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Abstract

:

Simple Summary


Canine degenerative myelopathy (DM) is a chronic, progressive, and fatal neurodegenerative disease. Although degenerative changes in dogs with DM are observed not only in the spinal cord white matter but also the dorsal root ganglion (DRG) neurons, these changes are undetectable on conventional magnetic resonance imaging (MRI). Therefore, we investigated the ability of water-excitation MRI to visualize the DRG in dogs, and whether volumetry of DRG has a premortem diagnostic value for DM. Using water-excitation MRI, DRG could be depicted in all dogs. To normalize the volumes of DRG, body surface area was the most suitable denominator. The normalized DRG volume in dogs with DM was significantly lower than those in control dogs and dogs with intervertebral disc herniation. The results of this study revealed that widespread atrophy of DRG was likely to occur in DM. Moreover, volume reductions of DRG were observed in dogs with DM in both the early disease stage and late disease stage. Our research suggests that the DRG volume obtained by the water-excitation technique could be used as a clinical biomarker for DM.




Abstract


Canine degenerative myelopathy (DM) is a progressive and fatal neurodegenerative disease. However, a definitive diagnosis of DM can only be achieved by postmortem histopathological examination of the spinal cord. The purpose of this study was to investigate whether the volumetry of DRG using the ability of water-excitation magnetic resonance imaging (MRI) to visualize the DRG in dogs has premortem diagnostic value for DM. Eight dogs with DM, twenty-four dogs with intervertebral disc herniation (IVDH), and eight control dogs were scanned using a 3.0-tesla MRI system, and water-excitation images were obtained to visualize and measure the volume of DRG, normalized by body surface area. The normalized mean DRG volume between each spinal cord segment and mean volume of all DRG between T8 and L2 in the DM group was significantly lower than that in the control and the IVDH groups (P = 0.011, P = 0.002, respectively). There were no correlations within the normalized mean DRG volume between DM stage 1 and stage 4 (rs = 0.312, P = 0.128, respectively). In conclusion, DRG volumetry by the water-excitation MRI provides a non-invasive and quantitative assessment of neurodegeneration in DRG and may have diagnostic potential for DM.
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1. Introduction


Canine degenerative myelopathy (DM) is a fatal neurodegenerative spinal cord disorder that develops in several breeds including German Shepherds, Boxers, and Pembroke Welsh Corgis (PWC) [1,2]. The etiology of DM has not yet been fully elucidated; however, a previous study reported that DM-affected dogs were homogeneous for the A allele of a superoxide dismutase 1 (SOD1) missense mutation, SOD1: c.118G > A, which predicts a p.E40K amino acid substitution [3]. Age at the onset of clinical signs was 8 years or older in most cases [4]. The clinical signs of DM initially appear in the pelvic limbs as spastic upper motor neuron paresis and general proprioceptive ataxia, which progresses to flaccid tetraplegia and eventually dyspnea [2,5].



Currently, the clinical diagnosis of DM is based on the following criteria: confirmation of the progression of clinical signs, identification of reported SOD1 mutations, and exclusion of other progressive spinal cord disorders that clinically mimic DM [2,4]. However, a definitive diagnosis of DM can only be achieved by postmortem histopathological examination of the spinal cord [2]. Therefore, novel diagnostic tools with higher specificity to DM are needed in order to make a faster and more accurate premortem diagnosis.



The pathological changes in the spinal cord in DM are characterized by axonal degeneration [3,6,7], axonal loss [3,6,7], demyelination of the white matter in the spinal cord [7,8], loss of thoracic sensory root axons [9,10], and degenerative changes in the dorsal root ganglion (DRG) neurons [10]. Although these marked histopathological changes occur at every part of the spinal cord [7], conventional magnetic resonance imaging (MRI) techniques do not depict DM lesions [7,11]. Currently, technological advances have led to the development of high-field MRI for clear visualization of the spinal cord and the peripheral nerve tissue. The water-excitation technique has been demonstrated to provide better fat suppression and overall better image quality compared with conventional T1-weighted fat saturation [12]. In humans, magnetic resonance neurography with water-excitation was introduced as a modified method for visualizing the peripheral nervous system [13,14]. In addition, a previous study reported that nerve root volume could be measured using three-dimensional fast field echo water-excitation [15].



The first aim of the current study was to establish the normalization of DRG volume in dogs using the water-excitation technique. The associations between DRG volume or spinal cord cross-sectional area and body weight, body surface area, or vertebral body length were evaluated. The second aim was to investigate the diagnostic ability of the water-excitation technique for DM. Dogs with intervertebral disc herniation (IVDH) were included in this study because IVDH is the most common cause of hindlimb paralysis that needs to be differentiated from DM. We hypothesized that the water-excitation technique provides clear depiction of DRG and the volume of DRG is reduced in DM dogs because of widespread degenerative changes and loss of nerve root axons compared to control dogs and dogs with IVDH.




2. Materials and Methods


2.1. Animals


This study was conducted as a retrospective cross-sectional study. All dogs underwent MRI at the Animal Medical Center of Gifu University between August 2019 and January 2021. All owners signed an informed consent form (approved by the Animal Medical Center of Gifu University and Use Committee, protocol #E20005, #2020-230). First, in order to establish the normalization of DRG volume in dogs, this study included control dogs that had no clinical or imaging evidence of vertebral or spinal cord disorders. Second, this study included dogs with DM, dogs with IVDH, and control dogs in order to compare DRG volume. Control dogs in the first study and the second study were the same population. In the DM group, all dogs were diagnosed with DM according to the following criteria: clinical signs consistent with DM (adult onset, slowly progressive, and non-painful paraparesis progressing to tetraplegia) [2,16], unremarkable findings on spinal cord imaging with conventional MRI sequences (Achieva dStream, Philips, Amsterdam, The Netherlands), and genetic testing confirmed homozygosity for the SOD1 c.118G > A missense mutation (A/A) [17]. All DM-affected dogs had progressive clinical signs for at least a year at the time of manuscript preparation. We also included dogs in the DM group that underwent MRI within 24 h after death, prior to necropsy. The number of dogs that received postmortem MRI is stated in the results section. The owners of the dogs were instructed to store the dogs in a cool condition and place refrigerants over the entire spine in order to minimize postmortem changes until they brought the dogs to us. The disease stage of DM was classified into four clinical stages as previously described [2,7]. The clinical stages were characterized as follows: stage 1, general proprioceptive ataxia and upper motor neuron paraparesis; stage 2, non-ambulatory paraparesis to paraplegia; stage 3, lower motor neuron paraplegia to thoracic limb weakness; and stage 4, lower motor neuron tetraplegia and brainstem signs. All dogs in the IVDH group had thoracolumbar spinal cord compression by herniated intervertebral discs, which were confirmed by MRI with or without subsequent gross confirmation at surgery. Thoracolumbar IVDH cases were graded as previously described [18,19]. The clinical grading of thoracolumbar IVDH was as follows: grade 1, thoracolumbar pain only; grade 2, ambulatory paraparesis; grade 3, non-ambulatory paraparesis; grade 4, paraplegia with positive deep pain sensation; and grade 5, paraplegia with a loss of deep pain sensation. Imaging analyses were performed to rule out the presence of concurrent diseases that may contribute to the neurological status of each dog. Exclusion criteria of this study for the DM or IVDH group were as follows: dogs with an incomplete diagnosis, intracranial disorders, vertebral/spinal cord tumors, and intramedullary or intradural extramedullary lesions that can be detected by conventional MRI.




2.2. MRI Sequences


All MRI sequences were acquired using a 3.0-Tesla MRI system with an 8-channel coil as an RF coil and field of view adapted to the size of the animal (Figure A1). For MRI procedures, general anesthesia was induced with intravenous propofol (PROPOFOL injection, Fuji Pharma Co. Ltd., Toyama, Japan) and maintained with a mixture of isoflurane (Isoflurane, Pfizer Inc., New York, NY, USA) in oxygen and room air. In the control group, the protocol consisted of a sagittal and transverse T1-weighted sequence (repetition time (TR)/echo time (TE) 570/13.8 ms; slice thickness 1.5 mm) and T2-weighted sequence (TR/TE 3113/90 ms; slice thickness 1.5 mm). In the DM and IVDH groups, the protocol consisted of a sagittal and transverse T1-weighted sequence (TR/TE 570/13.8 ms; slice thickness 1.5 mm), T2-weighted sequence (TR/TE 3113/90 ms; slice thickness 1.5 mm), and contrast enhanced T1-weighted sequence after intravenous injection of 0.1 mmol/kg of gadodiamide hydrate (OMNISCAN, Daiichi-Sankyo, Tokyo, Japan). Water-excitation imaging parameters were as follows: water-excitation time: 13 msec, repetition time: 10.12–10.24 msec, invention time: 150–170 msec, slice thickness of transverse image: 0.375–0.500 mm, slice thickness of coronal and sagittal images: 1.1–1.2 mm, and sequence flip angle: 30°.




2.3. Image Analysis


Image data were analyzed using OsiriX MD version 4.1.2 (OsiriX Pixmeo, Geneva, Switzerland). All images included in the present study were anonymized by H.K. and measurements were performed by E.N. E.N. is a practicing veterinarian who received training in veterinary radiology and neurology for seven years. Using water-excitation images, a stack of sequential image slices that cross-sectioned the DRG were selected for quantification. Water-excitation images included the thoracolumbar spinal cord between the T8 and L2 intervertebral disc levels. Volumetry of DRG was performed as previously described with minor modifications (Figure 1) [20]. Water-excitation images were a continuous image of the nerve roots from the intervertebral foramen to the entry of the spinal cord, including the full volume of the DRG on both sides. The transverse images of the DRG were manually segmented by tracing the borders using software that calculated the cross-sectional area of the DRG based on the number of pixels contained within the traced contour. To overcome the inadequate definition between the DRG and spinal cord profiles at the point where the nerve root began to enter the spinal cord, the boundary between the spinal cord and the DRG was defined by tracing the contour of the spinal cord. DRG volume was calculated by summing the cross-sectional areas (ai) of each DRG image, multiplying it by the slice thickness (0.375–0.5 mm) (ti), and expressing it in the following formula, according to Cavalieri’s principle:


DRG volume = ∑aiti











Each segment of DRG volume was averaged on the left and right sides. The DRG volume was measured in duplicate and the average value was adopted. To normalize the volumes of DRG, the ratios of body weight, body surface area, and L2 vertebral body length to DRG volume were calculated. Vertebral body length was measured on a sagittal water-excitation image. The cross-sectional area of the spinal cord was measured on a transverse water-excitation image at the center of each vertebral body. To evaluate the diagnostic utility of the DRG volume for DM, normalized DRG were compared with a normalized cross-sectional area of the spinal cord.




2.4. Statistical Analyses


Statistical analyses were performed using Easy R software [21]. In the control group, the correlation coefficient (rs) was calculated by evaluating the correlation between the DRG volumes from T8 through L2 and body weight, body surface area, and vertebral body length from T8 through L2 by Spearman’s rank correlation coefficient. The normalized DRG volumes were compared among the DM, IVDH, and control groups using the Kruskal–Wallis test. Post-hoc comparisons employed the Mann–Whitney U-test with Bonferroni correction. Bilateral differences of DRG volumes were calculated from the absolute value of the left-right DRG ratio. In all analyses, a P value of < 0.05 was considered significant.





3. Results


3.1. Sample Population


The characteristics of all dogs are shown in Table 1. The control group consisted of laboratory animals at Gifu University (n = 4) and client-owned dogs (n = 4). The client-owned dogs in the control group had transient limb ataxia but no structural lesions in the central nervous system (n = 2), intracranial neoplasia (n = 1), or idiopathic epilepsy (n = 1). Laboratory dogs in the control group had no structural lesions in the central nervous system (n = 3) or idiopathic epilepsy (n = 1). Breeds in the control group included Beagle (n = 4), Boston terrier (n = 1), mixed-breed (n = 1), French bulldog (n = 1), and PWC (n = 1). Five dogs were spayed females and three dogs were castrated males. The median body weight, median body surface area, L2 vertebral body length, and median age of the dogs in control group were 11.4 kg (range, 6.6–14.0 kg), 0.49 m2 (range, 0.33–0.58 m2), 16.9 mm (range, 13.4–18.8 mm), and 6.0 years (range, 2.8–10.0 years), respectively. We included eight DM-affected Pembroke Welsh Corgis in the DM group. The clinical stages of DM were as follows: stage 1 (n = 4) and stage 4 (n = 4). Four PWCs, which were categorized as stage 4, underwent MRI within 24 h of death (Dog #9, 10, 11, and 12). These dogs were diagnosed with DM based on histopathological examination of the spinal cord. The other four PWCs were diagnosed with DM according to the inclusion criteria. Median body weight, median body surface area, L2 vertebral body length, and median age of the dogs in DM group were 12.3 kg (range, 10.1–16.8 kg), 0.52 m2 (range, 0.46–0.63 m2), 17.2 mm (range, 16.3–18.0 mm), and 13.2 years (range, 10.8–15.9 years), respectively. There were two spayed females, one intact female, and five castrated males. In the IVDH group, we included 24 dogs diagnosed with thoracolumbar IVDH. The neurological grades were as follows: grade 1 (n = 2), grade 2 (n = 5), grade 3 (n = 4), grade 4 (n = 8), and grade 5 (n = 5). The locations of IVDHs were T12-T13 (n = 12), T13-L1 (n = 9), L1-L2 (n = 6), T11-T12 (n = 4), L2-L3 (n = 4), L4-L5 (n = 2), and T9-T10, T10-T11, L3-L4, L5-L6, and L6-L7 (n = 1). The number of disc herniations in each dog was one (n = 15), two (n = 4), three (n = 1), four (n = 3), and five (n = 1). Surgical treatment was performed in 15 dogs, and non-surgical treatment was selected in nine dogs. The median body weight, median body surface area, median L2 vertebral body length, and median age of the dogs in the IVDH group were 6.7 kg (range, 3.0–14.1 kg), 0.33 m2 (range, 0.20–0.58 m2), 14.4 mm (range, 10.0–16.9 mm), and 11.7 years (range, 2.6–15.7 years), respectively. There were three intact females, six spayed females, nine intact males, and six castrated males. Breeds in the IVDH group included: Miniature dachshund (n = 11), Toy poodle (n = 4), French Bulldog (n = 2), Pug (n = 2), Border Collie (n = 1), Chihuahua (n = 1), mixed-breed (n = 1), Miniature Schnauzer (n = 1), and Pekingese (n = 1). The control dogs were significantly younger than the dogs with DM (P = 0.009) and IVDH (P = 0.012). There was no significant difference in age between the DM and IVDH groups. The dogs with IVDH had significantly lower body weight, body surface area, and L2 vertebral body length than the control dogs (P = 0.003, 0.005, 0.009, respectively) and dogs with DM (P < 0.001). There were no significant differences in body weight, body surface area, or L2 vertebral body length between the control and DM groups.




3.2. Normalization of the DRG Volumes in Control Dogs


There were no significant differences in DRG volume among spinal cord segments. Therefore, we used the mean DRG volume of all spinal cord segments between T8 and L2 in the correlation analyses. The strongest correlation was found between body surface area and mean DRG volume (rs = 0.792, P = 0.024) (Table A1). Body weight was found to have a moderate correlation with DRG volume (rs = 0.691, P = 0.037), but L2 vertebral body length did not have a significant correlation with DRG volume (rs = 0.612, P = 0.176). Therefore, comparisons of DRG volume among the three groups were carried out using body surface area as a denominator for normalization. There were no correlations between the mean cross-sectional spinal cord area of the spinal cord segment and body weight (rs = −0.048, P = 0.911), body surface area (rs = 0.124, P = 0.812), and L2 vertebral body length (rs = 0.571, P = 0.151).




3.3. Normalized DRG Volumes between the DM, IVDH, and Control Groups


At each spinal cord segment, normalized DRG volumes were significantly lower in the DM group than in the control group at T9 (P = 0.038), T10 (P = 0.042), and L2 (P = 0.045) (Figure 2 and Table 2). Normalized DRG volumes were also significantly lower in the DM group than the IVDH group at T8 (P = 0.009), T9 (P = 0.003), T10 (P = 0.003), T11 (P = 0.010), T12 (P = 0.035) T13 (P = 0.031), L1 (P = 0.041), and L2 (P = 0.007) (Figure 2 and Table 2). The normalized mean DRG volume of all spinal cord segments between T8 and L2 was significantly lower in the DM group than in the control group and the IVDH group (P = 0.011, P = 0.002, respectively; Figure 3 and Table 2).




3.4. DRG Volumes in DM Dogs with Different Stages


There was no correlation in the mean normalized DRG volume between DM stage 1 and stage 4 (rs = 0.312, P = 0.128). At each segment, there was also no significant difference in the mean normalized DRG volume between DM stage 1 and stage 4.




3.5. Laterality of DRG Size Change


The bilateral difference of mean DRG volume of all spinal cord segments between T8 and L2 was 9.8% (standard deviation [SD] 6.0) in the control group, 15.3% (SD 8.2) in the DM group, and 19.8% (SD 13.2) in the IVDH group, and no significant difference was observed among the three groups (Table A2). In the IVDH group, the bilateral difference of DRG volumes at the lesion (25.3%; SD 14.7) was higher than that at the non-lesion site (15.9%; SD 9.5).




3.6. Spinal Cord Cross-Sectional Area


There were no significant differences in mean cross-sectional area of the spinal cord among the three groups. At each spinal cord segment, there was also no significant difference in the cross-sectional area of the spinal cord among the three groups.





4. Discussion


The present study demonstrated that the water-excitation images depicted DRG and the nerve roots of dogs. The water-excitation sequence is a fat suppression sequence, which is a selective excitation technique to suppress signals from fat tissues by exploiting the difference between water and fat resonance frequencies. This sequence visualizes DRG clearly due to its high spatial resolution and high signal-to-noise ratio [22]. Slice thickness is thinner with water-excitation than with short tau inversion recovery, and reduced slice thickness improves spatial resolution and better visualization of anatomical details [23]. The water-excitation technique produces thinner slice images and provides a clearer depiction of the DRG and nerve roots [24]. As DRG in dogs is not visualized by conventional MRI sequences, water-excitation MRI has potential to be used as a non-invasive diagnostic test for diseases affecting DRG.



The ratio of DRG volume to body surface area showed a strong positive correlation, which can be used to normalize DRG volume across dogs with different sizes. In a previous study of chronic inflammatory demyelinating polyneuropathy (CIDP) in humans, DRG normalized by body surface area was useful for the diagnosis and assessment of the severity of CIDP [15]. We found that the normalized DRG volume was significantly reduced in the DM group compared with the control and the IVDH group. This suggests that the DRG volume obtained by the water-excitation technique could be used as a clinical biomarker for DM.



In an early study, Wallerian degeneration of the dorsal nerve roots and central chromatolysis of the DRG neurons was reported in dogs with DM [9]. More recently, a decreased number of axons in the T8 dorsal nerve root and degenerative changes of DRG neurons in DM-affected dogs have been reported [10]. In mouse models of amyotrophic lateral sclerosis and diabetic neuropathy, axonal degeneration caused impaired axonal transport of proteins and metabolites, resulting in neuronal cell death [25,26]. Therefore, it is considered that nerve cell death due to axonal degeneration occurs in the DRG of DM-affected dogs, leading to decreased DRG volume. Although the histopathological findings of T9-L2 DRG in DM-affected dogs remain unknown, development of concurrent degeneration of DRG neurons in other regions is more likely, given the widespread axonal loss and demyelination in the white matter not only in the caudal thoracic spinal cord but also in the cervical and lumbar spinal cords in DM dogs [3,6,7]. In particular, since degenerative lesions are located in the dorsal and lateral funiculus of the spinal cord through which the axons of DRG neurons pass, widespread atrophy of DRG is likely to occur in DM.



There was no significant difference in DRG volume between the early and late disease stages in this study. This finding was in contrast with the observation that the C7 dorsal roots of dogs with DM gradually decreased in number with disease progression [27]. A previous study showed that hyporeflexia of the patellar reflex was described in dogs with DM at early disease stage, which was accounted for by the degenerative change of dorsal nerve root and central chromatolysis of DRG neurons [9]. Therefore, DRG volumes may decrease even at the early disease stage. This finding favors an early diagnosis of DM with this non-invasive MRI technique. On the other hand, a decrease in DRG volume may not correlate with lesion load of the spinal cord and therefore may not be suitable for longitudinal monitoring of pathological progression.



The initial clinical signs of DM share similarities with other progressive spinal cord disorders. IVDH is the most common spinal cord disorder in dogs that are also predisposed to DM; therefore, we included dogs with IVDH as a “disease control” in this study. Our study revealed that DRG volume measurement using water-excitation MRI was capable of distinguishing DM from IVDH. Normalized DRG volumes in all spinal cord segments and mean DRG volume were significantly lower in the DM group than in the IVDH group. The reduction of DRG volumes in DM occurred in multiple spinal segments that parallel the diffuse degeneration of the spinal cord, whereas the DRG volume changes were focal in the IVDH group, decreasing in the proximity of the lesion site. In human and rodent studies, ipsilateral DRG at the site of spinal cord injury was atrophied due to demyelination and Wallerian degeneration of the axons of DRG, resulting in dying back degeneration and death of sensory neurons [20,28]. The duration and severity of the disease also had an impact on DRG size as atrophied DRG recovered its size over time after injury [29,30,31]. The wide range of DRG sizes in the IVDH group may be attributed to disease duration, location, and severity of injury in this study.



Several limitations of the present study should be considered. Measurements of DRG were performed and analyzed by a single observer. Although measurements were performed in duplicate, further study is needed to evaluate intra- and inter-observer errors. The sample size was small, especially the number of dogs in the control and the DM groups. In the DM group, MRI data for four dogs were obtained postmortem in order to compare the difference of DRG volumes between the early stage and late stage. This comparison was only possible by using postmortem MRI as dogs with DM in the late stage suffers from respiratory disfunction that hinders diagnostics requiring general anesthesia. Postmortem MRI was performed within 24 h of death in an attempt to minimize any postmortem changes; however, postmortem changes in DRG must be investigated in terms of their effects on histopathological changes and MRI data. In the central nervous system, the previous study showed that comparing premortem and postmortem MRIs for cerebral microbleeds yielded comparable imaging performance [32]. We stored these dogs in a cool condition immediately after death in order to minimize potential postmortem changes. We considered that the obtained MRI data were as close to the premortem state as possible. The other four dogs were tentatively diagnosed with DM without histopathological confirmation. These four dogs were still alive at the time of manuscript preparation; therefore, this study could not compare the histopathological findings of DM with MRI. All dogs in the DM group were PWCs in the present study. In Japan, DM is most common in Corgis, and the number of other breeds that are prone to develop DM is small. The fact that dogs in the DM group only included a single breed was one of the limitations of this study. Dogs in the control group were significantly younger than those of the other two groups. Although a previous study reported no difference in the volume of DRG with age in humans [33], the relationship between DRG volume and age in dogs warrants further investigation.




5. Conclusions


Water-excitation was a useful technique for DRG volumetric analysis in dogs with DM. Volumetry of normalized DRG by the water-excitation technique provided a non-invasive and quantitative assessment of neurodegeneration in DRG and may have diagnostic potential for DM.
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Figure A1. Depiction of dorsal root ganglion (DRG) near L1 vertebral level using conventional magnetic resonance imaging (MRI) and water-excitation MRI (Dog#12). Transverse T1-weighted image (A), T2-weighted image (B), and fluid-attenuated inversion recovery image (C) could not depict DRG. On the other hand, water-excitation image (D) could depict DRG clearly (white arrows). 






Figure A1. Depiction of dorsal root ganglion (DRG) near L1 vertebral level using conventional magnetic resonance imaging (MRI) and water-excitation MRI (Dog#12). Transverse T1-weighted image (A), T2-weighted image (B), and fluid-attenuated inversion recovery image (C) could not depict DRG. On the other hand, water-excitation image (D) could depict DRG clearly (white arrows).
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Table A1. Correlation between DRG volume or cross-sectional area of the spinal cord and body weight, body surface area, or L2 vertebral body length in control dogs.






Table A1. Correlation between DRG volume or cross-sectional area of the spinal cord and body weight, body surface area, or L2 vertebral body length in control dogs.





	

	
Location

	
Volume (mm3) or Area (mm2)

	
Correlation with




	
Body Weight

	
Body Surface Area

	
L2 Vertebral Body Length




	
Median

	
Range

	
r

	
P

	
r

	
P

	
r

	
P






	
DRG 1 volume

	
T8

	
15.311

	
13.837–17.299

	
0.681

	
0.060

	
0.718

	
0.052

	
0.312

	
0.218




	
T9

	
15.429

	
13.439–17.674

	
0.761

	
* 0.037

	
0.813

	
* 0.014

	
0.602

	
0.083




	
T10

	
15.864

	
14.542–17.431

	
0.675

	
0.078

	
0.738

	
* 0.038

	
0.418

	
0.332




	
T11

	
16.462

	
15.366–19.625

	
0.628

	
0.068

	
0.767

	
* 0.046

	
0.298

	
0.524




	
T12

	
16.852

	
14.670–18.813

	
0.612

	
0.221

	
0.578

	
0.197

	
0.332

	
0.982




	
T13

	
16.632

	
14.113–21.612

	
0.789

	
* 0.021

	
0.774

	
* 0.028

	
0.571

	
0.151




	
L1

	
16.686

	
13.491–22.393

	
0.712

	
0.064

	
0.783

	
* 0.034

	
0.667

	
0.078




	
L2

	
16.963

	
13.213–21.343

	
0.467

	
0.243

	
0.612

	
0.083

	
0.588

	
0.167




	
T8–L2

	
16.263

	
14.589–18.635

	
0.691

	
* 0.037

	
0.792

	
* 0.024

	
0.612

	
0.176




	
Cross-sectional area of the spinal cord

	
T8

	
29.404

	
20.765–35.736

	
−0.132

	
0.756

	
−0.048

	
0.935

	
0.214

	
0.619




	
T9

	
27.018

	
22.532–40.977

	
0.035

	
0.933

	
0.119

	
0.793

	
0.548

	
0.171




	
T10

	
29.088

	
19.169–41.861

	
−0.216

	
0.608

	
−0.143

	
0.752

	
0.238

	
0.582




	
T11

	
30.307

	
19.738–43.676

	
−0.048

	
0.910

	
0.024

	
0.977

	
0.333

	
0.428




	
T12

	
32.417

	
18.396–38.441

	
0.263

	
0.528

	
0.333

	
0.428

	
0.571

	
0.151




	
T13

	
32.365

	
21.924–39.569

	
−0.228

	
0.588

	
−0.167

	
0.703

	
0.095

	
0.840




	
L1

	
31.393

	
23.916–43.970

	
0.467

	
0.243

	
0.524

	
0.197

	
0.667

	
0.083




	
L2

	
31.413

	
19.162–45.487

	
−0.263

	
0.528

	
−0.124

	
0.619

	
−0.095

	
0.840




	
T8–L2

	
31.656

	
21.025–41.215

	
−0.048

	
0.911

	
0.124

	
0.812

	
0.571

	
0.151








1 Abbreviation: DRG, dorsal root ganglion. * P < 0.05.
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Table A2. Bilateral difference of DRG volumes 1.
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Control

	
DM

	
IVDH (Whole Site)

	
IVDH (Leison Site)

	
IVDH (No-Leison Site)




	
Mean (%)

	
SD

	
Mean (%)

	
SD

	
Mean (%)

	
SD

	
Mean (%)

	
SD

	
Mean (%)

	
SD






	
Normalized mean DRG

	
9.8

	
6.0

	
15.3

	
8.2

	
19.8

	
13.2

	
25.3

	
14.7

	
15.9

	
9.5








1 Abbreviations: DRG, dorsal root ganglion; DM, degenerative myelopathy; IVDH, intervertebral disc herniation; SD, standard deviation.
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Figure 1. Sequential image slices of dorsal root ganglion (DRG) in control dog (Dog#8). Nerve roots emerge from the spinal cord (A), form a DRG that passes caudally (B), and enter the intervertebral foramen (C). All DRG were manually segmented by tracing the border (white lines) and the cross-sectional area of the DRG was calculated from the number of pixels contained within the traced contour (D–F). 
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Figure 2. Dorsal root ganglion (DRG) and nerve root from a coronal and transverse magnetic resonance imaging data set. Volumes of DRG were measured from the images acquired by water-excitation sequence. Coronal images (A–C) showed the caudal thoracic spinal cord and nerve roots, and transverse images (D–F) showed T10 DRG. The volume of DRG was normal for a control dog (Dog #8) (A,D), and atrophied in a dog with degenerative myelopathy (Dog #12) (B,E). Volumetric atrophy of DRG (white arrow) was observed at the herniation site in a dog with inter vertebral disc herniation (Dog #38) (C,F). 
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Figure 3. Comparison of the normalized mean dorsal root ganglion (DRG) volume among control, degenerative myelopathy (DM), and intervertebral disc herniation (IVDH) groups. The normalized mean DRG volume in DM group was lower than those in control and IVDH groups (P = 0.011 and 0.002, respectively). Horizontal bars indicate medians within groups. 
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Table 1. Characteristics of clinical samples 1.
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	Dog Number
	Group
	Breed
	Age (year)
	Body Weight (kg)
	Body Surface Area (m2)
	L2 Vertebral Body Length (mm)
	Gender
	Clinical Duration





	1
	Control
	Beagle
	5.0
	16.8
	0.63
	18.8
	CM
	-



	2
	Control
	Beagle
	5.0
	13.5
	0.55
	17.5
	SF
	-



	3
	Control
	Beagle
	5.1
	14.0
	0.58
	16.8
	CM
	-



	4
	Control
	Beagle
	5.5
	12.3
	0.52
	17.3
	SF
	-



	5
	Control
	Cross-bred
	2.8
	10.6
	0.46
	14.9
	CM
	-



	6
	Control
	FB
	8.0
	11.4
	0.49
	12.3
	SF
	-



	7
	Control
	BT
	6.6
	6.6
	0.33
	10.0
	SF
	-



	8
	Control
	PWC
	10.7
	10.7
	0.46
	17.0
	SF
	-



	9
	DM-confirmed
	PWC
	13.0
	13.1
	0.54
	16.9
	CM
	3 years



	10
	DM-confirmed
	PWC
	15.2
	10.2
	0.46
	17.0
	CM
	3.5 years



	11
	DM-confirmed
	PWC
	14.1
	12.3
	0.52
	17.5
	CM
	3 years



	12
	DM-confirmed
	PWC
	15.9
	14.6
	0.59
	18.0
	IF
	3.3 years



	13
	DM-suspected
	PWC
	14.1
	11.8
	0.49
	17.6
	CM
	2 months



	14
	DM-suspected
	PWC
	12.7
	13.6
	0.55
	17.5
	CM
	3 months



	15
	DM-suspected
	PWC
	11.0
	12.3
	0.52
	16.3
	SF
	7 months



	16
	DM-suspected
	PWC
	10.8
	16.8
	0.63
	16.9
	SF
	3 months



	17
	IVDH
	Pag
	11.7
	6.1
	0.33
	12.2
	CM
	3 months



	18
	IVDH
	MD
	5.6
	3.0
	0.20
	14.0
	SF
	1.5 months



	19
	IVDH
	MD
	9.8
	4.6
	0.25
	15.4
	IM
	1 month



	20
	IVDH
	TP
	5.0
	6.7
	0.33
	14.8
	IM
	11 days



	21
	IVDH
	TP
	15.7
	3.1
	0.20
	11.8
	IM
	5 months



	22
	IVDH
	MS
	12.6
	9.6
	0.43
	14.8
	IM
	2 months



	23
	IVDH
	MD
	15.4
	7.2
	0.36
	15.4
	SF
	6 days



	24
	IVDH
	MD
	7.0
	9.7
	0.43
	16.4
	IM
	4 days



	25
	IVDH
	MD
	3.6
	5.2
	0.29
	12.8
	SF
	3 days



	26
	IVDH
	Cross-bred
	11.7
	3.4
	0.20
	10.0
	CM
	5 days



	27
	IVDH
	MD
	13.4
	6.5
	0.33
	15.5
	CM
	11 days



	28
	IVDH
	FB
	9.8
	11.6
	0.49
	16.5
	IF
	2 months



	29
	IVDH
	TP
	12.3
	3.4
	0.20
	14.6
	IM
	1 month



	30
	IVDH
	MD
	5.0
	3.4
	0.20
	12.5
	IF
	7 days



	31
	IVDH
	TP
	5.9
	4.2
	0.25
	13.5
	IM
	15 days



	32
	IVDH
	MD
	4.8
	4.5
	0.25
	12.9
	IF
	2 days



	33
	IVDH
	FB
	7.2
	12.8
	0.52
	16.6
	CM
	1 month



	34
	IVDH
	Pag
	9.7
	7.7
	0.36
	12.7
	SF
	1 year



	35
	IVDH
	MD
	10.1
	7.1
	0.36
	16.0
	CM
	21 days



	36
	IVDH
	Chihuahua
	6.1
	5.1
	0.29
	14.9
	IM
	7 days



	37
	IVDH
	MD
	10.4
	9.5
	0.43
	16.7
	CM
	2 days



	38
	IVDH
	Pekingese
	2.6
	5.5
	0.29
	11.3
	IM
	9 days



	39
	IVDH
	MD
	10.9
	5.8
	0.29
	16.8
	SF
	1 month



	40
	IVDH
	BC
	14.1
	14.1
	0.58
	16.9
	SF
	1 year







1 Abbreviations: DM, Degenerative myelopathy; IVDH, intervertebral disc herniation; FB, French bulldog; BT, Boston terrier; PWC, Pembroke Welsh Corgi; MD, Miniature Dachshund; TP, Toy Poodle; MS, Miniature Schnauzer; BC, Border Collie CM, Castrated male; IM, Intact male; SF, Spayed female; IF, Intact female.
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Table 2. Normalized DRG volumes among control, DM, and IVDH groups.
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Location

	
Control

	
DM

	
IVDH

	
P Value




	
Median

	
Range

	
Median

	
Range

	
Median

	
Range

	
3 Groups

	
Control vs. DM

	
Control vs. IVDH

	
DM vs. IVDH






	
Normalized DRG Volume (mm3/mm2)

	
T8

	
31.841

	
23.744–51.879

	
19.079

	
15.891–35.434

	
42.604

	
20.225–72.484

	
* 0.012

	
0.155

	
1

	
* 0.009




	
T9

	
28.783

	
23.116–51.924

	
20.658

	
15.042–28.717

	
41.008

	
21.178–79.567

	
* 0.004

	
* 0.038

	
0.510

	
* 0.003




	
T10

	
30.808

	
25.073–50.155

	
20.943

	
15.008–26.586

	
38.804

	
21.391–81.383

	
* 0.003

	
* 0.042

	
0.858

	
* 0.003




	
T11

	
31.608

	
24.592–50.220

	
21.191

	
13.516–29.705

	
38.841

	
21.257–78.559

	
* 0.011

	
0.071

	
1

	
* 0.010




	
T12

	
33.454

	
23.287–53.799

	
19.653

	
15.170–31.544

	
37.888

	
14.213–86.772

	
* 0.028

	
0.071

	
1

	
* 0.035




	
T13

	
31.539

	
24.292–49.628

	
19.297

	
14.676–26.998

	
40.683

	
12.657–84.264

	
* 0.028

	
0.093

	
1

	
* 0.031




	
L1

	
30.557

	
25.384–46.635

	
20.339

	
15.889–37.391

	
35.964

	
19.987–87.816

	
* 0.032

	
0.155

	
1

	
* 0.041




	
L2

	
33.220

	
24.800–45.706

	
20.205

	
16.681–34.739

	
41.609

	
22.413–72.602

	
* 0.008

	
* 0.045

	
1

	
* 0.007




	
T8-L2

	
31.727

	
24.384–49.993

	
20.373

	
15.763–29.882

	
39.360

	
19.436–79.480

	
* 0.002

	
* 0.011

	
0.510

	
* 0.002








Abbreviations: DRG, dorsal root ganglion; DM degenerative myelopathy; IVDH, intervertebral disc herniation. * P < 0.05.
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