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Simple Summary: Infectious laryngotracheitis (ILT) presents a major risk to the chicken industry.
Rapid, specific, simple, and point-of-need molecular detection of the virus is crucial to enable
chicken farms to take timely action and contain the spread of infection. The current study describes
an isothermal amplification assay for infectious laryngotracheitis virus (ILTV) infection and the
implementation of this assay in a microfluidic chip suitable for molecular detection and quasi-
quantification of ILTV in diagnostic veterinary laboratories with low resources and poultry farms.
Our assay performance was compared and favorably agreed with quantitative PCR (qPCR). Clinical
tests of our assay and chip with samples from diseased chickens demonstrated good concordance
with the gold-standard benchtop qPCR assay.

Abstract: Infectious laryngotracheitis (ILT) is a viral disease of chickens’ respiratory system that
imposes considerable financial burdens on the chicken industry. Rapid, simple, and specific detection
of this virus is crucial to enable proper control measures. Polymerase chain reaction (PCR)-based
molecular tests require relatively expensive instruments and skilled personnel, confining their
application to centralized laboratories. To enable chicken farms to take timely action and contain the
spread of infection, we describe a rapid, simple, semi-quantitative benchtop isothermal amplification
(LAMP) assay, and a field-deployable microfluidic device for the diagnosis of ILTV infection in
chickens. Our assay performance was compared and favorably agreed with quantitative PCR (qPCR).
The sensitivity of our real-time LAMP test is 250 genomic copies/reaction. Clinical performance of
our microfluidic device using samples from diseased chickens showed 100% specificity and 100%
sensitivity in comparison with benchtop LAMP assay and the gold-standard qPCR. Our method
facilitates simple, specific, and rapid molecular ILTV detection in low-resource veterinary diagnostic
laboratories and can be used for field molecular diagnosis of suspected ILT cases.

Keywords: chicken; infectious laryngotracheitis virus; microfluidic device; quantitative real-time
PCR; real-time LAMP

1. Introduction

Infectious laryngotracheitis virus (ILTV) causes a common respiratory disease of chick-
ens that imposes a substantial economic load on the poultry industry. ILTV is a DNA virus
that belongs to the Gallid alphaherpesvirus 1 (GaHV-1) species of the Alphaherpesvirinae
subfamily within Herpesviridae family [1–3]. The disease causes respiratory distress and
leads to significant production losses due to diminished egg production, poor feed con-
version rates, high mortality rates, and increased susceptibility to other respiratory tract
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pathogens [2,4]. Specific and rapid diagnosis of ILT would enable implementation of timely
control measures, reducing economic burdens.

Tentative diagnosis of the disease traditionally depends on clinical signs and necropsy
findings. Confirmative laboratory diagnosis of ILT is performed by virus isolation, im-
munofluorescence techniques, neutralization assay, enzyme-linked immunosorbant assay
(ELISA), as well as conventional PCR and quantitative real-time PCR (qPCR) [2,5–14].
However, the above-mentioned diagnostic methods are unsuitable for simple, specific
and rapid ILTV detection outside centralized laboratories such as at rudimentary veteri-
nary stations, and, particularly in developing countries where expensive equipment and
skilled staff are available in short supply. The need to send samples to centralized labora-
tories and await results may delay implementation of control measures with significant
adverse consequences.

Loop-mediated isothermal amplification (LAMP) of nucleic acids has been describes
as a simpler alternative technology to PCR with sensitivity comparable to PCR [15–19].
LAMP uses a strand-displacing polymerase, obviating the need for a high-temperature
‘melting’ step and temperature cycling as used in PCR. Moreover, in contrast to PCR that
uses a pair of primers, LAMP employs four primers, in addition to two loop primers,
which anneal to different regions of the nucleic acid template. The additional primers may
improve specificity [20].

A molecular diagnostics test (NAAT, nucleic acid amplification test) comprises two
major components: (A) Enzymatic amplification and (B) Detection of the amplification
product, either during amplification (real-time) or post-amplification (end-point detection).
Multiple methods have been reported for amplicon detection in LAMP assays, including
gel electrophoresis [21], fluorescence [21], naked eye (turbidity or color change) [21],
and bioluminescence [22–24]. In bioluminescence and fluorescence-based detection, LAMP
amplicons are monitored in real time, enabling quantification [25–27].

NAATs can be implemented in microfluidic formats, such as palm-sized plastic car-
tridges with microscale fluid circuits for sample processing and analysis [28,29]. Such
microfluidic ‘chips’ afford lower cost, automated and streamlined operation, portability,
sample containment, and ease of use, facilitating operation by laypeople. Multiple unit
operations (e.g., lysis, nucleic extraction) can be integrated into single-use (disposable)
chips for nucleic acid amplification tests [30,31].

This study describes a LAMP assay for ILTV infection and the implementation of this
assay in a microfluidic chip suitable for field molecular detection and quasi-quantification
of ILTV infection. Our microfluidic chip had a four reaction chambers, one of which
acts as a negative control. The other three chambers can be used either to tests three
different samples for the same pathogen or a single sample, split across the three chambers,
for detection of co-morbidity with different pathogens.

2. Materials and Methods
2.1. Ethical Statement

Transfer of extracted nucleic acids from samples sent to the Department of Molecular
Biology, School of Veterinary Medicine, University of Pennsylvania for diagnostic purpose
was done according to the guidelines of the Animal Ethics Committee of School of Veteri-
nary Medicine, University of Pennsylvania as well as the ethical guidelines of University
of Pennsylvania, Philadelphia, PA, USA.

2.2. Chemicals and Materials

A clear resin FLGPCL04 was supplied from FormLabsTM (Somerville, MA, USA).
polyethylene glycol (PEG) 3350 was obtained from Sigma Aldrich, Inc. (St. Louis, MO, USA).
AM1836 5× MagMax 96 Viral Extraction kit was adopted from Life Technologies™
(Ambion®, Austin, TX, USA). LAMP primers were ordered from IDT Company
(Coralville, IA, USA). Loop amp DNA amplification Kit was supplied from Eiken Chem-
icals Co. (Tokyo, Japan). Bst 2.0 WarmStartTM DNA polymerase was purchased from
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New England Biolabs (Ipswich, MA, USA). EvaGreen® dye was supplied from Biotium Inc.
(Hayward, CA, USA). Nuclease-free water was acquired from Invitrogen
(Carlsbad, CA, USA). The SsoFast EvaGreenTM Supermix for qPCR was supplied from
Bio-Rad Laboratories (Bio-Rad, Hercules, CA, USA).

2.3. Virus and Clinical Samples

Previously isolated ILTV as well as 11 clinical samples from diseased chickens with
respiratory distress were supplied by the Department of Molecular Biology, School of
Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA. The ILTV was
propagated on chorioallantoic membranes (CAM) of embryonated chicken eggs (ECEs)
followed by identification using histo-pathology for the intranuclear inclusions detection
and the virus detected molecularly by conventional PCR [10]. The number of genomic
DNA copies of ILTV was quantified as previously reported [32]. The number of genomic
copies is 5 × 105 copies per µL.

2.4. DNA Extraction

DNA/RNA extraction was carried out with AM1836 5× MagMax 96 Viral Extraction
kit (Ambion®, Austin, TX, USA) following instructions of manufacturer.

2.5. LAMP Primers

Genomic sequences of various ILTV strains from the GeneBank were analyzed after
alignment to identify conserved sequences. A 296-nt sequence in the polymerase gene
of ILTV was used as a target due to its high similarity among the analyzed strains. The
LAMP primers (Figure 1) were designed with the PrimerExplorer V5 software (Eiken
Chemical Co. Ltd.). The designed primers were screened using NCBI database BLAST
(http://www.ncbi.nlm.nih.gov, accessed on 2 February 2020) for cross-reaction with other
chicken respiratory tract viruses, including Mareks disease virus (MDV), Newcastle disease
virus and avian influenza viruses (H5N1, H9N2, and H5N8). No cross-reaction was detected.
The LAMP primers were diluted to a 100 µM concentration using nuclease-free water.

2.6. Benchtop LAMP Amplification

The LAMP assay was performed to detect the polymerase gene of ILTV using the
loop amp DNA amplification Kit. The 10 µL reaction mixture consisted of LAMP primers
(Figure 1B); 5 µL of 2× Reaction Mix; 0.4 µL of Bst 2.0 WarmStart DNA polymerase; 0.5 µL
1 × EvaGreen® dye (Biotium Inc., Hayward, CA, USA), and 0.6 µL of viral DNA template
and nuclease-free water to 10 µL. Fluorescence signals from DNAs amplificons were ob-
served with the 7500-Fast Real-Time PCR system (Applied Biosystems, Carlsbad, CA, USA)
for 30 min at 63 ◦C. Template-free controls were included in each run to guarantee absence
of contamination. Nucleic acid extracts of Escherichia Coli isolate, Newcastle disease virus
(NDV) and infectious bronchitis virus (IBV) were used as negative controls.

2.7. Benchtop qPCR Amplification

qPCR was performed to detect the polymerase gene of ILTV using F3 and B3 primers.
The 10 µL reaction mixture consisted of F3 and B3 primers (10 µM), 5 µL of SsoFast
EvaGreen Supermix (Bio-Rad, Hercules, CA, USA), 0.6 µL of extracted DNA, and nuclease-
free water to 10 µL. The cycling program were as follows: One cycle at 95 ◦C for 2 min,
and then 35 cycles at 95 ◦C for 5 s and 60 ◦C for 30 s. Fluorescence emissions from am-
plificons was monitored with the 7500-Fast Real-Time PCR system (Applied Biosystems,
Carlsbad, CA, USA). Non-template controls were included in each run. Infectious bron-
chitis virus (IBV), Escherichia coli isolate and Newcastle disease virus (NDV) nucleic acids
extracts were included as negative controls.

http://www.ncbi.nlm.nih.gov
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Figure 1. LAMP primers on the ILTV amplicon. (A) ILTV amplified sequence with the primers sites: forward primer
(F3), backward (B3) primer, backward inner primer (BIP), forward inner primer (FIP), loop forward (LF) primer, and loop
backward (LB) primer shown. Arrows and colored nucleotides show the direction of extension and the targeted sequences,
respectively. (B) Primers sequence for ILTV LAMP assay.

2.8. Microfluidic Chip for Real-Time-LAMP

Our custom microfluidic chip (28 mm × 28 mm × 4 mm) consists of four 20 µL inde-
pendent multifunctional, isothermal amplification reactors (MIAR). The microfluidic chip
was designed with SolidWorks 2020 (DS SolidWorksTM, Waltham, MA, USA), fabricated by
a Low Force Stereolithography (LFS) 3D printer Form 3 (FormlabsTM, Somerville, MA, USA)
using a clear resin FLGPCL04 (FormlabsTM, Somerville, MA, USA), and coated with
polyethylene glycol (PEG) 3350 aqueous solution (2%) [33].

20 µL of LAMP master mix was injected into each reactor., The reaction mix included
2 µL of the primer mix; 10 µL of 2× Reaction Mix; 0.8 µL of Bst 2.0 WarmStart DNA
polymerase; 1 µL 1× EvaGreen® dye, along with 1.2 µL of extracted DNA and nuclease-
free water to 20 µL.

Next, we used a portable handheld fluorescence microscope (AM4113TGFBW, Dino-
Lite Premier, AnMo Electronics Corp., Hsinchu, Taiwan) to monitor fluorescence signals
during incubation. The microscope includes seven built-in blue light emitting diodes
(LEDs) for excitation, an emission filter with a 510-nm wavelength cut-off, a CCD camera
detection, and a USB connection. This microscope is appropriate for EVA Green dyes and
can monitor all four reactors simultaneously without a need for scanning. The microscope
is mounted on top of our custom heating system that includes a resistive heater (Figure 2B)
powered by a 12V DC power adapter and regulated by a microcontroller (Raspberry Pi
4 model B, Raspberry Pi, Cambridge, UK). The chip images during incubation were taken
by the fluorescence microscope once every minute and selected regions were analyzed
with MATLAB (MathWorks™, R2019a, Natick, MA, USA).
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Figure 2. (A) A 3D-printed microfluidic chip with four multifunctional reactors for real-time LAMP reactions. (B) The
portable fluorescent microscope monitors fluorescent emission from the microfluidic chip. (C) Image of fluorescing LAMP
reactors (1: negative control; 2, 3, 4: Positive ILTV samples). (D) Real-time amplification curves of microfluidic chip-based
ILTV LAMP assays with, 2500, 250, 25, 0 genome copies per reaction. (E) The microfluidic chip-based LAMP threshold time
Tt (minutes) as a function of the log of ILTV concentration, (n = 3). (F) LAMP amplification curves when testing clinical
samples with the microfluidic chip.

The specificity of our microfluidic chip was assessed by testing various pathogens
available in our laboratory: IBV (8 × 105 gRNA copies per µL), NDV (103 gRNA copies
per µL), E. coli (1010 PFU per µL), transmissible gastroenteritis virus (TGEV, 103 gRNA
copies per µL), porcine epidemic diarrhea virus (PEDV, 103 gRNA copies per µL),
and porcine deltacoronavirus (PDCoV, 103 gRNA copies per µL). Each microorganism was
tested three times and presented a negative result while controls tested with appropriate
primers and, otherwise, identical conditions were positive.

2.9. The Analytical Sensitivity

To determine the minimum copy numbers of ILTV nucleic acids that could be detected
by our qPCR, LAMP, and microfluidic device, we carried out ten-fold serial dilutions of
ILTV (2.5 × 104 genome copies per reaction) using nuclease-free water. Each dilution was
tested three times [25,26].

2.10. Detection of Nucleic Acids from Clinical Samples

Extraction of the nucleic acids from 11 nasal swabs collected from diseased chickens
was carried out with AM1836 5× MagMax 96 Viral Extraction kit. The extracted nucleic
acids were tested for ILTV by PCR as described previously [10]. The extracted nucleic acids
were analyzed for ILTV with our microfluidic chip, qPCR, and real-time LAMP assays in
parallel. Positive and negative controls were included in all tests.
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3. Results
3.1. ILTV LAMP Performs on Par with qPCR

We carried out amplification of a dilution series of ILTV with both qPCR and LAMP.
As the genome concentration decreases, the threshold cycle (Ct) of qPCR increases nearly
linearly as a function of the logarithm of the number of templates (Figure 3A). We define
the threshold time Tt of the LAMP reaction as the time until the amplification curve reaches
half its value of saturation. Like the PCR threshold cycle, the LAMP threshold time (Tt) is
nearly a linear function of the log of the concentration (Figure 3B). The smallest detectable
ILTV genome copies of both assays is 250 genome copies per reaction. Melting curve
analysis of both the PCR and LAMP amplicons showed a single peak, confirming absence
of primer-dimers and non-specific amplification. Negative controls as well as samples
lacking templates did not reveal any indication of spurious amplification within 60 min
of incubation.

Figure 3. Quantitative detection of ILTV with real-time LAMP and qPCR: The PCR threshold cycle (A) and the LAMP
threshold time (minutes) (B) as functions of the log of ILTV concentration (genomic DNA copies per reaction). n = 3.

3.2. Detection of ILTV with Our Microfluidic Chip and Real-Time LAMP

The microfluidic chip used in our study has four independent MIARs (Figure 2A).
Nucleic acid amplification was monitored in real time by observing fluorescence emission
intensity of an intercalating dye (Figure 2B). Positive samples emitted fluorescence while
the negative control did not show any fluorescence emission. When the reaction chambers
achieve their incubation temperature, the fluorescence emission intensity from all reactors
is low due to the absence of dsDNA. After the LAMP reaction, the first reactor on the
left without any template (negative control) remains dark, consistent with the absence of
amplification and dsDNA (Figure 2C). In contrast, reactors 2, 3, and 4 display fluorescence
emissions, revealing successful amplification and the presence of ds DNA. The intensity of
the fluorescence emission was analyzed with MATLAB software (MathWorksTM, R2019a)
to construct amplification curves (Figure 2D). Experiments with a dilution series indicate
that the threshold time correlates nearly linearly with the log of the template concentration
(Figure 2E). The chip did not show any cross-reaction with IBV, NDV, E. coli, TGEV, PEDV
and PDCoV (Figure 4). The sensitivity of LAMP in our microfluidic chip was similar to
that of the benchtop LAMP (Figure 2D,E).
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Figure 4. (A) Fluorescence emission image at the end of the LAMP amplification process in the microfluidic chip
(1: negative control; 2: ILTV positive sample; 3: IBV positive sample, 4: PEDV positive sample). (B) Reaction cham-
bers average fluorescence intensities as functions of time, showing positive amplification of the ILTV sample only.

3.3. Clinical Performance of Our Assay

Eleven field samples collected from diseased chicken flocks were used to screen for
ILTV with our benchtop real-time LMAP and our microfluidic device. Both our benchtop
and on-chip ILTV LAMP detection (Figure 2F) had 100% sensitivity and 100% selectivity
in comparison with the gold-standard qPCR (Supplementary Materials, Table S1). The
benchtop (Figure 5A) and microfluidic (Figure 5B) LAMP threshold times correlated nearly
linearly with the qPCR threshold cycle and were shorter than the PCR processing time.
The threshold times of benchtop LAMP assay and microfluidic-based RT-LAMP correlated
linearly (Figure 5C). The benchtop LAMP threshold times were shorter than the microfluidic
LAMP due to the higher temperature ramping rate of the former.

Figure 5. Clinical performance of our benchtop LAMP, benchtop PCR and microfluidic device when testing samples
from diseased chickens (A) Microfluidic chip-threshold time as a function of PCR threshold cycle. (B) Benchtop LAMP
threshold time as a function of PCR threshold cycle. (C) Microfluidic device threshold time as a function of benchtop LAMP
threshold time.
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4. Discussion

ILT presents a major risk to the chicken industry [2]. Rapid and point-of-need molec-
ular detection methods are critical to promptly instigate control measures to contain the
disease. This requires samples from suspected animals to be tested in or in proximity
to poultry farms. Simple molecular tests that can be carried out by minimally trained
personnel and without sophisticated equipment would enable poultry farms operators to
guard their farms against devastating diseases.

To address this need, we have developed a new LAMP assay for ILTV nucleic acids.
LAMP assays have proven to be sensitive, specific, and robust [34,35]. LAMP assays
have a few important advantages over the PCR that is used in centralized laboratories.
LAMP operates at a fixed temperature (~63 ± 3 ◦C) and does not require temperature
cycling, which diminishes equipment complexity, power consumption, and cost. Indeed,
LAMP incubation can be carried out even electricity-free without any instrumentation with
an exothermic reaction to provide heat and a phase change material to control incubation
temperature [36]. Moreover, a previous study has demonstrated that the collective cost
per LAMP reaction was roughly one third of that for PCR [37].

Furthermore, LAMP assays tolerate inhibitors effects better than PCR [38], allowing
less stringent sample preparations. Finally, LAMP produces more amplicons than PCR
facilitating instrument-free detection with a variety of colorimetric dyes.

Our ILTV LAMP assay can be carried out on the benchtop in a tube with standard
laboratory equipment or integrated into a microfluidic device. Here, we describe a mi-
crofluidic chip with four reaction chambers (Figure 2A), one of which acts as a negative
(non-template) control. The three other reaction chambers can be used to test for three
different pathogens (co-morbidity) [39,40] by auto-aliquoting a single sample into multiple
reaction chambers, each specialized to amplify a specific target (Supplementary Materials,
Figure S1). Our microfluidic chip mates with an inexpensive, portable processor (Figure 2B)
that provides both temperature control and detection. Fluorescent emission is excited and
detected with a USB camera and processed with a portable device such as laptop computer.
Alternatively, the chip can interface with a smartphone [41,42].

Our ILTV LAMP assay either on the benchtop or in microfluidic format performs
on par with the gold-standard qPCR assay. Both our benchtop LAMP and chip assays,
such as qPCR, combine amplification and detection in a closed tube/system without the
need to transfer amplicons to a lateral flow strip or electrophoresis gel, avoiding exposing
amplicon rich solutions to the ambient and risking possible contamination of the workplace,
which may render false positives in subsequent tests. The threshold times of both our
benchtop and chip-based LAMP correlate linearly with the logarithm of ILTV DNA con-
centration. Thus, we can use the threshold time to estimate the viral load. The somewhat
longer threshold times in our microfluidic-based LAMP compared to benchtop assays
result from the one-sided heating of the chip. Although in the benchtop instrument, the
reaction chamber (tube) is inserted into a heated metal block, the microfluidic chip is
heated only at its bottom and is exposed to the ambient at its top. The ramp up time can
be, however, reduced with two-sided heating and slight increase in complexity and cost,
which were deemed unnecessary.

Both our benchtop and microfluidic ILTV LAMP assays achieved sensitivity of 250 ge-
nomic copies per reaction. During early stage of infection, a chicken typically has ILTV
in respiratory tissues and secretions exceeding 103 genome copies/µL [12,13]. There-
fore, our assays’ detection limits are more than sufficient for virus detection during the
seroconversion window.

To evaluate the clinical utility of our ILTV LAMP assay and its implementation in
microfluidic chip and to demonstrate that inhibitors in clinical veterinary samples do not
interfere with our LAMP (both benchtop and chip), we tested 11 clinical samples from
diseased chickens, demonstrating concordance with the gold-standard PCR.

Further studies for improvement of the assays for differentiating vaccine from field
strains using more specific primers are needed to inform appropriate control measures. Ad-
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ditionally, a simple and rapid technique for pathogen nucleic acids extraction and concentra-
tion from crude samples integrated into the LAMP chip would enable
higher sensitivity [43].

5. Conclusions

In conclusion, our newly developed real-time both benchtop and microfluidic LAMP
assays enable rapid and easy detection and quasi-quantification of ILTV in diagnostic
veterinary laboratories with low resources and poultry farms with sensitivity of 250 genome
copies/reaction that is sufficient to detect early stages of infection. Clinical tests of our
assay and chip with samples from diseased chickens demonstrated good concordance with
the gold-standard benchtop qPCR assay.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ani11113203/s1, Table S1: Results of clinical performance of our developed assays for ILTV
detection, Figure S1: Two different operation modes of our generic microfluidic chip. (A) Co-detection
of up to three different pathogens in one sample. (B) Testing three different samples.
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