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Simple Summary: In this study, we analyzed the plasma carboxyl-metabolome in beef steers with
divergent average daily gain (ADG). Several short chain fatty acids were greater in beef steers
with greater ADG. Conversely, several long chain fatty acids were greater in beef steers with lower
ADG. Pathway analysis of the differential metabolites revealed alterations in abundance/activities
of enzymes involved in fatty acid metabolism in the liver. The results of this study demonstrated
that beef steers with divergent ADG had altered plasma carboxyl-metabolome, which is possibly
caused by altered abundances and/or activities of enzymes involved in fatty acid oxidation and
biosynthesis.

Abstract: We applied an untargeted metabolomics technique to analyze the plasma carboxyl-
metabolome of beef steers with divergent average daily gain (ADG). Forty-eight newly weaned
Angus crossbred beef steers were fed the same total mixed ration ad libitum for 42 days. On day 42,
the steers were divided into two groups of lowest (LF: n = 8) and highest ADG (HF: n = 8), and blood
samples were obtained from the two groups for plasma preparation. Relative quantification of
carboxylic-acid-containing metabolites in the plasma samples was determined using a metabolomics
technique based on chemical isotope labeling liquid chromatography mass spectrometry. Metabolites
that differed (fold change (FC) ≥ 1.2 or ≤ 0.83 and FDR ≤ 0.05) between LF and HF were identified
using a volcano plot. Metabolite set enrichment analysis (MSEA) of the differential metabolites
was done to determine the metabolic pathways or enzymes that were potentially altered. In total,
328 metabolites were identified. Volcano plot analysis revealed 43 differentially abundant metabolites;
several short chain fatty acids and ketone bodies had greater abundance in HF steers. Conversely,
several long chain fatty acids were greater in LF steers. Five enzymatic pathways, such as fatty acyl
CoA elongation and fatty-acid CoA ligase were altered based on MSEA. This study demonstrated
that beef steers with divergent ADG had altered plasma carboxyl-metabolome, which is possibly
caused by altered abundances and/or activities of enzymes involved in fatty acid oxidation and
biosynthesis in the liver.

Keywords: fatty acids; metabolomics; plasma; enzymatic pathways

1. Introduction

Improving feed efficiency in cattle is crucial for reducing feed costs and environmental
impact of animal production [1]. Thus, several studies have focused on understanding the
biological mechanisms that cause differences in feed efficiency-related traits in ruminants.
Previous studies applied metabolomics and metagenomics analysis of rumen microbiota as
well as transcriptomics and proteomics analysis of liver to examine differences in average
daily gain (ADG) and/or residual feed intake (RFI) in animals [2–4]; however, these
studies involve invasive and time-consuming sample collection procedures. Due to the
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convenience and relatively non-invasive accessibility of blood samples, and the potential
utility of blood metabolome as a functional read-out of overall metabolisms in the body [5],
blood plasma has been the most widely examined sample type in bovine metabolomics
studies [6].

High-performance chemical isotope labeling (CIL) liquid chromatography mass
spectrometry (LC–MS)-based metabolomics technique is an important tool used to pro-
file chemical-group-based metabolomes such as amine/phenol (metabolites containing
amine/phenol groups) and carboxyl-metabolome (metabolites containing carboxylic acid
groups) [7]. In our previous study, we applied a CIL/LC–MS-based metabolomics tech-
nique to examine differences in the plasma metabolites of beef steers divergent in ADG
with a focus on those metabolites containing amine/phenol chemical groups [8]. However,
previous studies that studied transcriptomics and proteomics analysis of liver tissues iden-
tified fatty acid metabolism as the most important metabolic pathway associated with feed
efficiency-related traits in animals [2,4,9]. Thus, we hypothesized that beef steers divergent
in ADG would have altered plasma carboxyl-metabolome profile. Therefore, this study
applied CIL-LC-MS-based metabolomics to analyze carboxylic-acid-containing metabolites
(carboxyl-metabolome), including fatty acid and their derivatives, in the plasma of beef
steers divergent in ADG.

2. Materials and Methods
2.1. Animals, Feeding, and Growth Performance

All experimental animals were managed according to guidelines approved by the
Institutional Animal Care and Use Committee of Kentucky State University (18-0001).
Details about animals, feeding, and measurements of dry matter intake and average daily
gain have been reported previously [8]. Briefly, 48 Angus crossbred beef steers (21 d post-
weaning; 210 ± 8.5 kg of body weight) were individually housed in slatted floor pens (2.44
× 14.63 m2) and fed ad libitum a 79% corn silage and 21% grain mix-based total mixed
ration with free access to water for 42 d after a 21 d adaptation period (63 d total). The
grain mix contained distillers’ grain, soybean meal, and limestone (CP = 14.5% and NEg =
1.10 Mcal/kg). Daily feed offered and refused (as-fed) by each steer were recorded. Daily
DM intake of each steer was determined by the difference between daily DM offered and
daily DM refused. Body weights of the steers were also obtained on d 0 and 42 before
morning feeding. Average daily gain (ADG) was calculated by dividing the total body
weight gain during the 42 d period by the number of experimental days (42 days). Steers
with the lowest (LF: n = 8) and highest ADG (HF: n = 8) were selected from the 48 steers.

On day 42, before the morning feeding, about 10 mL of blood was taken from the
steers via the coccygeal vessels into tubes containing sodium heparin (Vacutainer, Becton
Dickinson, Franklin Lakes, NJ, USA) and immediately placed on ice. Plasma samples
were obtained within 15 min of collection by centrifugation at 2500× g for 20 min at 4 ◦C,
and thereafter stored at −80 ◦C until untargeted metabolomics analysis.

2.2. CIL-LC/MS-Based Metabolomics

Relative quantification of carboxylic-acid-containing metabolites (carboxyl-metabolome)
in plasma samples obtained from LF (n = 8) and HF steers (n = 8) was determined us-
ing a CIL/LC-MS-based metabolomics technique. One of the LF samples was damaged
during processing; therefore, seven LF samples were analyzed. The CIL/LC-MS tech-
nique for carboxyl-metabolome applies an isotope labelling method based on the use of
isotope-coded p-dimethylaminophenacyl bromide as a reagent, combined with LC-MS
for high-performance metabolome analysis [7,10]. The metabolites were first extracted via
methanol protein precipitation as previously described [7,11]. Detailed information on
metabolite labelling, sample amount normalization using LC–ultraviolet quantification of
the labeled metabolites, and quantification of the metabolites using an LC system (Agilent
Technologies Inc., Palo Alto, CA, USA) connected to a Bruker Impact HD quadrupole
time-of-flight MS have been previously reported [10–12].
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Metabolite Data Processing and Identification

Raw LC-MS data (peak pairs) were processed using IsoMS Pro 1.0 [12]. Peak pairs
whose mean (sample)/mean (blank) was ≤4.0 and/or with no data present in at least
80% of the samples were removed. A final metabolite-intensity table was generated using
IsoMS-Quant [13]. Metabolite identification was done at 2 tier levels using IsoMS Pro
software and database (Nova Medical Testing Inc., Edmonton, AB, Canada). The first-
tier identification was done based on accurate mass and retention time search against
labeled standard metabolite library, which is composed of 187 unique human endogenous
carboxylic-acid-containing metabolites [7]. The second-tier identification was based on
accurate mass and predicted retention time matches [14] against the Linked Identity Library
containing metabolites related to metabolic pathway in KEGG database [7].

2.3. Statistical and Data analysis

The carboxyl-metabolome data were imported into Metaboanalyst 4.0 software (https:
//www.metaboanalyst.ca/) for statistical analysis [15]. The data were first normalized by
median, log-transformed, and auto-scaled prior to statistical testing. A principal component
analysis scores plot was used to visualize the difference between the LF and HF. A volcano
plot was constructed using fold change (FC) in each metabolite against Benjamini-Hochberg
false discovery rate (FDR) set to p ≤ 0.05. Relative to LF, metabolites with FC ≥ 1.2 or
≤ 0.83 and FDR ≤ 0.05 were considered differentially increased or decreased, respectively.
Metabolite set enrichment analysis (MSEA) of the differentially abundant metabolites was
performed to determine the metabolic pathways or enzymes that were potentially altered.
The predicted metabolite library was set as the chosen metabolite library; this library
contains 912 metabolic sets that are predicted to be changed in the case of dysfunctional
enzymes using a genome-scale network model of human metabolism [15]. Pathways with
p ≤ 0.10 were considered different between LF and HF steers.

3. Results

The results of the growth performance of LF and HF steers have been previously
reported [8]. Briefly, the average initial body weight (229 vs. 225 kg; SE = 5.21) and
average daily DM intake (6.08 vs. 6.04 kg; SE = 0.23) of the LF and HF beef steers were
similar (p > 0.05). The final body weight (274 vs. 293 kg; SE = 2.89) and ADG (1.09 vs. 1.63;
SE = 0.07) were lower (p = 0.01) for LF compared with HF steers.

A total number of 328 carboxylic-acid-containing metabolites were detected and identi-
fied in the plasma samples of LF and HF steers (Supplementary Table S1). Principal compo-
nent analysis plot showed no separation between the plasma carboxyl-metabolome of the
LF and HF steers (Figure 1). However, results of the volcano plot analysis revealed 43 differ-
entially abundant (FC ≥ 1.2 or ≤ 0.83 and FDR ≤ 0.05) metabolites (Figure 2); the relative
abundance of 11 metabolites including acetate, 3-hydroxybutyrate, 3-isohydroxybutyrate,
butanoic acid, hydroxyisovalerate, leukotriene B4, and 11-hydroxy-14,15-epoxy-5Z,8Z,12E-
eicosatrienoic acid (11H-14,15-EETA) were greater in HF steers, while the relative abun-
dance 32 metabolites including retinoic acid and 31 long chain fatty acid (LCFA) and their
derivatives such as oleic acid, linoleic acid, octadecatrienoic acid, 6-amino-2-oxohexanoate,
arachidonic acid, eisosatrienoic acid, eisosadienoic acid, 18-oxooleate, myristic acid, pen-
tadecylic acid, 9,10,18-trihydroxystearate, and 9,10-epoxy-18-hydroxystearate were greater
in LF steers (Table 1).

Figure 3 displays the results of the MSEA, identifying five enzymatic pathways as
being significantly altered (p < 0.10) between HF and LF steers. The affected enzymatic
pathways are fatty acyl CoA elongation (p = 0.03), linoleic acid transport in via diffusion
(p = 0.03), fatty acid transport via diffusion (p = 0.07), fatty acyl-CoA desaturase (p = 0.09),
and fatty-acid CoA ligase (p = 0.09).

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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Table 1. Differentially abundant plasma carboxylic-acid-containing metabolites between LF and HF steers.

Metabolite FC FDR Identification Level

6-amino-2-oxohexanoate 0.52 0.02 Tier 2
8-methyl-6-nonenoic acid 0.53 0.01 Tier 2

Citronellate 0.53 0.01 Tier 2
12-oxo-9(Z)-dodecenoic acid 0.54 0.01 Tier 2

Oleic acid 0.55 0.03 Tier 1
Isomer 1 of oleic acid 0.58 0.04 Tier 1

Retinoic acid 0.56 0.01 Tier 1
Isomer of retinoic acid 0.57 0.04 Tier 2
Isomer 2 of oleic acid 0.56 0.03 Tier 1

Linoleate 0.56 0.03 Tier 1
9-cis,11-trans-octadecadienoate 0.56 0.03 Tier 2

Octadecatrienoic acid 0.58 0.04 Tier 2
Hexadecenoic acid 0.59 0.04 Tier 2

9Z-hexadecenoic acid 0.59 0.04 Tier 2
Pentadecylic acid 0.59 0.03 Tier 1

Myristic acid 0.60 0.04 Tier 1
Arachidonic acid 0.60 0.03 Tier 1

9,10,18-trihydroxystearate 0.60 0.04 Tier 2
Isomer of pentadecylic acid 0.60 0.04 Tier 1
9,10,18-trihydroxystearate 0.61 0.04 Tier 2

9,10-epoxy-18-hydroxystearate 0.61 0.05 Tier 2
9Z-hexadecenoic acid 0.62 0.04 Tier 2
Octadecatrienoic acid 0.62 0.04 Tier 2

Arachidonic acid 0.62 0.04 Tier 2
Tetradecanoic acid 0.64 0.04 Tier 2

8-methyl-6-nonenoic acid 0.66 0.02 Tier 2
syn-Stemoden-19-oate 0.66 0.02 Tier 2

Eicosatrienoic acid 0.67 0.04 Tier 2
Isomer eicosadienoic acid 0.67 0.04 Tier 2

16-oxopalmitate 0.68 <0.01 Tier 2
Isomer of eicosatrienoic acid 0.69 0.04 Tier 2

18-oxooleate 0.71 0.05 Tier 2
6-hydroxy-5-isopropenyl-2-methylhexanoate 0.82 0.01 Tier 2

3-isohydroxybutyrate 1.22 <0.01 Tier 2
Butanoic acid 1.29 0.05 Tier 2

Hydroxyisovalerate 1.29 0.04 Tier 2
Leukotriene B4 1.33 0.03 Tier 2

Acetate 1.34 0.03 Tier 1
3-hydroxybutyrate 1.35 <0.01 Tier 1
Isomer of acetate 1.42 0.02 Tier 2
11H-14,15-EETA 1.48 0.01 Tier 2

4-ethylbenzoic acid 1.50 0.05 Tier 1
L-threo-3-methylaspartate 1.87 0.01 Tier 2

FC (HF/LF): fold change relative to LF; LF = beef steers with lowest average daily gain; HF = beef steers with highest average daily
gain. Only metabolites with both FC ≥ 1.2 or ≤ 0.83, relative to LF, and false discovery rate (FDR) ≤ 0.05 are shown. Tier 1—Positive
Identification (CIL Library); Tier 2—High Confidence Putative Identification (Linked Identity Library).
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Figure 3. Results of the metabolite set enrichment analysis. Fatty acyl coA elongation, p = 0.03; linoleic acid (n-C18:2)
transport in via diffusion, p = 0.03; fatty acid transport via diffusion, p = 0.07; fatty acyl-CoA desaturase, p = 0.09; fatty-acid-
CoA ligase, p = 0.09.

4. Discussion

Blood metabolome represents a functional read-out of overall metabolisms in the
body; thus, the changes in plasma carboxyl-metabolome observed in this study might have
originated from differences in ruminal microbial lipid metabolism and intestinal digestive
and absorptive capacity of the animals as well as non-dietary sources such as fatty acid
metabolism in the liver, adipose tissue, and muscles [3,16]. The rumen microbiota is known
to metabolize lipid and variation in the concentrations of lipid metabolic products in the
rumen has been shown to be associated with ADG divergence in beef steers [3]. For instance,
ruminal and plasma concentrations of LCFA, including linolenic acid, docosahexaenoic
acid, arachidonic, and vaccenic acid were lower in beef steers with greatest ADG compared
with those with the least ADG [3].

The intestine plays a significant role, both in digestion and absorption of nutrients
such as fatty acids, amino acids, and carbohydrates [17], which implies that differences in
the intestinal capacity could consequentially lead to altered plasma metabolome. Previous
studies have established relationship between certain intestinal characteristics (such as
mucosal density and gene-expression) and feed efficiency. Foote et al. [18] reported altered



Animals 2021, 11, 67 7 of 9

gene expression in the jejunum mucosa of beef steers with divergent ADG and DMI and
concluded that the higher ADG group might have higher potential to digest and absorb
nutrients in the small intestine. The authors reported upregulated expression of genes
involved in linoleic metabolism (PLB1 and CYP3A4) and arachidonic acid metabolism
(PLB1 and CYP2B6) in the jejunum of the high ADG group, which might explain the higher
metabolism and relatively lower plasma concentrations of linoleic acid and arachidonic
acid as observed for the HF steers in the current study. Furthermore, Spector [19] showed
that with increased production of arachidonic acid epoxygenase, a product of CYP2B6
gene, arachidonic acid undergoes increased epoxidation, which yields derivatives that
are isomers of epoxyeicosatrienoic acids. This probably explains the greater relative
abundance of 11-hydroxy-14,15-epoxy-5Z,8Z,12E-eicosatrienoic acid in the plasma of HF,
compared to LF steers observed in the current study. Eicosatrienoic acids have been
reported to cause vasodilation, which could result in improved nutrient absorption from
small intestine [18,19]. This evidence suggests the possibility that the observed variabilities
between HF and LF in the current study could be due to differences in intestinal gene
expression, digestion, absorption, and post-digestive metabolism capacity.

Another explanation for the altered plasma carboxyl-metabolome observed in this
study is adipose tissue and/or skeletal muscle lipid metabolism. The relative abundance
of plasma retinoic acid (a derivative of vitamin A) was greater in LF, relative to HF steers.
Retinoic acid has been reported to influence intramuscular fat deposition, being impli-
cated to inhibit adipocyte differentiation, while upregulating adipogenesis-inhibiting
genes [20–22]. Furthermore, retinoic acid activity has been reported to enhance lipid
oxidation pathways in adipocytes [23]. In contrast, beef cattle with lower vitamin A con-
centration had been reported to have increased intramuscular fat deposition [24]. This
evidence is consistent with the result of the current study and might explain the higher
plasma LCFA concentrations observed in LF steers, since the observed higher plasma
retinoic acid could be antecedent to increased lipid mobilization. The potentially reduced
fat deposition in LF steers might explain the lesser ADG for this group.

Another source of variation in the plasma fatty acid profile is hepatic lipid metabolism.
Beta-oxidation of fatty acids in the liver cells generates acetyl-CoA, which can either enter
the citric acid cycle to generate energy in the form of ATP for hepatic functions [25] or
is converted to short-chain oxidative fuels, including ketone bodies and acetate, which
are exported via the blood to serve as a source of metabolic energy for several extrahep-
atic tissues, including skeletal, muscle, and brain tissues during high energy demands
to support increased growth [26]. Higher plasma concentrations of short chain fatty
acids (such as acetate, butanoic acid, and hydroxyisovalerate) and ketone bodies (such as
3-hydroxybutyrate and 3-isohydroxybutyrate), accompanied with lower plasma concentra-
tions of LCFA probably suggest a greater hepatic beta-oxidation capacity in HF compared
to LF steers. This is further confirmed by greater plasma concentrations of leukotriene
B4 and 11H-14,15-EETA, two metabolic products of arachidonic acid catabolism in the
hepatocytes [27], in HF steers. In addition, benzoic acid and its metabolites can reduce
fatty acid biosynthesis in the liver by inhibiting the action of acetyl-CoA carboxylase, an
enzyme that catalyzes the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA,
an inhibitor of fatty acid oxidation [28,29]. Since fatty acid biosynthesis and oxidation
are reciprocally regulated [30], increased plasma concentration of 4-ethylbenzoic acid in
HF steers possibly caused decreased action of acetyl-CoA carboxylase, which probably
indicate increased hepatic fatty acid oxidation. In agreement with our results, a similar
study reported reduced plasma concentrations of LCFA such as stearic acid, linolenic acid,
arachidonic acid, and docosahexaenoic acid in beef steers with high ADG compared to
those with low ADG [3].

The results of MSEA of the differentially abundant metabolites revealed that five
pathways/enzymes were significantly altered; the affected pathways/enzymes are fatty
acyl CoA elongation, linoleic acid transport in via diffusion, fatty acid transport via diffu-
sion, fatty acyl-CoA desaturase, and fatty-acid CoA ligase, indicating the potential roles of
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these pathways/enzymes in the performance of beef cattle. Fatty acid elongation and fatty
acyl-CoA desaturases play a key role in the biosynthesis of polyunsaturated LCFA [31].
Fatty acid elongation is catalyzed by fatty acid elongases, a group of four enzymes (3-keto
acyl-CoA synthase, 3-keto acyl-CoA reductase, 3-hydroxy acyl-CoA dehydratase, and trans-
2, 3-enoyl-CoA reductase) [32,33]; fatty acyl-CoA desaturases introduce a double bond on
the acyl chain of LCFA, and fatty acid transport proteins enhance the transport of LCFA
(16–20 carbon atoms) across the mitochondrial and peroxisomal membrane [34]. Once
inside the cell, the fatty acids are activated to the corresponding acyl CoA by fatty acyl-CoA
ligase in order for oxidation to proceed [35]. Due to the different roles of these enzymatic
pathways in different tissues or organs, it is impossible to determine how the regulation
of these enzymatic pathways contribute to the altered plasma carboxyl-metabolome be-
tween HF and LF steers. In agreement with the results observed in this study, Artegoitia
et al. [16] analyzed the lipidomics profile of multiple tissues (duodenum, liver, adipose,
and longissimus-dorsi) and identified lipid transport and oxidation as the major lipid
metabolic pathways associated with differences in weight gain of beef cattle.

5. Conclusions

This study demonstrated that beef steers with divergent ADG had altered plasma
carboxyl-metabolome, which is possibly due to differential activities or abundances of
enzymes involved in fatty acid catabolism and biosynthesis in several tissues including
adipose tissue, duodenum, liver, muscle as well as rumen microbiota. Future research
is needed to determine the mechanisms that contribute to alteration in the plasma fatty
acid profile of beef cattle using a greater number of animals with a particular focus on
the potential roles of fatty acyl CoA elongases, fatty acid transport proteins, fatty acyl-
CoA desaturase, and fatty-acid CoA ligase, and how the activities of these enzymes differ
between animals with divergent growth performance.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-261
5/11/1/67/s1, Table S1: List of identified metabolites.
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