming the house was ideally insulated. Nonetheless, all four
models presented the capacity to ensure birds comfortable temperatures. The average
temperature at the hen level varied within a range of approximately 21 to 24 °C for the three
alternative models, which matched the comfort zone for birds nearly perfectly. Furthermore,
the average temperature at hen-occupied areas of the three alternative models was slightly
higher than that of the TISE model at reference planes N and F. In particular, within Zone-3
(where nest-boxes were located) should be of interest, as the TISE model offered higher
air speed and lower temperature than the alternative designs. Microenvironment in and
around the nest-boxes may be used to encourage nest-box use by hens rather than laying
eggs in other parts of the house.

The static pressure of the house was quite uniform for each model and within a normal
range. Slight differences among models up to 4 Pa were found. The TISE model had the
largest magnitude of static pressure around 25 Pa, while the MIAE model had the smallest
magnitude of static pressure. In addition, static pressure at different locations for the same
model was quite consistent.

Future studies may be conducted with regard to design details of cage-free hen
housing accordingly. As revealed in this work, airflow patterns and the formation of
indoor air circulations were highly dependent on the trajectory of incoming air. The
relative location of inlets and exhaust fans, the dimensions of baffles, and so on, all play
an indispensable role in the formation of indoor environment. In addition, further CFD
analysis can be used to examine the uniformity of temperature and air speeds as well as
the environmental parameters at the hen level to reason and address practical problems,
such as floor eggs.

5. Conclusions

One standard and three alternative ventilation schemes were modeled at full-scale
to simulate indoor environmental conditions in a commercial floor-raised cage-free hen
house with the goal of evaluating the performance of ventilation scheme in maintaining
comfortable conditions for good bird welfare.

CFD simulation results suggested three alternative ventilation schemes have compet-
itive performance compared to the standard scheme, and demonstrated impacts of the
ventilation schemes on characteristics and uniformity of indoor environmental conditions.
Data of environmental parameters at the hen level were documented to ensure hen comfort.
The performance of alternative ventilation systems was assessed accordingly. Planes I and
N had the most variability of air speeds due to the impact of fresh air inlet in or adjacent.
The middle zones of each house (Zone-2, -3, and -4) in Planes I and N had the highest air
velocities and largest variation in air velocities, yet they were below the threshold for being
considered chilling drafts on the birds. Higher air speed in this central area was a result
of cooler, fresh incoming air circulating into that portion of the layer house. However,
fortunately, there was not a trend toward cooler temperatures within those bird-occupied
zones at the middle of the house, which indicated the central nest-boxes area would be
favored for laying eggs. Temperatures within the animal zones were variable across all
zones (high standard deviations), but on average showed reasonably uniform temperatures
within each model and across models. Static pressure had the smallest variation among
planes and zones within a model. The static pressure data suggested consistency at each
zone of an individual model, implying a clear trend of the average magnitude of pressure
from high to low: TISE, MICE, MIRE, and MIAE, ranging from only 21 to 25 Pa.

This study recognizes CFD modeling is a robust methodology to analyze ventilation
performance and assess bird welfare conditions. Full-scale modeling with individual sim-
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plified animal models enforces the usefulness of CFD simulation and restores the model’s
realism. The four models herein can be fine-tuned to assess other existing ventilation
schemes or evaluate proposed ventilation options for various types of poultry houses. In
summary, CFD modeling facilitates investigators to tackle animal welfare problems and
explore sophisticated solutions related to animal housing.
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