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Simple Summary: The Eastern oyster Crassostrea virginica is one of the most important fishery and
aquaculture species in the USA and is a keystone species for coastal reefs. A breeding program
was initiated in 2019 to support the fast-growing aquaculture industry for this species in the Gulf of
Mexico. Oysters from wild populations in embayment along the U.S. Gulf of Mexico coast were used
as broodstock for the program to maximize genetic diversity. A sperm repository of the broodstock,
including a total of 102 male oysters from the 17 collection sites, was established to support the breeding
project. Sperm collection was accomplished by strip spawn, and fresh sperm production, motility, and
fertility were recorded for quality analysis. Cryopreserved sperm samples were sorted, labelled, archived,
and stored in liquid nitrogen for future use. Post-thaw motility and plasm membrane integrity were
recorded as post-thaw quality parameters. Overall, this study demonstrated sperm sample collection,
processing, cryopreservation, and a data management plan involved in the establishment of the sperm
repository. The streamlined procedure can serve as a template for construction of oyster germplasm
repositories for breeding programs.

Abstract: The Eastern oyster Crassostrea virginica (Family Ostreidae) is one of the most important
fishery and aquaculture species in the U.S. and is a keystone species for coastal reefs. A breeding
program was initiated in 2019 to support the fast-growing aquaculture industry culturing this
species in the Gulf of Mexico. Oysters from 17 wild populations in embayment along the U.S.
Gulf of Mexico coast from southwest Florida to the Matagorda Bay, Texas were used as broodstock
for the program to maximize genetic diversity in the base population. A sperm repository of
the broodstock was established to support the breeding project. The goal of this study was to
demonstrate the sperm sample collection, processing, cryopreservation, and the data management
plan involved in the establishment of a sperm germplasm repository of base populations. The
supporting objectives were to: (1) develop a data management plan for the sperm repository;
(2) streamline the procedure for sample collection, processing, and cryopreservation; (3) incorporate
sperm quality analysis into the procedure, and (4) archive the cryopreserved samples as a repository
for future use in the breeding program. This sperm repository included a total of 102 male oysters
from the 17 collection sites (six oysters per site). A data management plan was developed with six
categories, including sample collection, phenotype, fresh sperm, genotype, cryopreservation, and
post-thaw sperm, as guide for data collection. Sperm collection was accomplished by strip spawn,
and fresh sperm production, motility, and fertility were recorded for quality analysis. Cryopreserved
sperm samples were sorted, labelled, archived, and stored in liquid nitrogen for future use. Post-thaw
motility (1–30%) and plasm membrane integrity (15.34–70.36%) were recorded as post-thaw quality
parameters. Overall, this study demonstrated a streamlined procedure of oyster sperm collection,
processing, and cryopreservation for establishing a sperm repository that can serve as a template for
construction of oyster germplasm repositories for breeding programs.
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1. Introduction

The Eastern oyster Crassostrea virginica (Family Ostreidae) is one of the most important
fishery and aquaculture species in the U.S. and is a keystone species for coastal reef
and ecosystem services [1]. The Eastern oyster is distributed naturally in eastern North
and South America ranging from northern New Brunswick through parts of the West
Indies and south to Brazil and the Gulf of Mexico [2]. The harvest of eastern oysters
as food by hand or tongs dates back to at least the 17th and 18th centuries [3]. In the
early 1800s, dredging of oysters grew quickly. This technique was a major contributor to
the decline of stocks by allowing harvesting oysters in areas that could not be accessed
with other methods. In the late 1950s, oyster fisheries in the Chesapeake and Delaware
Bays collapsed. The decline in abundance was largely attributed to MSX (Haplosporidium
nelsoni) and Dermo (Perkinsus marinus) diseases [3,4]. The Gulf of Mexico fishery is the
largest contributor to U.S. oyster production. The decline of wild harvests in that region
took a precipitous turn in 2012, when a sharp decrease occurred due, at least in part, to a
prolonged drought [5]. In 2020, oyster harvesting in the iconic Apalachicola Bay, Florida,
U.S. was shut down in December for at least five years because of the high level of depletion
of wild oyster beds [6].

Modern oyster aquaculture was initiated in the 1920s and became established in the
early 1960s when larval culture methodologies were developed [7] and microalgae, an
essential food for oyster larvae, could be cultured at a large scale to supply the needs
of hatcheries [8,9]. With the decline of oyster fisheries in the coastal U.S., aquaculture
production has grown rapidly since the 1960s [10]. Genetic improvement largely aimed to
address disease mortality by producing resistant lines [11]. For example, six MSX-resistant
strains have been bred at Rutgers University since the 1960s and two other strains Delaware
Bay and Northeast High Survival lines (DBH and NEH) were subsequently produced by
crossing previously developed resistant lines [12]; dual disease-resistant strains to MSX and
Dermo were also produced [13], and the largest oyster-breeding program at the Virginia In-
stitute of Marine Sciences (VIMS) (http://www.vims.edu/research/units/centerspartners/
abc/index.php, 24 September 2021) started implementing a family selection program in
the mid-2000s, which is now incorporating genomic selection. These programs have been
supporting a major part of the U.S. East Coast oyster aquaculture industry.

Cryopreservation is a technology used to freeze biological materials to ultra-low
temperatures (usually at −196 ◦C in liquid nitrogen). Germplasm cryopreservation is
an essential tool for breeding programs and has been widely employed in plant [14] and
livestock [15] breeding. The applications include preservation of base populations to
maintain genetic diversity, preservation of each breeding generation to allow strategic
breeding (e.g., backcross), and long-term preservation of stabilized superior strains for
commercial use. Research on germplasm cryopreservation in mollusks was first reported
in sperm of the Pacific oyster Crassostrea gigas in 1971 [16]. To date, over 80 reports have
been published on molluscan germplasm cryopreservation [17], and the studied species
were all aquaculture species, primarily oysters [18], but also mussels, scallops, clams,
and abalones [17,19]. The targeted germplasm for cryopreservation included sperm [19],
oocytes, embryos, and larvae [20].

For Eastern oysters, germplasm cryopreservation has been studied in sperm [21–24]
and larvae [23,25] (Table 1). One laboratory protocol was developed by the author of
the current study through systematic evaluation of cryoprotectants, cooling rates, and
thawing temperatures [24], and has been used to produce inbred lines through fertilizing
cryopreserved sperm with oocytes from the same individual oysters after sex reversal [26].

http://www.vims.edu/research/units/centerspartners/abc/index.php
http://www.vims.edu/research/units/centerspartners/abc/index.php
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In the current study, this protocol was employed to establish a sperm repository of a base
population of C. virginica for a breeding project.

Table 1. Summary of germplasm cryopreservation studies in the eastern oyster Crassostrea virginica. In the current study,
the protocol by Yang et al. [24] was used for sperm cryopreservation for establishing the sperm repository. Abbreviations:
DMSO: dimethyl sulfoxide; NA: not available; LN: liquid nitrogen; PG: propylene glycol; ASW: artificial sea water. HBSS:
Hanks’ balanced salt solution.

Medium Cryoprotectant Equilibration Container Cooling Rate Thawing Fertilization Post-Thaw
Survival Reference

Sp
er

m

Seawater
pH = 7.0

DMSO at 5%
and 10% NA 2-mL

ampoule

L ◦C /min from 0
to −8 ◦C, at
5.5 ◦C/min

to −25 ◦C, then
LN

21 ◦C

34 mL
post-thaw
sperm plus

million
oocytes in

250 mL

1–5%
post-thaw

motility and
2%

fertilization

[21]

2.6× HBSS
DMSO 8% with
80 mM glycine,

55 mM NaHCO3

20 min at 0 ◦C
0.25-mL
plastic
straws

5 ◦C/min to −5,
−20, −40, or −80
◦C, then plunged

into LN

55–60 ◦C
water bath

0.25-mL
sperm to

200–900 eggs
in 300 mL
seawater

7–91%
post-thaw

fertility
[22]

ASW or Ca-free
HBSS

0, 5, 10, 15, 20,
and 25% (v/v) PG

with/without
0.25 M sucrose

20 min at 21 ◦C 5-mL
macrotubes

2.5 ◦C/min to
−30 ◦C, and then

plunged LN

70 ◦C for
15 s, 25 ◦C

until
thawing

Diluted in
Ca-free

HBSS at 1:1

57%
post-thaw

fertility
[23]

Ca-free HBSS
pH = 7.2

Methanol,
DMSO, and PG

at 10%

10, 20, 30, 40,
50 and 60 min,
mixing at 1:1

0.5-mL of
French and

CBS™ straw

1, 5, 10, 15, 20, 25,
30, and

40 ◦C/min from
5 to −80 ◦C

30, 40, and
50 ◦C

water bath

2-mL post
thaw sperm

mix with
50-mL

oocytes at
10,000/mL

18–95%
post-thaw

fertilization
10% DMSO

[24]

Ca-free HBSS,
pH = 7.2 10% DMSO 20 min after

mixing at 1:1
0.5-mL

French straw

15 ◦C/min from
5 to −80 ◦C, then

to LN

40 ◦C of
water bath

6 s

3–72%
fertility; self-
fertilization

0–43%

8 selfing
families

confirmed
[26]

Sw
im

m
in

g
La

rv
ae

ASW 15% PG with 0.25
M Sucrose 20 min at 21 ◦C 5-mL

macrotubes

2.5 ◦C/min from
15 to −30 ◦C,

hold for 5 min,
then to LN

70 ◦C for
15 s water

bath
NA 4 months old

(850 spat) [25]

HBSS
5, 10, 15, 20, 25%
PG with 0.25 M

Sucrose
20 min at 21 ◦C 5-mL

macrotubes

2.5 ◦C/min from
15 to −30 ◦C,

hold for 5 min,
then to LN

70 ◦C for
15 s water

bath
D-larvae 24%

D-larvae rate [23]

A germplasm repository requires representation and diversity. Representation of
a germplasm includes viability, quantity, and coverage of a species, population, landrace,
hybrid, or cultivar. Genetic diversity metrics, such as allele frequencies, gene diversity
indices, heterozygosity and number of alleles, and populations origins need to be consid-
ered to determine a sampling strategy [27]. For breeding programs, the actual contribution
of available individuals to a generation, measured as the effective number of breeders, is
the relevant parameter that needs to be maximized to avoid bottlenecks which constrain
genetic variability [28]. Genetic markers have been widely used to assess the contribution
of germplasm samples in conservation activities and use of plant germplasm. The diver-
sity of a germplasm repository for a breeding program is usually defined by its strategic
breeding plan.

To support the fast-growing oyster aquaculture industry in the Gulf of Mexico,
a selected breeding program was initiated in 2019. This breeding project aims to develop
Eastern oysters with superior genetic values for traits critical to the industry based on
Gulf genotypes in a family selection approach. A repository of genetic resources from
regional populations used as broodstock (or base populations) and selected lines adapted
to environmental conditions will be established to support the breeding project and future
oyster restoration efforts.

The goal of this study was to demonstrate the sperm sample collection, processing,
cryopreservation, and the data management plan involved in the establishment of a sperm
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germplasm repository of base populations. The supporting objectives were to: (1) develop
a data management plan for the sperm repository; (2) streamline the procedure for sample
collection, processing, and cryopreservation; (3) incorporate sperm quality analysis into
the procedure, and (4) archive the cryopreserved samples as a repository for future use in
the breeding program. It is expected that this report may serve as an example or template
for establishing germplasm repositories for breeding programs.

2. Materials and Methods
2.1. Broodstock Collection

Adult Eastern oyster Crassostrea virginica broodstock (n = 100–200) were collected from
17 locations along the Gulf of Mexico (Figure 1) from Florida to Texas in spring and summer
2020. After collection, broodstock were transported to the Auburn University Shellfish
Laboratory (AUSL) where they were held through summer in cages at the AUSL field site
(Grand Bay, AL, USA) to allow reproductive conditioning for a spawning event planned in
late August. No water quality data were recorded.

Figure 1. Schematic map showing Eastern oyster Crassostrea virginica 17 collection sites (in or-
der of decreasing longitude) along the Gulf of Mexico). Florida: Corrigan Reef (CR), Lone
Cabbage Reef (LR), Seahorse Key (SK), Oyster Bay (OB), Alligator Harbor (AH) and Pensacola
Bay (PB). Alabama: Alonzo Landing (AL) and Cedar Point (CP). Mississippi: Pascagoula (PS).
Louisiana: Sister Lake (SL) and Lake Calcasieu (LC). Texas: Lake Sabine (LS), West Galveston Bay
(WG), East Galveston Bay (EG), West Matagorda Bay (WM), East Matagorda Bay (EM) and San
Antonio Bay (SA).

2.2. Breeding Strategy

Spawning and breeding were performed at AUSL from 31 August to 3 September 2020.
A total of 102 male oysters were processed for sperm collection with six males from each
collection site. Two hundred and four full-sib families were produced according to 51 of
2 × 2 non-overlapping factorial mating sets. Sperm from each male fertilized oocytes from
two females from different collection sites, and oocytes from each female were fertilized
with sperm from two males to achieve the design matrix. After collection, sperm samples
were used for fertilization and surplus sperm was cryopreserved for the repository.

2.3. Sperm Collection

Oysters from a given collection site were randomly lined up in a tray and marked with a
permanent marker. Shell height, length, and width were recorded (Figure 2) using a digital
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caliper (0.01 mm accuracy, Mitutoyo, Aurora, IL, USA), and the total body weight of individu-
als was recorded using an electronic scale (0.0001 g accuracy, Mettler Toledo ME4002E).

Figure 2. The procedure of sperm collection, processing, cryopreservation, and post-thaw quality analysis. (1) Phenotype
measurement (from left to right): lining oysters, height and length standard, width standard, height, length, width,
and whole-body weight. (2) Fresh sperm collection: sampling a piece of gonad, observation for sex determination,
dissection of testis, filtering sperm suspension, sperm suspension in 50 mL tubes, determination of sperm concentration and
motility, sampling of adduct muscle for genotype, fertility test of fresh sperm. (3) Cryopreservation process: mixing with
cryomedium, packaging, sealing, arranging on freezing rack, loading into freezer, removing samples to liquid nitrogen after
cooling to −80 ◦C, sorting samples, and storage in dewars. (4) Post-thaw sperm analysis: thawing sample straw, releasing
sample into a 1.5 mL tube, post-thaw motility, dilution of post-thaw sample (100×), filter through 20 µm screen, staining
with SYBR-14/propidium iodide for membrane integrity analysis, and analysis using flow cytometer.

After measurements, each oyster was opened, and the upper shell was removed
carefully with a sterilized oyster knife to avoid contamination. Based on visual observation
of gonad development, oysters with better gonad development were kept for spawning. A
piece of gonad was sampled from each oyster and viewed by use of a compound microscope
at 100× magnification (Olympus, BX43, Tokyo, Japan), and sex was determined by the
presence of oocytes or sperm.

Testis development from each male oyster was photographed before dissecting. Testis
from each male was carefully stripped into a pre-weighed 100 mL beaker using a sterilized
scalpel, and testis weight was recorded. Sperm were released by crushing the testis into
Ca-free HBSS at an osmolality of 650 mOsmol/kg (Ca-free HBSS650) [29] at a ratio of 5 mL
of HBSS per 1 g testis. Sperm suspensions were filtered through a 70-µm Nitex screen
to remove debris into a 50 mL centrifugation tubes, and sperm volume was recorded.
Ca-free HBSS650 was prepared by adjusting the water volume from the standard recipe
of HBSS 1 L to around 450 mL without the addition of CaCl2 (0.137 M NaCl, 5.4 mM KCl,
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1.0 mM MgSO4, 0.25 mM Na2HPO4, 0.44 mM KH2PO4, 4.2 mM NaHCO3, and 5.55 mM
glucose, pH = 7.8) [29].

After sperm collection, one piece of adductor muscle (~1 cm3) was sampled, cut into
small pieces using a sterilized scalpel, and transferred into 95% ethanol in 5 mL centrifuged
tubes for DNA extraction and genotyping. The ethanol was replaced once at the end of the
sample day, and samples were stored at −20 ◦C until processing.

2.4. Determination of Sperm Concentration

Sperm concentration was determined by use of a hemocytometer (Bright-Line™
Counting Chamber, Fisher Scientific). Specifically, the sperm sample was diluted 100 times
(2 µL sperm in 190 µL fresh seawater plus 8 µL ethanol). After mixing well, a 10 µL
sample was loaded on the hemocytometer, and sperm concentration was counted at a
200× magnification using a microscope. The original sperm concentration was calculated
and recorded.

2.5. Estimation of Fresh Sperm Motility and Fertility

Sperm from Eastern oysters (and most molluscan bivalves) begin to swim (become
activated) when suspended in sea water or buffers at suitable osmolarities and can swim
continuously for as long as 5 h [2]. In this study, sperm motility was estimated using
visual observation using a microscope at 200× magnification within 1 h after suspending
in Ca-free HBSS650. Specifically, 1 µL of sperm suspension was sampled on a slide, and
sperm motility was observed and recorded immediately following the addition of 9 µL
fresh seawater (650 mOsmol/kg) to dilute the sperm (Figure 2).

Fertilization was conducted by gently mixing sperm and oocytes to achieve a ratio of
10 spermatozoa per oocyte (the ratio was monitored by observing spermatozoa surrounding
oocytes under a microscope at 100× magnification). Oocyte collection was performed
by stripping gonads. Gonads were stripped by gently scrapping oocytes with a scalpel
directly in filtered seawater (T = 26–28 ◦C). The oocyte suspension was filtered through
a 250 µm screen to remove large pieces of ovarian tissues, and oocytes were collected on
a 20 µm screen and washed into a 4 L beaker in a 500 mL volume, where they were held
for a 30 min hydration period. After mixing sperm and oocytes, the fertilized eggs were
sampled every 2–5 min and observed using microscopic at 100× magnification until the
first polar body in fertilized eggs was observed (10–20 min after mixing sperm and oocytes).
Fresh seawater was then added to a volume of 4 L to reduce the density of fertilized eggs
and ensure water quality remained adequate throughout embryo development. At the
two-cell stage (about 1 h post-fertilization) or beyond, the embryo suspension (1 mL) was
sampled after mixing, and the fertilized egg (with two or more embryonic cells visible)
and total eggs were counted by use of a 1 mL Sedgewick Rafter counting chamber. The
fertilization rate was calculated as the percentage of fertilized eggs from the total eggs. The
same number of fertilized eggs from each family was combined into one group from each
day of crosses for ‘common garden’ culture.

2.6. Sperm Cryopreservation Process

After fertilization was accomplished, the surplus sperm suspension from each male
was processed for cryopreservation (Figure 2). Based on the surplus sperm volume and
concentration, sperm concentration was adjusted to 1 × 10 9 cells/mL for cryopreser-
vation [24]. If the concentration was below 1 × 10 9 cells/mL, no sperm concentration
adjustment was needed.

Sperm cryopreservation was performed by following the protocol established in our
previous research [24]. In a single step, sperm suspensions were mixed with the same
volume of pre-made 20% dimethyl sulfoxide (DMSO) in Ca-free HBSS650 (yielding a final
concentration of 10%), and the mixture was packaged into pre-labelled 0.5 mL straw using
a filling station (IMV Technologies, Maple Grove, MN, USA). Straws were sealed by use
of an ultrasonic sealer (Ultra-seal 21, Minitube, Verona, WI, USA) or an impulse heat



Animals 2021, 11, 2836 7 of 19

sealer (AIE-105T, American International Electric, Inc., City of Industry, CA, USA). After
a 20 min equilibration at room temperature, the sample straws were cooled by use of an
aeration freezing system developed for field use (Huo et al., in review) at a cooling rate
of 10–15 ◦C/min to reach −80 ◦C (temperature was monitored during cooling using a
probe inserted within one straw alongside the sample straws). When samples reached
−80 ◦C, the frozen samples were removed from the freezer, plunged into liquid nitrogen,
and sorted into Daisy goblets (IMV Technologies, Maple Grove, MN, USA) for long-term
storage in a liquid nitrogen Dewar.

2.7. Post-Thaw Sperm Quality Analysis

Post-thaw sperm viability, including motility and membrane integrity, were estimated
after 3 months of storage in liquid nitrogen (Figure 2). Following the protocol [24], sample
straws were removed from liquid nitrogen and immediately submerged into a water bath at
50 ◦C for 6 s. Thawed sperm straws were released into separate 1.5 mL centrifuge tubes on
ice by cutting one end of the straw after wiping the straws dry with tissue paper. Post-thaw
sperm motility was estimated by visual observation by use of a microscope (Olympus,
BX43, Tokyo, Japan), as described above for fresh sperm assessment.

Plasma membrane integrity was analyzed as a parameter of sperm quality. The
LIVE/DEAD® SYBR-14/propidium iodide (PI) assay kit (Invitrogen, ThermoFisher Sci-
entific, Eugene, OR, USA) was used by following the manufacturer’s instructions. Imme-
diately after thawing, post-thaw sperm samples were diluted 100 times (10 µL post-thaw
sperm plus 990 µL HBSS650, yielding a concentration of 1–5 × 106 cells/mL) and filtered
through a 20 µm screen. A 500 µL sample was stained with 100 nM SYBR-14 and 12 µM
PI for 10 min in the dark and analyzed using a flow cytometer (Attune™, Thermo Fisher
Scientific, Eugene, OR, USA) equipped with 488 nm excitation lasers. Before analyzing
samples, the flow cytometer was tested by using fluorescent validation beads to ensure all
quality parameters were passed. Events from a 50 µL sample were collected at a flow rate
of 25 µL /min.

Flow cytometry data were analyzed using the manufacturer-provided software (At-
tune™ NxT Software). The sperm population was gated to exclude additional cell debris
based on plots displaying forward scatter (FSC) vs. side scatter (SSC). Post-thaw sperm
concentration was recorded using the gated total cell number and sample volume recorded
by the flow cytometer after conversion to account for the dilution factor. Gated cells were
analyzed on a scatter plot of BL1 (SYBR 14) vs. BL3 (PI) with fluorescence compensation
(BL1 was compensated by BL3 with 0%, and BL3 was compensated by BL1 with 7.89%)
to reduce spectral overlap. The sperm cells with intact plasma membranes were stained
with SYBR-14, whereas cells stained with PI had damaged plasma membranes. Membrane
integrity was expressed as the percentage of cells stained with SYBR-14 over the total cells
stained with SYBR-14 and PI.

2.8. Data Analysis

Data collection, including shell metrics, whole body weight, sperm production, fer-
tilization rate, motility, and membrane integrity were expressed as mean ± standard
deviation. Data analysis was performed by JMP pro software (version 15.0, SAS Institute,
Cary, NC, USA). Tests of homogeneity of variance were conducted and percentage data
were arsine-transformed for normalization before analysis. ANOVA and correlations were
used for data analyses. Tukey’s least significant difference was used to make post hoc com-
parisons between different combinations when significant effects were found. Differences
were considered significant at p < 0.050.

The authors confirm that the U.S. National Research Council’s guidelines for the
Care and Use of Laboratory Animals were followed. No IACUC-approved protocol was
required for invertebrates.



Animals 2021, 11, 2836 8 of 19

3. Results
3.1. Data Management Plan in the Sperm Repository of Base Populations

The purpose of this sperm repository was to preserve the base population for an oyster
breeding program. A strategic data management plan was developed for this repository.
The information recorded was grouped into six categories (Figure 3). For each category,
data parameters recorded during collection were as follows.

Figure 3. Schematic procedure for Eastern oyster Crassostrea virginica sperm collection and processing for breeding and
cryopreservation. Parameters recorded during the process are reported below each individual step.

(1) Sample collection metadata

Sample collection information recorded included the following: collection site geo-
graphic information (latitude, longitude, and name); collection date (year, month, day);
total oyster number obtained at the location during the collection event; basic environ-
mental conditions (temperature, salinity, pH values, oxygen concentration); oyster source
(wild or farmed, aquaculture method such as bottom cages, floating cages, floating bags,
or long-line cages); and collectors’ names. The information of each male and female
used in this breeding program was determined and recorded in the program database
before spawning.

(2) Phenotypic characteristics

Phenotypic characteristics of each oyster were recorded in the sperm repository, includ-
ing shell metrics (height, length, and width) and body weight. The gonad development
of each male oyster was photographed and attached to each individual oyster as one
qualitative phenotypic parameter.

(3) Fresh sperm information

Parameters for fresh sperm information (quantity and quality) included testis weights,
and gonad index (description of developmental condition), total sperm production, fresh
sperm motility, and fresh sperm fertility indicated by “fertilization rate”. If the condition
permits, the fresh sperm membrane integrity should be measured and recorded.

(4) Linking to genetic and genomic information

Tissue samples for genetic analysis taken at the time of sperm collection from each
male and female brooder will be used for future genotypic analysis. A unique identification
system was used to label straws and genetic samples ensured linking of sperm samples
with genetic data when they were available.

(5) Sperm cryopreservation

Parameters for sperm cryopreservation of each male oyster included the working site,
date, sample labels (matching with the oyster nomenclature), sperm concentration, quantity,
straw number, color, cryopreservation protocol (including cryoprotectants, equilibration
time, cooling rates), storage location (including goblet name, location, Dewar number), and
sample inventory.
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(6) Post-thaw sperm information

Post-thaw parameters included thawing temperature, post-thaw amendment strategy,
post-thaw sperm motility, membrane integrity, sperm concentration, and sperm fertility. If
possible, sperm fertility needs to be confirmed as a post-thaw sperm quality parameter.

3.2. Phenotypic Characteristics

A total of 102 male oysters (17 sites with 6 males from each site) were included in
this sperm repository. The shell metrics and body weight (mean ± SD) from six male
oysters collected from each site were calculated and listed in Table 1. Overall, these male
oysters had an average shell height of 90.11 ± 7.29 mm ranging from 80.33 to 111.87 mm,
shell length of 57.80 ± 7.57 mm ranging from 46.57 to 73.40 mm, and shell width of
34.16 ± 6.31 mm ranging from 25.36 to 43.30 mm. The overall average body weight was
141.21 ± 64.46 g ranging from 72.66 to 280.50 g (Table 2). All oysters used were larger than
the market size (76.2 mm, 3 inches of height).

3.3. Fresh Sperm Production and Motility

Based on visual observation, male oysters were overall in poor gonad development
condition (Figure 4). The gonad development condition is shown with one photograph
from each collection site. Overall, testis weight (mean ± SD, n = 102 male oysters) was
2.08 ± 0.71 g ranging from 1.19 to 3.54 g. Gonadosomatic index (percentage of testis weight
out of the total body weight) was 1.77 ± 0.95% ranging from 0.50% to 3.5%.

Figure 4. Photographs of gonad development condition of male Eastern oysters Crassostrea virginica included in the sperm
repository. One male is presented out of the six males from each of the 17 collection sites along the Gulf of Mexico coast.
One example of a fully developed gonad condition of an Eastern oyster (collected from Cedar Key in Florida in April 2021)
is present here as a comparison.
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Table 2. Eastern oyster Crassostrea virginica collection location, shell metrics, whole body weight, testis weight, gonadosomatic index (percentage of gonad weight out of the total body
weight), total sperm production, and fresh sperm motility (%) used for breeding program and sperm cryopreservation. Significant differences in fresh sperm motility among different
collection sites are labeled with different letters (a–e) (p < 0.050). FL: Florida; AL: Alabama; MS: Mississippi; LA: Louisiana; TX: Texas.

State Location Abb Height
(mm) Length (mm) Width (mm) Weight

(g)
Testis Weight

(g)
Gonadosomatic

Index (%)
Sperm

Volume (mL)

Sperm
Concentration

(×109

cells/mL)

Sperm
Production

(×1010 cells)

Fresh Sperm
Motility (%)

FL

Corrigan Reef CR 93.37 ± 6.57 51.01 ± 3.74 28.63 ± 4.32 93.86 ± 12.11 1.52 ± 0.00 0.75 ± 0.42 9.67 ± 4.92 0.09 ± 0.05 0.10 ± 0.11 11 ± 8 e

Lone Cabbage Reef LR 94.43 ± 8.43 51.42 ± 4.75 25.36 ± 1.83 78.58 ± 7.19 1.56 ± 0.41 1.00 ± 0.32 13.33 ± 6.32 0.60 ± 0.36 0.91 ± 0.90 23 ± 11 c,d,e

Seahorse Key SK 87.37 ± 5.50 50.72 ± 2.84 30.52 ± 3.07 80.53 ± 9.63 1.50 ± 0.70 0.70 ± 0.27 11.75 ± 4.57 0.27 ± 0.13 0.31 ± 0.17 14 ± 4 d,e

Oyster Bay OB 90.26 ± 10.56 56.48 ± 5.74 30.09 ± 5.78 106.30 ± 36.27 3.18 ± 1.57 2.50 ± 0.71 22.42 ± 9.08 0.73 ± 0.49 1.59 ± 1.07 70 ± 20 a

Alligator Harbor AH 85.68 ± 11.75 48.38 ± 3.63 29.01 ± 3.69 79.49 ± 25.00 2.33 ± 1.26 2.00 ± 0.71 15.58 ± 6.25 1.24 ± 0.63 1.94 ± 1.09 50 ± 24 a,b,c,d

Pensacola Bay PB 80.70 ± 7.33 46.57 ± 7.66 27.43 ± 7.89 72.66 ± 23.28 1.62 ± 0.94 1.17 ± 0.26 12.67 ± 6.05 0.44 ± 0.22 0.47 ± 0.18 21 ± 22 d,e

AL
Alonzo Landing AL 88.41 ± 6.69 54.44 ± 4.58 27.84 ± 4.90 78.82 ± 11.09 1.39 ± 0.44 / 11.67 ± 3.40 1.40 ± 0.17 1.61 ± 0.43 43 ± 29 a,b,c,d,e

Cedar Point CP 85.48 ± 9.16 63.28 ± 2.98 34.61 ± 5.65 152.11 ± 33.08 2.69 ± 0.57 3.25 ± 1.33 15.08 ± 2.87 2.01 ± 1.12 3.11 ± 1.83 47 ± 5 a,b,c,d,e

MS Pascagoula PS 80.33 ± 5.00 53.63 ± 5.10 30.74 ± 5.05 105.95 ± 28.91 3.54 ± 1.71 3.25 ± 0.76 20.00 ± 7.27 1.39 ± 0.50 2.82 ± 1.52 60 ± 27 a,b,c

LA
Sister Lake SL 111.87 ±

13.75 73.40 ± 8.34 42.31 ± 4.80 280.50 ± 112.44 2.09 ± 1.22 1.00 ± 0.45 13.58 ± 8.69 0.33 ± 0.24 0.43 ± 0.34 24 ± 19 b,c,d,e

Lake Calcasieu LC 91.96 ± 14.67 67.64 ± 11.01 40.93 ± 6.58 211.38 ± 87.83 2.11 ± 0.86 2.25 ± 0.29 18.08 ± 3.67 0.67 ± 0.13 1.19 ± 0.30 40 ± 0 a,b,c,d,e

TX

Lake Sabine LS 92.51 ± 11.17 60.67 ± 5.45 43.40 ± 10.45 221.75 ± 88.11 1.55 ± 0.81 1.08 ± 0.38 13.08 ± 4.34 0.60 ± 0.25 0.78 ± 0.40 62 ± 13 a,b

West Galveston WG 96.31 ± 16.45 62.71 ± 6.23 39.90 ± 7.25 198.19 ± 80.14 2.00 ± 0.61 1.83 ± 0.88 10.67 ± 2.66 0.29 ± 0.14 0.30 ± 0.14 22 ± 12 c,d,e

East Galveston EG 83.95 ± 5.86 57.40 ± 5.95 35.13 ± 4.29 152.51 ± 27.26 3.27 ± 1.08 2.75 ± 0.87 22.25 ± 4.12 0.73 ± 0.18 1.60 ± 0.40 73 ± 5 a

West Matagorda WM 89.44 ± 6.52 62.36 ± 7.09 41.57 ± 5.08 169.60 ± 28.76 1.75 ± 0.54 1.17 ± 0.26 12.00 ± 3.03 0.21 ± 0.15 0.23 ± 0.15 24 ± 22 b,c,d,e

East Matagorda EM 92.30 ± 14.47 52.70 ± 11.46 33.01 ± 4.07 115.33 ± 17.07 1.19 ± 0.32 1.50 ± 0.89 15.50 ± 5.15 0.58 ± 0.44 0.94 ± 0.78 41 ± 34 a,b,c,d,e

San Antonio SA 92.02 ± 11.50 66.97 ± 6.13 42.34 ± 2.99 213.17 ± 65.58 2.03 ± 1.55 1.17 ± 0.52 13.00 ± 1.87 0.41 ± 0.14 0.53 ± 0.18 27 ± 16 b,c,d,e

Mean ± SD 90.11 ± 7.29 57.80 ± 7.57 34.16 ± 6.31 141.21 ± 64.46 2.08 ± 0.71 1.77 ± 0.95 14.44 ± 3.39 0.68 ± 0.52 1.05 ± 0.89 38 ± 20
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Sperm concentration averaged 0.68± 0.52× 109 cells/mL and ranged from 0.09 × 109 cell/mL
to 2.01 × 109 cells/mL. Total sperm production averaged 1.05 ± 0.89 × 1010 cells and ranged from
0.10 × 1010 cells in oysters collected from CR to 3.11 × 1010 cells in oysters collected from CP
(Table 2). Sperm motility averaged 38 ± 20% and ranged from 11 ± 8% in oysters collected from
CR to 75 ± 5% in those collected from EG (Table 2).

3.4. Fertility Test of Fresh Sperm

Fresh sperm from each male was used to fertilize oocytes from two females. The
fertilization rates observed for the fertilizations performed with each of the six males used
from each collection site were calculated. Overall, the fertilization rates varied significantly
among sample collection sites (Figure 5), averaging 34 ± 18% across all locations, and
ranged from 5% to 75% for individual locations. The highest fertilization rates (75 ± 11%
and 66 ± 20%) were obtained using sperm from oysters sampled at AL and CP (Figure 5).
The lowest average fertilization rates (from 5% to 25%) were observed during fertilizations
using sperm from oyster samples collected at SK, LR, OB, WG, and EM (Figure 5).

Figure 5. Fertilization rate (%) observed using fresh sperm of Eastern oysters Crassostrea virginica
(n = 6, each male was used to cross two females) from different collection sites in the Gulf of Mexico.
Groups labeled with the same letters (a–f) are not statistically different (p > 0.050).

3.5. Post-Thaw Sperm Viabilities

The post-thaw sperm motility (PTSM) ranged from 2% to 16% with an average of
6 ± 4% across collection locations. The post-thaw sperm motility of male oysters varied
greatly between collection sites. It averaged 16 ± 10% for oysters collected at PS and
12 ± 6% for those obtained at EG. The PS group had significantly higher PTSM values than
those recorded at other locations (Figure 6A). PTSMs for oysters collected at the SK, LR, OB,
AH, CR, PB, AL, WG, WM, and LS locations ranged from 2–6% and were significantly lower
than those at other locations. Based on our experience with cryopreserved oyster sperm,
the PTSM is typically in the range of 20–50% by visual observation. The low post-thaw
sperm motility in this study likely reflected the poor gonad development condition at the
time of strip-spawning.
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Figure 6. Post-thaw sperm quality analyses in Eastern oysters Crassostrea virginica from 17 collection
sites along the Gulf of Mexico. (A). Post-thaw sperm motility (PTSM, %); (B). Post-thaw sperm
concentration (PTSC, cells/mL), and (C). Post-thaw sperm membrane integrity (PTSMI, %). Groups
labeled with the same letters (a–f) are not statistically different (p > 0.05).

The post-thaw sperm concentration ranged from 2.35 ± 1.29 × 108 cells/mL to
10.61 ± 3.59 ×108 cells/mL and averaged 6.10 ± 1.98 × 108 cells/mL across all collec-
tion locations. After thawing, the sperm concentration varied greatly between locations.
The post-thaw sperm concentration was on average 10.61 ± 3.59 × 108 cells/mL at CP,
which was higher than those at other collection sites (Figure 6B).

The post-thaw sperm membrane integrity ranged between 39 and 62% with an average
of 52 ± 8% across all collection locations. The post-thaw sperm membrane integrity ranged
from 39 ± 10% to 42 ± 4% at the SK, LR, OB, EG, and WM locations. These values were
significantly lower than those at CR, PB, AL, PS, EM, WG, SA, LS, SL, and LC which ranged
from 54 ± 11% to 62 ± 4% (Figure 6C).

3.6. Correlation between Parameters

Significant positive correlations were found among shell metrics and body weight
(p < 0.001) (Table 3). However, testis weight was not correlated with the shell metrics
(p ≥ 0.323) or body weight (p = 0.187) (Table 3), likely reflecting the poor overall gonad
development of these oysters.
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Table 3. The correlation coefficients (R values) (upper panel) and p-values (lower panel) among shell metrics (mm), whole
body weights (g), testis weight (g), total sperm production (cells), fresh sperm fertility (%), post-thaw sperm motility (%),
post-thaw sperm membrane integrity (SMI, %), and post-thaw sperm concentration (cells/mL) of Eastern oysters Crassostrea
virginica across all sampling locations.

Parameters
Phenotypes Fresh Sperm Quantity and Quality Post-Thaw Sperm Viability

Height Length Width Weight Testis
Weight

Sperm
Production Motility Fertilization

Rate Motility SMI Sperm
Concentration

Height 1
Length 0.436 1
Width 0.419 0.687 1
Weight 0.658 0.814 0.838 1

Testis weight 0.050 0.111 0.084 0.148 1
Sperm Production −0.256 0.005 −0.158 −0.122 0.463 1

Fresh sperm motility −0.213 −0.041 −0.017 −0.005 0.405 0.550 1
Fertilization rate −0.148 0.081 0.048 0.000 −0.083 0.127 −0.003 1

Post-thaw sperm motility −0.177 0.071 0.058 0.057 0.368 0.406 0.446 −0.007 1
Post-thaw SMI 0.097 0.079 0.126 0.150 −0.013 0.138 0.061 0.165 0.303 1

Post-thaw sperm
concentration −0.092 0.107 −0.040 0.044 0.186 0.355 0.183 0.066 0.295 −0.042 1

Height <0.001
Length <0.001 <0.001
Width <0.001 <0.001 <0.001
Weight <0.001 <0.001 <0.001 <0.001

Testis weight 0.658 0.323 0.455 0.187 <0.001
Sperm Production 0.021 0.963 0.158 0.279 <0.001 <0.001

Fresh sperm motility 0.057 0.716 0.880 0.967 <0.001 <0.001 <0.001
Fertilization rate 0.188 0.474 0.673 0.997 0.460 0.260 0.977 <0.001

Post-thaw sperm motility 0.115 0.528 0.609 0.613 <0.001 <0.001 <0.001 0.952 <0.001
Post-thaw SMI 0.390 0.484 0.262 0.180 0.910 0.219 0.587 0.141 0.006 <0.001

Post-thaw sperm
concentration 0.412 0.343 0.724 0.694 0.097 0.001 0.102 0.560 0.008 0.710 <0.001

Testis weight, sperm production, and fresh sperm motility were significantly positively
correlated (p < 0.001, Table 3), indicating gonad development is critical for obtaining a good
quantity and quality of fresh sperm. However, the fresh sperm fertility rate did not show
any correlations with oyster phenotypes (shell metrics and body weight) (p ≥ 0.188), fresh
sperm production, or motility (p ≥ 0.260).

PTSM was correlated with the post-thaw sperm concentration (p = 0.008) but was not
correlated with the post-thaw sperm membrane integrity (p = 0.710).

Between fresh and post-thaw sperm, post-thaw motility was significantly correlated
with the testis weight (p < 0.001), fresh sperm production (p < 0.001) and fresh sperm
motility (p < 0.001), but not fresh sperm fertilization rate (p = 0.952) (Table 3). Post-thaw
membrane integrity did not correlate with fresh sperm production (p = 0.219), fresh sperm
motility (p = 0.587), or fresh sperm fertility (p = 0.141).

4. Discussion

In general, a germplasm repository must maintain the same genetic diversity and
genetic structure as the source of germplasm, therefore, sample collections need to maintain
the same allelic and genotypic frequencies as the original population [30]. Germplasm
repositories could be in vivo (e.g., aquarium or research populations in a breeding program)
or in vitro (e.g., collections of cryopreserved germplasm) [30]. In vivo germplasm repos-
itories face challenges, such as loss of genetic diversity, inbreeding, genetic adaptations
to captivity, and accumulation of deleterious genes, and can become costly (personnel
and space). This is in contrast to in vitro germplasm through cryopreservation which can
keep samples in their original form indefinitely (cryopreservation), and thus the genetic
diversities remain constant even with small populations in which genetic drift must be a
constant consideration over generations [31,32].

4.1. Strategies for Germplasm Collection for Germplasm Repositories

To establish a germplasm repository, the first thing to clarify is the goal of the reposi-
tory, such as conservation of genetic biodiversity, endangered species, breeding popula-
tions, or commercial populations [30]. A clear goal will greatly benefit the establishment of
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germplasm collection strategies and of the data management plan. Strategies for sample
collection for a germplasm repository could include various approaches, such as survey,
exploration, and rescue missions, targeting the capture of the highest possible amount of
genetic diversity between and within populations with a minimum number of samples. In
the current study, the sperm repository was for preservation of the base populations of a
breeding program which intended to create a genetically diverse mosaic by incorporating
a total of 102 male and female oysters from 17 sites (six oysters from each site) along the
coast in the Gulf of Mexico. All 102 males were included in this sperm repository.

4.2. Data Management Plan for Oyster Sperm Repository

For proper use and security of a germplasm repository, a data management plan,
including parameters to be collected and managed, definitions and rules for data collec-
tion, entry, storage, and sharing need to be in place before sample collection [33]. The
FAIR principles (Findable, Accessible, Interoperable, and Re-usable) for scientific data
management [34] can be applied for germplasm repositories. For animal [35] and plant
germplasm [36], data management plans have been well-developed, and for aquatic ani-
mals, the data management plan in zebrafish Danio rerio (personal communication with
the Zebrafish International Resource Center) has also been well-established. Based on the
existing data and goal of this sperm repository in the current study, the data management
plan was developed with six categories (Figure 3), including broodstock oyster data (such
as species, breed, line, registration number, pedigree information, phenotypic and genomic
information) and germplasm (such as viability, number of doses, location in the cryobank)
which were digitally recorded.

Germplasm quality analysis is an important aspect for a germplasm repository.
A comprehensive review has summarized the current sperm analysis methodology, in-
cluding new emerging genomic tools [37]. Production of reactive oxygen species (ROS)
was considered as a major factor causing sperm cell damage [38], but it is debatable, since
cell damage brought by cryopreservation was more severe than those brought by ROS
(Yang et al., in review). Considering sperm cell structures and possible impairments during
cryopreservation, other sperm quality analyses include: (1) Plasma membrane: membrane
integrity, changes in membrane fluidity and components, lipid peroxidation, and pro-
tein oxidation; (2) mitochondria: sperm motility and velocity, mitochondrial membrane
potential, and ATP release; (3) DNA: chromatin fragmentation, methylation of DNA, cross-
linking of DNA, and nitrogen base oxidization; and (4) RNA: oxidation and destabilization.
In this study, sperm production, motility, fertility, and membrane integrity were employed
for sperm quality evaluation.

Linking genetic data with germplasm stored in a repository is a fundamental com-
ponent of the data management plan. In a breeding program, genetic information comes
from the phenotype and genotype of the male preserved and available information on the
genotypes and phenotypes of its ascendants, collaterals, and descendants. It can provide
insight into genetic and epigenetic changes [39]. In zebrafish, cryopreservation was found
to cause molecular alterations in key genes and transcripts undetectable by traditional
assays [40]. Additionally, genotyping data could serve as a relevant output in the up-
coming years to reveal whether the natural variability of the cryopreserved populations
still maintains its value for the generated offspring and verify that it does not have any
genotypic and/or phenotypic destabilizing effects. In plant germplasm cryopreserva-
tion, an evolving concept of “cryo-bionomics” was proposed [39] with two study aspects,
including the linkage between cryoinjury and stability in vitro and the functionality of
plants recovered from cryopreserved germplasms after they were reintroduced into natural
environments. Specifically, analysis of genotyping data can detect the genetic variations at
each breeding generation.
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4.3. The Season for Oyster Sperm (Gamete) Collection and Cryopreservation

Gamete collection (quantity and quality) is reliant on the gonad development condi-
tion. In this work, the gonad development condition was poor and led to a low quantity
and quality of gametes for the repository. Natural reproduction of molluscan bivalves is sea-
sonal and involves gonadal development, sexual maturity, release of gametes (spawning),
and re-generation of gonads. The timing of these reproductive stages varies depending on
the species and geographical distribution [41]. For Eastern oysters, spawning usually oc-
curs in the spring with increasing temperatures, continuing sporadically through summer,
and, in warm-water regions, ending with a minor spawning peak in the fall. Control of
reproduction in molluscan bivalves involves a complex of exogenous factors, such as tem-
perature, food, salinity, air-drying, and endogenous factors related to the neuro-endocrine
cycles [42]. Temperature is probably the most recognized factor that influences gonad de-
velopment [43]. Food availability (quantity and quality) is another important factor acting
in conjunction with temperature [2]. Regulation of the gonadal development is believed to
be controlled by the endogenous sensory receptors on nerve ganglia [44]. Along the coast
of the Gulf of Mexico, Eastern oysters have a primary spawn in the spring from March to
May, spawn sporadically through summer following by another secondary peak in fall
from August to September (about 2–4 weeks) followed by more sporadic spawning in late
fall. Under culture conditions, of course, reproductive conditions may be manipulated
through ‘conditioning’, relying heavily on phased temperature changes and sufficient
food availability.

In this study, conditioning of gonad development was not used, instead allowing
the broodstock oysters to ‘ripen’ naturally in the field. However, these oyster samples
were collected from different locations in spring and summer 2020, and they could have
faced changes in the environmental conditions (such as salinity) following transfer from
collection sites to maturation sites and may not have been able to adapt to new conditions
and develop their gonads between transfer and spawning. For molluscan bivalves, it is
generally believed that regeneration of gonad development needs to experience a sufficient
time period, often a seasonal period, for energy accumulation [45,46].

Sexual maturity in oysters (and most bivalves) could be evaluated through visual
observation of gonad size or color or biopsy of gonads for gamete observation [47]. The
fully developed gonad of Eastern oysters could be over 10–12 mm in thickness accounting
for 40% of the total body volume [45], and the gonoducts could be observed visually
(Figure 4, fully developed gonad). In the current study, the spawning was performed
from 31 August to 4 September 2020 rather than during the peak spring spawning season
due to delays imposed by COVID-19 pandemic protocols. Although these oysters were
temporarily cultured in the AUSL oyster grow-out site, the gonads were overall in poor
condition and maturation status varied widely among oysters from the different collection
sites. Additionally, testis weight, sperm production, and fresh sperm motility are all
correlated regarding the gonad development condition. In our experience, fresh sperm
collected from fully developed males (e.g., the one in Figure 4) usually has over 90%
motility and sperm concentration can reach over 2–5 × 109 cells/mL when suspending
in seawater at five times the testis weight [24,48]. Therefore, our opinion is that the poor
gonad condition limited the success of the cryopreserved sperm.

4.4. The Method to Collect Oyster Sperm (Gametes) in Oysters for Germplasm Repository

Spawning behavior in bivalves is significantly influenced by the surrounding wa-
ter [46], and thermal induction of spawning has proven to be a successful approach [43]. To
date, manipulation of temperatures has become a routine practice in commercial hatcheries
for accelerating the sexual maturity of broodstock and inducing spawning in many mol-
luscan bivalves [41]. With further understanding of the mechanism for the control of
gonad development and spawning, more methods were used to trigger the spawning
activity [41,49], and can be summarized as: (1) physical methods, such as an increase of
temperature or salinity, water flow, and air-drying; (2) chemical methods, such as injection
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of serotonin, hydrogen peroxide, and sex steroids; and (3) biological methods, such as
the addition of heat-treated sperm or crushed testis or microalgae [50,51]. Regardless of
induction methods, successful spawning and gamete collection requires sexually mature
broodstock from wild populations or hatchery-produced lines during natural maturation
and spawning seasons or after culture in controlled conditions for acceleration of gonad
development (usually termed “conditioning broodstock”).

For Crassostrea oysters (but not most scallops, clams, or mussel species), oocytes
collected from mature gonads by physical dissection (termed “strip spawning”) can be
fertilized by stripped sperm, and fertilized eggs can develop normally [52]. Thus, strip
spawning has become a routine method for oyster commercial triploid seed production and
breeding programs because this method allows convenient gamete collection and mating
at an arranged time. However, gametes collected by strip spawning may include immature
gametes and yield low fertilization. In this study, gamete collection was conducted by
strip spawning. Although sperm was collected, the low sperm production, motility, and
fertility may be largely accounted for by the inclusion of immature gametes from the poor
condition of gonad development.

4.5. Streamlined Procedure for Sperm Sample Collection, Processing, and Cryopreservation

The entire process of sperm collection, processing, and cryopreservation described
in this study was performed by three staff members after oysters were opened and male
oysters were identified by two other staff. Fertilization tests of fresh sperm were performed
by separate crew members focused on oocyte collection and fertilization management for
the spawning. Before the spawning event, sample nomenclature and breeding strategies
were established. Accordingly, sample straws, beakers for testis and sperm suspension,
50 mL graded centrifugation tubes (for holding filtered sperm), and 1.5 mL microcentrifuge
tubes for sperm dilution and hemocyte counting were all labelled prior to the spawning
day. In addition, a pre-formatted spreadsheet was prepared for entry of daily data records
and calculations. With these streamlined arrangements, a total of up to 30 oysters were
processed (with a total of 1200–2400 straws) per day. The most time-consuming step was
sperm collection, which included testis stripping, sperm suspension, filtering, concentration
determination, and motility estimation. Additionally, since the spawning was performed in
a field hatchery, sample cooling was performed using a cost-effective and portable aeration
freezing system [53]. This home-made system consists of a styrofoam box as a cooling
chamber and an aeration system to control the liquid vapor temperature, and can cool
40 or 100 straws per cooling cycle in 10–15 min. A smooth workflow of loading sperm
suspension into straws, sealing sample straws, and cooling sample straws was achieved.

5. Conclusions

Overall, this study described a streamlined procedure of oyster sperm collection,
processing, and cryopreservation for establishing a sperm repository. This sperm repository
included a total of 102 male oysters from 17 collection sites along the Gulf of Mexico coast
which served as male founders for a breeding program. The data management plan for the
sperm repository was developed, including oyster phenotype, genotype, sperm production,
fresh sperm quality, cryopreservation, and post-thaw quality. This work offers some
suggested techniques and strategies as a template for constructing more oyster germplasm
repositories to serve breeding programs and for the conservation of natural resources.
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