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Simple Summary: Monitoring animal activity in production systems is an important tool for ob-
taining information on health, production, and reproduction. In this study, we evaluated the use of
accelerometers with different strategies to predict the grazing behavior of Nelore cattle. This research
was conducted in an environment both more challenging and representative of the practices adopted
in livestock production systems in Brazil. The results of this study showed that the use of the Random
Forest algorithm, together with techniques for resampling the training data of the models, classified
the studied behaviors with high accuracy, especially for important, and less frequent activities such
as water consumption frequency.

Abstract: Knowledge of animal behavior can be indicative of the well-being, health, productivity,
and reproduction of animals. The use of accelerometers to classify and predict animal behavior can
be a tool for continuous animal monitoring. Therefore, the aim of this study was to provide strategies
for predicting more and less frequent beef cattle grazing behaviors. The behavior activities observed
were grazing, ruminating, idle, water consumption frequency (WCF), feeding (supplementation) and
walking. Three Machine Learning algorithms: Random Forest (RF), Support Vector Machine (SVM)
and Naïve Bayes Classifier (NBC) and two resample methods: under and over-sampling, were tested.
Overall accuracy was higher for RF models trained with the over-sampled dataset. The greatest
sensitivity (0.808) for the less frequent behavior (WCF) was observed in the RF algorithm trained
with the under-sampled data. The SVM models only performed efficiently when classifying the most
frequent behavior (idle). The greatest predictor in the NBC algorithm was for ruminating behavior,
with the over-sampled training dataset. The results showed that the behaviors of the studied animals
were classified with high accuracy and specificity when the RF algorithm trained with the resampling
methods was used. Resampling training datasets is a strategy to be considered, especially when less
frequent behaviors are of interest.

Keywords: machine learning; Naïve Bayes Classifier; Nelore; Random Forest; Support Vector Machine

1. Introduction

Monitoring and accessing animal behavior are important tasks in ensuring the success
of an animal production system. The animal’s behavior monitored individually and
continuously can serve as an indication of its welfare and health [1]. Rumination and
feeding behaviors of dairy cattle can indicate productivity measures [2]. How much
time animals spend lying down can help estrus detection in cows [3]. By observing how
animals walk or how much time they spend lying down can also help to detect and
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prevent lameness [4]. However, monitoring animal behavior is often carried out by human
observation or video monitoring, which makes it difficult to obtain data, due to the demand
for human resources [5], as well as the fact that sometimes access to the animals is not
easy [6]. Therefore, using accelerometers that automatically measure the animal’s activity
has the potential to obtain this information, especially in extensive systems, where access
to the animals is more difficult.

There are few studies on systems that help to classify less frequent behaviors such
as drinking [7], although these behaviors are indicative of animal health and growth [8].
Drinking behavior has been reported in studies with a controlled environment [9] and
in general the authors suggested further studies and adaptations for better drinking be-
havior predictions [10]. Additionally, the majority of results reported for animal behavior
prediction using accelerometer information is with a taurine genetic composition [11–14],
which can be different from a zebu genetic composition, due to the differences in tempera-
ment [15].

Less frequent behavior classes can lead to a bottleneck in the classification algorithms’
performance [16]. These less frequent types of behavior increase detection difficulty due to
the infrequency and casualness, which results in misclassification of these classes [17]. They
can lead to imbalanced data, which refers to a dataset with one or some of the classes having
a greater number of observations than the others. The most prevalent class is called the
majority class, while the class with less frequent observation is called the minority class [18].
To deal with imbalanced datasets, some resampling techniques are used to rebalance the
number of observations in order to facilitate the effect of skewed class distribution in the
learning process of a prediction algorithm. These resampling methods are more versatile
as they are independent of the classification algorithm [19].

Therefore, the aim of this study was to provide strategies for predicting more and less
frequent bovine behaviors, using over and under-sampling training data and comparing
three distinct Machine Learning classification algorithms, using information from triaxial
accelerometers on pasture raised animals.

2. Materials and Methods

All the procedures used followed the Ethical Principles for Animal Experimentation
stated by the National Council for Animal Experiment Control and were approved by the
Ethics Committee for Use of Animals (CEUA) of Universidade Estadual Paulista (Unesp),
under protocol #001081/2019.

2.1. Experimental Area and Animals

The experiment was carried out in the Forage Crops and Grasslands section of Univer-
sidade Estadual Paulista (Unesp), Jaboticabal, São Paulo, Brazil. The total area was divided
into 24 paddocks, seeded with Trochlea brizantha (Hochs tex A. Rich) Stapf cv. Marandu
(Marandu grass) in 2001. The grazing mean height was 25 cm, using the continuous grazing
method with a variable stocking rate. The region’s climate was humid subtropical, with
dry winters and rainy summers. The average annual temperature was 22.3 ◦C, with a
maximum average of 29.1 ◦C and a minimum average of 16.9 ◦C. The annual average
relative humidity was 71.2% and the wettest quarter of the year was the first one (January,
February, and March), with an average rainfall of 628.8 mm, equivalent to 44.2% of the total
annual rainfall. In this experiment, eight Nelore (Bos indicus) animals (343 ± 27 kg), were
finished in pastures and were provided a high level of supplementation. The quantity of
dietary supplementation provided daily, to reach the animals’ requirements corresponded
to 2% of the animals’ body weight, During the dry season. ambient average temperature,
maximum average temperature, and minimum average temperature were 26.1 ◦C, 34.0 ◦C
and 18.5 ◦C, respectively, and the rainfall was 156.8 mm, distributed over 12 days.

The animals were previously adapted to using tags coupled to custom halters. The
tags attached to the halters were kept on the animals (Supplementary Figure S1) for 28 days,
which corresponded to the periods of adaptation (25 days) and behavioral observation
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of the animals. The accelerometers were adjusted on the halter so that it was possible to
obtain the information accurately but without causing physical harm to the animals. The
animals were observed daily during supplementation and, after the end of the experiment,
were evaluated in the corral.

2.2. Accelerometers and Animal Behavior

The tags used in this experiment were provided by the Ovi-Bovi® company (Minsk, Be-
larus) and consist of triaxial accelerometers using a microelectromechanical system (MEMS)
(model LIS2DE12; ST Microelectronics® (Plan-les-Ouates, Switzerland)), weighing 80 g,
with dimensions of 105 mm × 60 mm × 22 mm, and attached to a custom halter and placed
on the underjaw of young bulls to detect their movements (Figure S1). The accelerome-
ters provide movement information along three axes: (X [horizontal movements—side
to side], Y [longitudinal movements—front to back] and Z [vertical movements—up and
down]). The information from the accelerometers was transmitted in 6 s window size
(approximately 0.167 Hz) time intervals and collected through a wireless system (band of
433 MHz) and later stored in the cloud (Ovi-Bovi® company (Minsk, Belarus) server). The
window size was determined following the manufacturer’s recommendations and based
on previous results, taking into account the biology of the behaviors studied, battery life
and data loss due to their collision at the time of transmission.

The behavioral observations of the animals were carried out during a 12 h per day
period (6 a.m. to 6 p.m.) for two consecutive days (24 September 2019 and 1 October 2019).
The animal’s behavior was noted whenever the animal changed its behavior, registering
the time when it occurred. The behavior activities observed were grazing, ruminating
(noted whenever rumination was observed, whether standing or lying down), idle (lying or
standing), water consumption frequency (WCF), feeding (supplementation) and walking.
A description of each behavior is provided in Supplementary Table S1. When the animal
changed behavior, the time was noted according to each activity by the animal.

2.3. Data Processing and Prediction Algorithms

All accelerometer data was processed using the R base package (version 4.0.0, RStu-
dio, Boston, MA, USA) [20]. The raw data from the accelerometers was accessed by the
Ovi-Bovi® (Minsk, Belarus) tag provider server. This data consisted of tag identification,
information of time and date and the variables of the movement axes, x, y and z (trans-
formed into gravity unit g = 9.18 m s−2), which totalized 101,144 records for each variable.
In addition to the variables provided by the accelerometers, the predictor variables of
signal magnitude area (SMA), signal vector magnitude (SVM), movement variation, energy,
entropy, pitch, roll, and inclination were calculated based on information from the three
movement axes, according to Alvarenga et al. [21]. The equations for the calculations of
these variables are presented in Supplementary Table S2. Additionally, the meteorological
variables provided by the agroclimatological station of Universidade Estadual Paulista
(Unesp), Jaboticabal, São Paulo, Brazil were considered as predictors in the models. The
weather station was located 800 m away from the experimental site. The variables were air
temperature, relative humidity, wind speed, wind direction, solar radiation, and maximum
wind gust, provided in 10 min daily time intervals.

The prediction of animal behaviors through accelerometer information was evaluated
using Random Forest (RF) [22], Support Vector Machine (SVM) [23] and Naïve Bayes
Classifier (NBC) [24] algorithms. The first algorithm, RF, was performed by the random-
Forest R package [25] considering 500 trees (ntree), five variables randomly sampled as
candidates at each split (mtry) with the predictors’ importance being taken into account
(importance). The second and third algorithms were performed by the e1071 R package [26].
The SVM models were performed using a classification method type, a radial kernel type
with a 0.1 g value and a cost of constraints violation of 10. The NBC models were built
with default function arguments. All the algorithms considered the raw accelerometer
data, transformed into gravity units, calculated variables as mentioned and meteorological
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variables as predictors and the animals’ behaviors, as a response variable. Window size
considered for predictions was 6 s with no overlapping window stride.

The dataset was divided into training (70% of the original dataset), wherein the
predictor variables and all the observed animal behavior were considered, and test (30%
of the original dataset) datasets, wherein only the predictor variables were included. The
accelerometer data were compared on a 6 s basis with the observation data. Each algorithm
was trained to classify the six behaviors considered. As the observations data were carried
out by noting the time that the animal changed its behavior and the window size of each
event recorded by the accelerometer was 6 s, the observation data was replicated until the
behavior change to compare with the accelerometer data. To compare the prediction ability
of each model, the sensitivity (1), specificity (2), accuracy (3), and Kappa coefficient [27],
which compares the observed accuracy with the expected accuracy (random chance), were
calculated for the test dataset using the confusionMatrix function of caret R package [28].

sensitivity =
true positive

(true positive + false negative)
(1)

specificity =
true negative

(true negative + false positive)
(2)

accuracy =
(true positive + true negative)

(true positive + true negative + false positive + false negative)
(3)

where true positive was the number of instances in which the animal behavior of interest
was correctly classified after testing; false negative was the number of instances in which
the animal behavior of interest was observed visually but was classified incorrectly as some
other animal behavior; false positive was the number of instances in which the animal
behavior of interest was incorrectly classified but not observed; and true negative was the
number of instances in which the animal behavior of interest was correctly classified as not
being observed.

2.4. Resampling Methods to Deal with Imbalanced Data

To deal with an imbalanced dataset (Figure 1) that can impair the predictive ability
of the studied methods, two resampling methods were used in the training dataset. The
over-sampling method [29], which eliminated the damage caused by skewed distribution
by creating new minority class samples, and the under-sampling method [30], which
also eliminated the damage caused by skewed distribution, but by removing the intrinsic
samples in the majority class. The functions upSample and downSample from the caret R
package [28] were used to add additional samples to the minority classes with replacements
to make the class distributions equal and to discard samples randomly so that all classes
had the same frequency as the minority class, respectively.
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Figure 1. Number of observations for the imbalanced, over and under-sampled training datasets for grazing, ruminating,
idle, WCF, feeding and walking behaviors in grazing beef cattle.

3. Results

In general, overall accuracy was higher for RF models, being the greatest for the RF
model trained with over-sampled data. The lowest overall accuracy was observed in the
NBC model trained with over-sampled records, which was the only method in which the
over-sampling showed negative effects on behavior classification, since for the RF and NBC
algorithms the training with over-sampled data promoted the highest results (Table 1). The
same patterns can be observed for the Kappa coefficient, where the highest values were for
the RF algorithm and, with the exception of the NBC algorithm, the highest values were
observed when the training was performed with over-sampled data.

Table 1. Sensitivity, specificity, overall accuracy and Kappa coefficient for the Machine Learning algorithms and resampled
training datasets for the studied behaviors.

Algorithm and Resample
Training Datasets

Behaviors Overall
Accuracy

Kappa
CoefficientGrazing Ruminating Idle WCF Feeding Walking

Random Forest
Imbalanced 0.880 0.789
Sensitivity 0.816 0.876 0.957 0.278 0.688 0.501
Specificity 0.960 0.996 0.823 0.999 0.991 0.998
Over-sampling 0.920 0.865
Sensitivity 0.894 0.938 0.952 0.590 0.860 0.700
Specificity 0.966 0.995 0.917 0.999 0.990 0.997
Under-sampling 0.647 0.505
Sensitivity 0.644 0.901 0.580 0.808 0.768 0.797
Specificity 0.892 0.921 0.942 0.948 0.925 0.949
Support Vector Machine
Imbalanced 0.611 0.078
Sensitivity 0.039 0.131 0.995 0.021 0.100 0.027
Specificity 0.998 0.999 0.059 0.999 0.999 0.999
Over-sampling 0.611 0.078
Sensitivity 0.039 0.131 0.995 0.021 0.100 0.027
Specificity 0.998 0.999 0.059 0.999 0.999 0.999
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Table 1. Cont.

Algorithm and Resample
Training Datasets

Behaviors Overall
Accuracy

Kappa
CoefficientGrazing Ruminating Idle WCF Feeding Walking

Under-sampling 0.267 0.075
Sensitivity 0.970 0.201 0.066 0.222 0.096 0.204
Specificity 0.120 0.994 0.992 0.994 0.994 0.992
Naïve Bayes Classifier
Imbalanced 0.367 0.100
Sensitivity 0.284 0.700 0.392 0.000 0.105 0.083
Specificity 0.922 0.605 0.608 0.999 0.971 0.971
Over-sampling 0.179 0.072
Sensitivity 0.122 0.865 0.065 0.138 0.360 0.157
Specificity 0.962 0.422 0.963 0.933 0.850 0.950
Under-sampling 0.362 0.124
Sensitivity 0.121 0.580 0.423 0.015 0.402 0.126
Specificity 0.958 0.702 0.727 0.993 0.815 0.954

The proportions for each behavior of the total observations were equal to 20%, 10%,
59%, 1%, 7% and 3% for grazing, ruminating, idle, WCF, feeding and walking, respectively.
The greatest sensitivity (0.808) for the less frequent behavior (WCF) was observed in the RF
algorithm trained with under-sample data (0.808), followed by the same algorithm trained
with over-sample and imbalanced data (0.590). Similar results were noted for the second
less frequent behavior (walking). Feeding behavior presented a greater proportion of true
positive observations when the RF with over-sampled training was used (0.860), followed
by under-sampled (0.768) and imbalanced (0.688) training in the same method.

Considering the NBC algorithm to classify feeding behavior, training with re-sampled
records showed better results than training with imbalanced data, with a difference ranging
from 0.255 to 0.297 for sensitivity (Table 1). Classifying ruminating behavior by the RF
algorithm was better for re-sampled training, however, the training with imbalanced
data also presented a high sensitivity. The NBC algorithm showed higher sensitivity
prediction for ruminating behavior when training datasets were with over-sampled (0.865)
and imbalanced (0.700) records, followed by the under-sample records (0.580). Grazing
and Idle behaviors resulted in a greater proportion of true positive observations in the
trained over-sampled and imbalanced RF algorithm, followed by the RF algorithm trained
with under-sample data (Table 1).

The SVM models only performed efficiently when classifying the two more frequent
behaviors (imbalanced and over-sampled training datasets for idle and under-sampled
training dataset for grazing). The lowest proportion of true negative observations was
found in SVM models when classifying the most frequent behavior (idle) with imbalanced
and over-sampled training datasets (0.059 for both models), followed by the classification
for grazing behavior using the under-sampled training dataset (0.120).

4. Discussion

The highest overall accuracy values observed for the RF algorithm (Table 1) corrobo-
rate the accuracy results, comparing RF with other Machine Learning algorithms, found
in a study that classified behaviors in wild animals [31] and human behavior [32] using
accelerometer information. The RF classification algorithm is highly capable at selecting
and classifying predictor variables and at discriminating between predicted variables.
This RF feature becomes important to evaluate information derived from accelerometers
because these generate large amounts of data, which consume more time to select relevant
variables [33] and lead to error prone and subjective tasks [34]. Therefore, due to the greater
stability compared to SVM [35], the overall accuracy results of the current study were
higher when RF was used.
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When compared to SVM, the NBC algorithm showed the lowest overall accuracies.
This lower result was also found in a study classifying cows’ behavior, comparing classifi-
cation algorithms, using accelerometer information [36]. The overall accuracy result for
the SVM algorithm of the present study (ranging from 0.267 to 0.611) was lower than that
observed by the aforementioned study. According to Douglas et al. [37], SVM algorithms
can be more suitable for complex classification tasks, especially in the training algorithm
process. When trying to classify sow-activity using accelerometer data, Escalante et al. [38]
found the lowest performance using the NBC algorithm, compared to SVM and RF. In our
study, the SVM algorithm did not perform well, in general, when classifying the behaviors
studied, as observed by the aforementioned authors.

Due to the short period of time and intermittence that cattle drink water [39,40], this
behavior tends to be less frequent than other observed behaviors and often this action
is not considered in the classification analyses, even if this behavior was observed and
noted [12,41]. In the current study, the less frequent behavior of WCF presented better
results than those found in the literature [10], when the RF algorithm was used, especially
when trained with resampled datasets. Similarly, when classifying WCF using resampled
training and the RF algorithm, the sensitivity and specificity were greater than those
found by Williams et al. [9], assessing the classification of drinking water behavior in
cattle in periods of time less than or equal to 10 s. Although these authors reported
higher true positive rate results when time periods longer than 10 s were observed, the
experiment was conducted in a more controlled environment and used, in addition to
accelerometers, a water flow meter. The results found in the present study were obtained in
an extensive rearing system environment, a widely used practice, therefore representative
of Brazilian regions and of the greater difficulty in handling the animals. The better results
for predicting lower frequency behaviors, found in the current study, may help in future
studies to monitor animals’ health and welfare and also in genetic breeding programs.

Performance in predicting true positives for feeding and walking behaviors using
NBC and SVM algorithms with the three training datasets considered was higher than the
percentage of correct classifications in a study classifying sow-activity using accelerometer
data [38]. When the RF algorithm was considered, walking activity had better prediction
results when resampling methods were used. Feeding behavior had a higher correct
classification when all three RF datasets were used. Even in a more controlled environment,
with more data collected and the animals’ behavior being monitored by video cameras, the
results of the present study were, in general, greater than those found in the aforementioned
study. The resampling strategy used in this paper can lead to better behavior classifications.

Resampling training with the RF algorithm showed higher sensitivity results than
those observed with unbalanced data in predicting rumination, WCF, feeding and walking
activities. The same was observed when the NBC algorithm was considered, as well as
for prediction of rumination, WCF and walking with the under-sampled dataset in the
SVM algorithm. The slight decrease or no sensitivity gain observed for grazing and idle
behaviors when the resample methods were used, especially for RF and NBC, may have
occurred due to the random sampling of these majority behavior classes, leading to a
decrease in their true positive rates. Balancing the database to equalize the number of
observations should only be performed when the class of interest is the minority one [42].
Idle behavior had higher sensitivity results when considering the imbalanced and under-
sampled datasets for the RF algorithm. According to Escalante et al. [38], passive activities
are more difficult to classify due to noise generated when eventual animal movements
happen. Thus, the RF algorithm can deal better with noisy measurements when more
observations for idle behavior are considered.

Considering the SVM algorithm with the imbalanced training dataset, grazing be-
havior had low sensitivity and high specificity, while for idle behavior the sensitivity was
high and the specificity low. This pattern was repeated within each behavior for training
with the under and over-sampled datasets. A possible explanation is due to the fact that
the SVM algorithm confused the classification of grazing behavior with idle behavior.
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Martiskainen et al. [43] observed that the SVM algorithm confused some of the behaviors
studied, especially in similar activities, according to the position of the accelerometer at-
tached to the cows. The differences observed in each movement pattern of a given behavior
can interfere in the movement’s classification [44].

According to Zughrat et al. [45], the under-sampling technique can drastically reduce
the number of support vectors in an SVM algorithm, leading to less computational demand,
resulting in a performance gain if compared with the over-sampling technique. In the
present study, the under-sampled dataset used with SVM, showed higher sensitivity results
for the majority of classified behaviors, however for idle behavior this was not observed,
probably also due to the confusion in the classification of behaviors, where the algorithm
may have classified idle behavior as grazing when the under-sampled training dataset was
used. Using this resampling technique, data from the majority class was removed, which
may also have influenced this result. The opposite may have occurred for the oversampled
and imbalanced training datasets. Using resampling methods in training datasets can
promote little or no gain in the predictive performance of this algorithm [46].

When the under-sampling technique was considered, due to the fact that the observa-
tions of the majority behavioral classes were reduced, the sensitivity of these classes was
impaired. In general, the RF algorithm was the one that best managed to classify the stud-
ied behaviors, together with the over-sampling training dataset, as it increases the number
of observations for the minority behavior classes without impairing the classification of
the majority classes. However, it should be taken into account that when increasing the
amount of information there is greater computational cost for the analyses and a greater
amount of time is needed to accomplish them.

5. Conclusions

The results showed that the behaviors of the studied animals were classified with
great accuracy and specificity when the RF algorithm trained with the resampling methods
was used. Therefore, in general, the best strategy to classify and predict more frequent
behaviors was using the RF algorithm, and when less frequent behaviors are the main
interest, the most appropriate strategy would be using the over-sampling technique for
training the data.
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.3390/ani11123438/s1, Figure S1: Male Nelore with an accelerometer attached to the custom halter in
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21. Alvarenga, F.A.P.; Borges, I.; Palkovič, L.; Rodina, J.; Oddy, V.H.; Dobos, R.C. Using a three-axis accelerometer to identify and

classify sheep behaviour at pasture. Appl. Anim. Behav. Sci. 2016, 181, 91–99. [CrossRef]
22. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
23. Vapnik, V.; Guyon, I.; Hastie, T. Support vector machines. Mach. Learn. 1995, 20, 273–297.
24. Hand, D.J.; Yu, K. Idiot’s Bayes—Not so stupid after all? Int. Stat. Rev. 2001, 69, 385–398. [CrossRef]
25. Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22.
26. Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F.; Chang, C.C.; Lin, C.C. e1071: Misc Functions of the Department

of Statistics, Probability Theory Group (Formerly: E1071), TU Wien [R Package Version 1.7-9]. Comprehensive R Archive Network
(CRAN). 2021. Available online: https://CRAN.R-project.org/package=e1071 (accessed on 5 August 2021).

27. Kraemer, H.C. Extension of the kappa coefficient. Biometrics 1980, 36, 207–216. [CrossRef] [PubMed]
28. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [CrossRef]

http://doi.org/10.1016/j.compag.2018.01.007
http://doi.org/10.1186/S40317-015-0045-8
http://doi.org/10.1016/j.applanim.2012.04.002
http://doi.org/10.1017/S1751731115000890
http://doi.org/10.1111/j.1365-2494.1983.tb01626.x
http://doi.org/10.1016/j.compag.2008.07.010
http://doi.org/10.15232/pas.2017-01623
http://doi.org/10.4141/cjas-2014-163
http://doi.org/10.1016/j.compag.2019.105141
http://doi.org/10.1016/j.compag.2018.01.008
http://doi.org/10.1016/j.jveb.2017.04.003
http://doi.org/10.1111/asj.13184
http://doi.org/10.3390/s20174741
http://doi.org/10.1016/j.rama.2020.10.001
http://doi.org/10.1071/AR9840723
http://doi.org/10.1016/j.eswa.2016.12.035
http://doi.org/10.1016/j.knosys.2015.11.013
http://doi.org/10.1016/j.ins.2013.07.007
https://www.rstudio.com/categories/integrated-development-environment/
https://www.rstudio.com/categories/integrated-development-environment/
http://doi.org/10.1016/j.applanim.2016.05.026
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1111/J.1751-5823.2001.TB00465.X
https://CRAN.R-project.org/package=e1071
http://doi.org/10.2307/2529972
http://www.ncbi.nlm.nih.gov/pubmed/7190852
http://doi.org/10.18637/jss.v028.i05


Animals 2021, 11, 3438 10 of 10

29. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

30. Tahir, M.A.; Kittler, J.; Mikolajczyk, K.; Yan, F. A multiple expert approach to the class imbalance problem using inverse random
under sampling. In Lecture Notes in Computer Science, Proceedings of the 8th International Workshop on Multiple Classifier Systems
(MCS), Reykjavik, Iceland, 10–12 June 2009; Benediktsson, J.A., Kittler, J., Roli, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2009;
Volume 5519, pp. 82–91.

31. Tatler, J.; Cassey, P.; Prowse, T.A.A. High accuracy at low frequency: Detailed behavioural classification from accelerometer data.
J. Exp. Biol. 2018, 221, jeb184085. [CrossRef]

32. Gjoreski, H.; Bizjak, J.; Gjoreski, M.; Gams, M. Comparing deep and classical machine learning methods for human activity
recognition using wrist accelerometer. In Proceedings of the IJCAI-16 Workshop on Deep Learning for Artificial Intelligence
(DLAI), New York, NY, USA, 10 July 2016.

33. Körting, T.S.; Garcia Fonseca, L.M.; Câmara, G. GeoDMA—Geographic data mining analyst. Comput. Geosci. 2013, 57, 133–145.
[CrossRef]

34. Belgiu, M.; Drăgu, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm.
Remote Sens. 2016, 114, 24–31. [CrossRef]

35. Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support vector machine
versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 2020, 13, 6308–6325. [CrossRef]

36. Benaissa, S.; Tuyttens, F.A.M.; Plets, D.; Cattrysse, H.; Martens, L.; Vandaele, L.; Joseph, W.; Sonck, B. Classification of ingestive-
related cow behaviours using RumiWatch halter and neck-mounted accelerometers. Appl. Anim. Behav. Sci. 2019, 211, 9–16.
[CrossRef]

37. Douglas, P.K.; Harris, S.; Yuille, A.; Cohen, M.S. Performance comparison of machine learning algorithms and number of
independent components used in fMRI decoding of belief vs. disbelief. Neuroimage 2011, 56, 544–553. [CrossRef] [PubMed]

38. Escalante, H.J.; Rodriguez, S.V.; Cordero, J.; Kristensen, A.R.; Cornou, C. Sow-activity classification from acceleration patterns: A
machine learning approach. Comput. Electron. Agric. 2013, 93, 17–26. [CrossRef]

39. Delagarde, R.; Lamberton, P. Daily grazing time of dairy cows is recorded accurately using the Lifecorder Plus device. Appl.
Anim. Behav. Sci. 2015, 165, 25–32. [CrossRef]

40. Dutta, R.; Smith, D.; Rawnsley, R.; Bishop-Hurley, G.; Hills, J.; Timms, G.; Henry, D. Dynamic cattle behavioural classification
using supervised ensemble classifiers. Comput. Electron. Agric. 2015, 111, 18–28. [CrossRef]

41. Watanabe, N.; Sakanoue, S.; Kawamura, K.; Kozakai, T. Development of an automatic classification system for eating, ruminating
and resting behavior of cattle using an accelerometer. Grassl. Sci. 2008, 54, 231–237. [CrossRef]

42. Kamminga, J.W.; Meratnia, N.; Havinga, P.J.M. Dataset: Horse movement data and analysis of its potential for activity recognition.
In Proceedings of the 2nd Workshop on Data Acquisition to Analysis (DATA 2019), Prague, Czech Republic, 26–28 July 2019; pp.
22–25.

43. Martiskainen, P.; Järvinen, M.; Skön, J.P.; Tiirikainen, J.; Kolehmainen, M.; Mononen, J. Cow behaviour pattern recognition using
a three-dimensional accelerometer and support vector machines. Appl. Anim. Behav. Sci. 2009, 119, 32–38. [CrossRef]

44. Ravi, N.; Dandekar, N.; Mysore, P.; Littman, M.L. Activity recognition from accelerometer data. In Proceedings of the 17th
Conference on Innovative Applications of Artificial Intelligence (IAAI-17), Pittsburgh, PA, USA, 9–13 July 2005; pp. 1541–1546.

45. Zughrat, A.; Mahfouf, M.; Yang, Y.Y.; Thornton, S. Support vector machines for class imbalance rail data classification with
bootstrapping-based over-sampling and under-sampling. In Proceedings of the 19th World Congress of the International
Federation of Automatic Control (IFAC), Cape Town, South Africa, 24–29 August 2014; Volume 47, pp. 8756–8761.

46. Bermejo, P.; Gámez, J.A.; Puerta, J.M. Improving the performance of Naive Bayes multinomial in e-mail foldering by introducing
distribution-based balance of datasets. Expert Syst. Appl. 2011, 38, 2072–2080. [CrossRef]

http://doi.org/10.1613/jair.953
http://doi.org/10.1242/jeb.184085
http://doi.org/10.1016/j.cageo.2013.02.007
http://doi.org/10.1016/j.isprsjprs.2016.01.011
http://doi.org/10.1109/JSTARS.2020.3026724
http://doi.org/10.1016/j.applanim.2018.12.003
http://doi.org/10.1016/j.neuroimage.2010.11.002
http://www.ncbi.nlm.nih.gov/pubmed/21073969
http://doi.org/10.1016/j.compag.2013.01.003
http://doi.org/10.1016/j.applanim.2015.01.014
http://doi.org/10.1016/j.compag.2014.12.002
http://doi.org/10.1111/j.1744-697X.2008.00126.x
http://doi.org/10.1016/j.applanim.2009.03.005
http://doi.org/10.1016/j.eswa.2010.07.146

	Introduction 
	Materials and Methods 
	Experimental Area and Animals 
	Accelerometers and Animal Behavior 
	Data Processing and Prediction Algorithms 
	Resampling Methods to Deal with Imbalanced Data 

	Results 
	Discussion 
	Conclusions 
	References

