
animals

Article

Advantage of including Genomic Information to Predict
Breeding Values for Lactation Yields of Milk, Fat, and Protein
or Somatic Cell Score in a New Zealand Dairy Goat Herd

Megan Scholtens 1,* , Nicolas Lopez-Villalobos 1 , Klaus Lehnert 2, Russell Snell 2 , Dorian Garrick 1 and
Hugh T. Blair 1

����������
�������

Citation: Scholtens, M.;

Lopez-Villalobos, N.; Lehnert, K.;

Snell, R.; Garrick, D.; Blair, H.T.

Advantage of including Genomic

Information to Predict Breeding

Values for Lactation Yields of Milk,

Fat, and Protein or Somatic Cell Score

in a New Zealand Dairy Goat Herd.

Animals 2021, 11, 24.

https://dx.doi.org/10.3390/

ani11010024

Received: 30 November 2020

Accepted: 18 December 2020

Published: 25 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 AL Rae Centre for Genetics and Breeding, School of Agriculture, Massey University,
Palmerston North 4442, New Zealand; n.lopez-villalobos@massey.ac.nz (N.L.-V.);
D.Garrick@massey.ac.nz (D.G.); H.Blair@massey.ac.nz (H.T.B.)

2 Applied Translational Genetics Group, School of Biological Sciences, The University of Auckland,
Auckland 1023, New Zealand; klaus.lehnert@auckland.ac.nz (K.L.); r.snell@auckland.ac.nz (R.S.)

* Correspondence: Megan.Scholtens@cawthron.org.nz

Simple Summary: The objective of this study was to quantify the benefit from the inclusion of
genomic information in the estimation of breeding values for lactation yields of milk, fat, and protein
or somatic cell score in a New Zealand dairy goat herd. The dataset included lactation yields of milk,
fat, and protein and average somatic cell score of 839 does and genotypes from 388 does. A prototype
single-step BayesC model was developed to predict genomic breeding values and demonstrated that
including genomic information into the evaluation can increase the accuracy of predictions compared
with the traditional best linear unbiased prediction methods based on pedigrees alone, which is
currently implemented in the New Zealand dairy goat industry.

Abstract: Selection on genomic breeding values (GBVs) is now readily available for ranking can-
didates in improvement schemes. Our objective was to quantify benefits in terms of accuracy of
prediction from including genomic information in the single-trait estimation of breeding values (BVs)
for a New Zealand mixed breed dairy goat herd. The dataset comprised phenotypic and pedigree
records of 839 does. The phenotypes comprised estimates of 305-day lactation yields of milk, fat,
and protein and average somatic cell score from the 2016 production season. Only 388 of the goats
were genotyped with a Caprine 50K SNP chip and 41,981 of the single nucleotide polymorphisms
(SNPs) passed quality control. Pedigree-based best linear unbiased prediction (PBLUP) was used to
obtain across-breed breeding values (EBVs), whereas a single-step BayesC model (ssBC) was used to
estimate across-breed GBVs. The average prediction accuracies ranged from 0.20 to 0.22 for EBVs
and 0.34 to 0.43 for GBVs. Accuracies of GBVs were up to 103% greater than EBVs. Breed effects were
more reliably estimated in the ssBC model compared with the PBLUP model. The greatest benefit of
genomic prediction was for individuals with no pedigree or phenotypic records. Including genomic
information improved the prediction accuracy of BVs compared with the current pedigree-based
BLUP method currently implemented in the New Zealand dairy goat population.

Keywords: accuracy; BayesC; genetic evaluation; genomic prediction; goat

1. Introduction

The purpose of selection is to improve the performance of a population. Selection
based on genomic breeding values (GBVs) can improve the rate of genetic gain compared
with using only pedigree and performance records and has become a widely adopted
method for ranking candidates for improvement schemes [1]. The benefits of genomic
prediction (GP) are greatest when traits of interest are difficult to measure (e.g., slaughter
traits), expensive to record (e.g., feed efficiency), measured late in an animal’s life (e.g., milk
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production), or the traits have low heritability (e.g., fertility). Genomic prediction can be
applied to young animals allowing earlier identification of female replacement candidates
or bucks for wider use, thereby reducing replacement costs and shortening the generation
interval. Reduced generation intervals may increase the rate of genetic improvement
providing the accuracy of selection is not greatly reduced. Genomic prediction can increase
the accuracy of GBVs, especially if no records are available on the selection candidates.

Until recently, the standard method of estimating breeding values was from a best lin-
ear unbiased prediction procedure that uses phenotypic records (PBLUP) of the individual
and its relatives [2]. That method uses pedigree information to form the expected genetic
relationships among the individuals based on the probability that genes are identical by
descent [3] and that information is the basis for generating the additive genetic relationship
matrix (A) between animals in the pedigree. The availability of SNPs enables identification
of alleles identical in state that can be shared through common ancestors (not necessarily
recorded in the pedigree) to generate a genomic relationship matrix (G).

Legarra et al. [4] suggested a single-step genomic BLUP (ssGBLUP) approach using
phenotypes, genotypes, and pedigree information to simultaneously predict GBVs for
genotyped and non-genotyped individuals. The method combines pedigree information
from the A matrix and genomic information from the G matrix into a modified genetic
relationship matrix (H). That single-step approach uses Henderson’s [5] mixed model equa-
tions (MME) and the H matrix to yield unbiased predictions under multivariate normality,
even in populations that are undergoing selection and nonrandom mating. A single-step
procedure increases both power and precision by taking advantage of phenotypes from
related and unrelated animals [6]. Despite these advantages, ssGBLUP requires computa-
tion of the G matrix or its inverse, which can be computationally demanding when many
animals are genotyped. To solve this problem, Misztal et al. [7] proposed an algorithm
that divides the set of genotyped animals into core and noncore animals such that direct
inversion is needed only for core animals in the G matrix and the remaining components
are obtained recursively, dramatically reducing the computing costs.

Fernando et al. [8] proposed a class of single-step Bayesian regression (ssBR) methods
that does not require the computation of the G matrix or its inverse. Instead, their ssBR
approach imputes marker covariates for non-genotyped animals based on their genotyped
relatives and fits a genetic imputation error effect to accommodate the difference between
true and imputed genotypes [8]. In addition, the Bayesian methods incorporate prior
information into the model that assumes a fraction (π) of the SNPs are associated to an
effect, whereas the remainder (1-π) are not and, therefore, have no effect on the trait.
BayesA and BayesB use a student t-distribution as a prior for the SNPs associated with the
effects, which allows some SNPs to have large associated effects on the trait [9]. BayesC
assumes SNP-associated effects are normally distributed and have a common variance [10].
Based on these assumptions, if there are known quantitative trait loci (QTL) with large
effects on traits within the population and many SNPs that are unlikely to have a causal
relationship, then it would be more appropriate to fit a mixture model where some of the
SNPs are assumed to not be associated with an effect.

Estimating GBVs conceptually involves a training population that has phenotypes and
genotypes. In ssBR, the prediction model uses this “training data” to predict the influence
of genetic markers by regression of the observed phenotypes on dosage covariates formed
from marker genotypes. Then, the marker effects are summed across all loci to get the GBVs
of individuals in a validation population that may not have observed phenotypic records.

The Dairy Goat Cooperative (DGC) Ltd. (Hamilton, New Zealand) processes approxi-
mately 80% of goat milk in New Zealand. Farms that supply DGC and undertake herd
testing participate in an annual genetic evaluation for lactation yields of milk (MY), fat
(FY), and protein (PY) and for the average somatic cell score (SCS). Breeding values for
these traits are estimated for each animal from an across-breed multi-trait repeatability
animal model using the available pedigrees [11]. Current estimates indicate that 85% of the
dairy goats are of the Saanen breed, while Toggenburg, British Alpine, and Nubian type
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crosses comprise the remaining 15% [12]. Breed covariates based on pedigree records were
included in the evaluation in order to account for the differences in the expected value of
the breeding values for animals of different breeds or crosses.

The aim of this study was to quantify the benefits from the inclusion of genomic
information in the estimation of breeding values for a single New Zealand dairy goat herd.

2. Materials and Methods
2.1. Data

Phenotypic and pedigree records were provided for a single dairy goat herd by
Dairy Goat Co-operative (NZ) Ltd. (Hamilton, New Zealand) from a herd test database
maintained by Livestock Improvement Corporation (LIC) (Hamilton, New Zealand). The
original dataset comprised lactation records from the 2016 season for 883 dairy goats. The
phenotypic records were estimates of 305-day lactation yield records for MY, FY, PY, and
SCS. The test interval method [13] was used by LIC to calculate MY, FY, and PY for either
the realized lactation length or up to 305 days in milk (DIM) for those lactations with more
than 305 DIM. Average somatic cell score (SCS) over the lactation was calculated as the
mean Log2 (somatic cell count) across the herd tests. Lactation yields were removed if the
lactation length was <105 days, MY < 100 kg, FY or PY < 3 kg, and deviation from median
kidding date (DMKD) was more than −90 or + 90 days. The final dataset contained 839
animals that were offspring of 46 sires and 589 dams. Contemporary group was defined as a
lactation number (1, 2, 3, 4, and≥5). Breed composition of each animal was calculated from
pedigree proportions of Alpine, Nubian, Saanen, Toggenburg, “other”, and “unknown”
breeds. There was some crossbreeding, but there were very few first-cross or purebred
animals of Alpine, Nubian, Toggenburg, and “other” breeds. The breed composition of
animals in this herd consisted of 21 purebred Saanen and 818 animals with mixed-breed
compositions. For this analysis, the breeds were described in terms of proportion of Saanen
or the sum of all other breeds was referred to as ANTO (Alpine, Nubian, Toggenburg, other
breeds, and unknown breed).

2.2. Genotyping

Skin samples were collected for SNP genotyping with the Illumina Caprine 50K
BeadChip (Illumina Inc., San Diego, CA, USA) in 2016. Of the 51,462 SNPs obtained, a total
of 41,981 SNPs per animal remained after quality control. Quality control was performed
using the SNP & Variation Suite v8 (SVS) software (www.goldenhelix.com). Individuals
were discarded if they had a call rate < 95% or if they did not have phenotypic records.
SNPs were discarded if they had a call rate < 90%, MAF < 1%, or deviated significantly
from the Hardy-Weinberg equilibrium based on a threshold of p < 10−6. The majority
of genotypes were from does in their second parity (246 genotyped animals), while the
remaining genotyped animals were in parity one (19 animals), three (90 animals), four
(30 animals), or beyond the fourth parity (3 animals). The 388 genotyped animals were of
Saanen (14) or ANTO (374) breed compositions.

2.3. Methods

In this analysis, single-trait PBLUP models were used as the base scenario to estimate
across-breed values (EBVs). A single-step BayesC model (ssBC) was used to estimate
across-breed GBVs. Phenotypic and pedigree records from 839 animals were included in
both models, and genotypes of the 388 animals were included in the ssBC model.

2.3.1. Pedigree-Based BLUP Evaluation

The PBLUP was fitted using the ASReml 3.0 software package [14] with the follow-
ing model:

y = Xb + ZDd + Za + e, (1)

where y is the vector of phenotypes comprising at most one lactation record for MY,
FY, PY, or SCS; b is the vector of fixed effects; d is the vector of effects of ANTO and

www.goldenhelix.com
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unknown breeds; a is the vector of additive genetic effects (random effects of animal); e is
the vector of random residual effects (residual errors not accounted for by the fixed and
random effects); X and Z are design matrices relating the fixed and additive genetic effects,
respectively; and D is a matrix with a row for each animal in the pedigree and columns for
the proportion of ANTO and the proportion of unknown breeds (the regression coefficient
for the Saanen breed effect was constrained to zero). Fixed effects included in b were
the contemporary group and, as covariates, DMKD, DIM, and general heterosis. General
heterosis was calculated as 1 − ∑f

j = 1d2
j, where dj is the proportion of each of the f = 3

breed groups (Saanen, ANTO, and unknown) [15]. The additive animal genetic effect was
included as a random effect and assumed to have a normal distribution, with mean Dd and
variance Aσg

2, where A is the numerator relationship matrix from the pedigree, and σg
2

is the within-breed additive genetic variance. Residuals were assumed to have a normal
distribution, with mean zero and variance Iσe

2, where I is an identity matrix of size equal
to the number of animals with a lactation record, and σe

2 is the residual variance.
Estimated breeding values were calculated as:

ÊBV= Dd̂ + â (2)

where ÊBV is the vector of across-breed EBVs, d̂ is the solutions for the ANTO and
unknown breed effects, and â is the vector of the solution for random animal effects.

2.3.2. Single-Step BayesC Genomic Evaluation

In this population, there is a known QTL with a large effect on milk traits [16]; therefore,
it is appropriate to fit a BayesC model. This model was fitted using the JWAS Julia
package [17] based on 50,000 Markov chain Monte Carlo (MCMC) iterations (including
1000 burned in), and πwas assumed known and fixed at 0.98.

The model in matrix notation was[
yn
yg

]
=

[
Xn
Xg

]
b +

[
ZnDn
ZgDg

]
d +

[
ZnJn
ZgJg

]
q +

[
ZnMnα+ ε

ZgMgα

]
+

[
Wn 0
0 Wg

]
u + e (3)

where the vectors and matrices for non-genotyped animals are denoted with subscript n
and those for the genotyped animals with a subscript g. Thus, yn and yg are the vectors of
the phenotypes; Xn and Xg are the incidence matrices for the fixed effects; and b is a vector
of the fixed effects, including the contemporary group (does kidding in the same parity)
and, as covariates, DMKD, DIM, and general heterosis. Dn and Dg are matrices with a
row for each non-genotyped and genotyped animal in the pedigree and columns for the
proportion of ANTO and the proportion of unknown breed, d is a vector of effects of the
ANTO and unknown breeds, and Jn and Jg are matrices with a row for each non-genotyped
and genotyped animal in the pedigree and columns for the J covariate for each breed group
that were included as fixed effects to fit the difference between the genotyped founder
and non-genotyped founder breeds. The matrix Jn is computed as AngAgg

−1Jg, for breed
f, where Ang and Agg

−1 are submatrices of the numerator relationship matrix A, Jg is the
matrix of the breed fractions identical to Dg, except that it includes the vector of breed
fractions for Saanen, q is the vector containing the regression covariates for J, which account
for the difference in breeding values between genotyped and non-genotyped animals of
the same breed [18], Zn and Zg are incidence matrices that relate the breeding values of
animals, Mg is the matrix of the centered marker covariates for the genotyped animals,
Mn = AngAgg

−1Mg is the matrix of the marker covariates for the non-genotyped animals
that are imputed from the genotyped relatives, a is the vector of random marker effects,
ε is the vector of genetic imputation error effects, Wn and Wg are incidence matrices that
relate the residual polygenic effects, u is the vector of residual polygenic effects, and e is a
vector of residuals.
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The fixed effects are assumed to have flat priors. The prior for the marker effects
depends on the marker variance, sak

2, and the prior probability p that SNP k has zero effect
and follows a two-component mixture prior:

ak|π, σ 2
ak

=

{
0 with probability π

∼ N(0,σ 2
ak

)
with probability (1− π),

(4)

where s2
ak ~ va,Sa

2 X2
va. A previous study in this population reported that the markers

captured 12% of the genetic variance [16]. To recognize the markers that did not explain the
total genetic variance, a residual polygenic effect was included in the model, accounting
for 88% of the additive genetic variance. The vector of imputation residual deviations is
ε~ N(0,(Ann−AngAgg

−1Agn)(1−w)sg
2) [8], where Ann, Ang, Agg, and Agn are submatrices

of A; sg
2 is the total genetic variance with (sg

2|vg,Sg
2) ~ vg,Sg

2 Xvg
2; w is the ratio of

residual polygenic to total genetic variance (0.88); u ~ N(0, Awsg
2) that are not captured by

markers; and e is ei|se
2 ~ iidN(0, se

2), with (se
2|ve, Se

2) ~ ve Se
2 Xve

2.
Genomic breeding values were calculated as:

ĜBV = Dd̂ +

[
Jn
Jg

]
q̂ +

[
M̂n
Mg

]
α̂ +

[
Zn
0

]
ε̂ (5)

where ĜBV are the across-breed GBVs, d̂ is the solutions for the ANTO and unknown
breed effects, q̂ is a vector of regression coefficients for the J covariates for each breed
group, α̂ is the vector of solutions for random marker effects, and ε̂ is a vector of solutions
for imputation residuals.

The BayesC mixture model requires that unknowns be estimated using MCMC tech-
niques. Due to the limited number of observations in this evaluation (a single herd),
variance components were estimated using the ssBC model and data from a larger dataset
first (phenotypic records from 24,317 individuals and 41,981 markers on 2681 individu-
als). The posterior residual variance and heritability values previously estimated for this
population [19] for each of the traits were used to calculate the total genetic variance. The
“known” variance components were then considered to be the parametric values in the
PBLUP and ssBC models (Table 1). Convergence of the MCMC iterations were assessed
using the coda package in RStudio based on the method of Geweke [20].

Table 1. Prior across-breed variance components fitted in the pedigree-based best linear unbiased
prediction (PBLUP) and single-step BayesC model (ssBC) models.

Trait Polygenic Variance SNP Variance Residual Variance π h2 1

Milk yield 9098.6 1011.0 30,345.0 0.98 0.25
Fat yield 8.66 1.33 35.20 0.98 0.24

Protein yield 5.69 0.88 23.10 0.98 0.24
Somatic cell score 0.51 0.08 2.50 0.98 0.21

1 h2 = heritability.

Prediction accuracy for each model and trait were assessed using a validation process
by splitting the herd into two subsets: the training set of the oldest 70% of the herd
(587 animals) and the validation set comprising the youngest 30% (252 animals).

The prediction accuracy was assessed and summarized based on the different levels
of pedigree information available in the evaluation. Using predicted EBVs of animals
in the validation set (252 animals), the average prediction accuracies were calculated
when the animal had: (A) both the sire and dam recorded (161 animals), (B) the sire was
recorded and had≥5 progeny in the herd (155 animals), (C) the dam was recorded and had
≥1 lactation record (6 animals), or (D) neither the sire nor dam were recorded (1 animal). To
demonstrate the impact on prediction accuracy when both the sire and dam are unknown,
the PBLUP evaluation was rerun an additional time but, by masking the pedigree records



Animals 2021, 11, 24 6 of 13

of animals that previously had records of both the sire and dam, resulted in 162 animals in
the evaluations for scenario (D).

Reliabilities of PBLUP EBVs were calculated as (1-(PEV/sg2)), where PEV is the
predicted error variance calculated by inverting the coefficient matrix of the MME [21],
and sg2 is the total genetic variance. For ssBC, the PEV were computed from the Bayesian
posterior variance of GBV samples. Prediction accuracies were calculated as the square
root of the reliability.

The across-breed EBVs and GBVs were standardized to a consistent base for the
independent PBLUP and ssBC evaluations by subtracting off each EBV the mean EBV of
the base and similarly for GBV. The slope of standardized GBV against standardized EBV
is used as a measure of genomic inflation. The expected value is one, indicating that the
genomic predictions are on a similar scale as the EBVs, i.e., not inflated of deflated.

3. Results

The descriptive statistics are in Table 2. The mean FY and PY were both 31.8 kg. The
coefficients of variation for the milking traits reflect the phenotypic variations in this herd.

Table 2. Descriptive statistics of milking traits of 839 dairy goats kidding in the 2016 season from a
single New Zealand herd.

Trait Mean SD 1 Min Max CV 2

Lactation length (days) 288 23 185 305 8
Yields (up to 305 days)

Milk yield (kg) 1002.0 268.3 292.4 1811.3 27
Fat yield (kg) 31.8 8.9 8.2 67.1 28

Protein yield (kg) 31.8 8.4 8.9 58.5 26
SCS 3 (units) 9.5 1.2 6.5 12.6 12

1 SD = raw standard deviation across the herd. 2 CV = coefficient of variation. 3 SCS = calculated as
average log2 (somatic cell count).

The average accuracies of the GBVs obtained for MY, FY, PY, and SCS were greater
than the average accuracies of EBVs (Table 3). The greatest increase in accuracy was
obtained for FY with +103% more accurate GBVs compared with EBVs.

Table 3. Accuracies (r) of the across-breed breeding values (EBVs) and genomic breeding values
(GBVs) of milk traits for animals in the validation population using the PBLUP 1 and ssBC 2 methods,
n = 100.

EBV GBV Gain (%)
Trait r SE 3 r SE 3

Milk yield 0.22 0.01 0.38 0.01 +73%
Fat yield 0.21 0.01 0.43 0.01 +103%

Protein yield 0.21 0.01 0.34 0.01 +64%
Somatic cell score 0.20 0.01 0.39 0.01 +95%

1 PBLUP = pedigree-based best linear unbiased prediction model, 2 ssBC = single-step BayesC model,
and 3 SE = average standard error from animals in the validation population.

For all scenarios and all traits, the GBVs had greater accuracies than the EBVs
(Figure 1). When individuals had no lactation records but had a sire and dam recorded
in the pedigree, the average accuracies of the EBV and GBV were 0.27 and 0.43 for MY,
0.26 and 0.47 for FY, 0.24 and 0.39 for PY, and 0.43 and 0.24 SCS, respectively. The greatest
increase in accuracy between the two prediction models was if the animal had no pheno-
typic or pedigree information, with GBV prediction accuracies of 0.39 for MY, 0.30 for FY,
SCS, and 0.33 for PY, compared with 0 for EBVs.
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Figure 2 shows scatterplots of GBVs against the EBVs of milk traits of the animals in
the validation population that have both the sire and dam known after a base adjustment.
The correlations ranged from 0.603 to 0.978. The regression coefficient of the GBVs on EBVs
for MY was close to one, and regression coefficients of the GBVs on the EBVs for FY, PY,
and SCS were less than one.
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Figure 2. Scatterplot of standardized GBVs against standardized EBVs of the (a) milk yield, (b) fat yield, (c) protein yield,
and (d) somatic cell score of animals in the validation set that has both the sire and dam recorded, n = 161.

Table 4 shows the breed coefficients obtained from the PBLUP model and the sum of
the breed and J covariate coefficients obtained from the ssBC model for each breed group.
Based on the pedigree and phenotype records, the effects of either the ANTO or unknown
breed groups are lower than the Saanen breed. However, when genotypes are included in
the model, the breed group effect for the animals of unknown breeds is estimated to be
better than that for the Saanen breed. The breed effects are much more reliably estimated in
the ssBC model compared with the PBLUP model, as evident by comparing their standard
errors (SE).

Table 4. Estimated breed coefficients and standard errors (SE) of the milk traits obtained from PBLUP 1 and the sum of the
breed and J covariate coefficients obtained from ssBC 2.

Breed Coefficient of Traits
Model Breed Milk Yield SE Fat Yield SE Protein Yield SE SCS 3 SE

PBLUP
Saanen 0 0 0 0
ANTO −100.60 138.70 −0.52 4.69 −1.07 3.80 −0.02 1.22

Unknown −33.12 45.10 −1.18 1.52 −1.50 1.24 0.11 0.40
ssBC

Saanen −112.54 2.52 −0.59 0.08 −2.11 0.07 0.47 0.02
ANTO −364.56 5.82 −5.28 0.19 −8.87 0.16 0.01 0.05

Unknown −64.04 2.34 −0.92 0.08 −1.42 0.07 0.46 0.02
1 PBLUP = pedigree-based best linear unbiased prediction model, 2 ssBC = single-step BayesC model, and 3 SCS = calculated as average
log2 (somatic cell count). ANTO: Alpine, Nubian, Toggenburg, other breeds, and unknown breeds.

The breed and J covariate coefficients for each breed group obtained from the ssBC
model are shown in Table 5. The broad range between breeds reflects the large differences
between the breed groups, particularly the values of the J covariate for the ANTO breed
group for MY. The SEs of the ssBC estimates of the breed or J covariates are much larger
than those for the sum of the breed effects and J covariates shown in Table 4, indicating
that the breed and J covariates in the ssBC model are confounded.
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Table 5. Estimated breed and J covariate coefficients and standard errors (SE) of the milk traits obtained from the
ssBC 1 model.

Breed and J Coefficients of Traits
Breed Milk yield SE Fat Yield SE Protein yield SE SCS 2 SE

Saanen 0 0 0 0
ANTO 94.04 247.57 4.99 8.54 7.03 6.73 1.03 2.25

Unknown −164.89 83.04 −2.29 2.67 −4.53 2.37 0.58 0.72
Breed-Specific J Covariate Coefficient of Traits

JSaanen −112.54 78.95 −0.59 2.56 −2.11 2.25 0.47 0.71
JANTO −458.60 300.00 −10.28 10.23 −15.90 8.19 −1.02 2.76

JUnknown 100.85 34.88 1.38 1.14 3.11 1.00 −0.12 0.31
1 ssBC = single-step BayesC prediction model and 2 SCS = calculated as the average log2 (somatic cell count).

4. Discussion

The results of this study indicate that the ssBC model using genotypes, pedigrees, and
phenotypic records can be used to obtain more accurate predictions of animal genetic merit
compared with the PBLUP model currently used for the genetic evaluation of dairy goats
in New Zealand. The increase in accuracy is particularly valuable, as these GBVs can be
estimated for all individuals in the evaluation, even those without phenotypes or pedigree
information. Whereas, with the PBLUP evaluation, those animals without phenotypic or
pedigree records would have otherwise been excluded.

The prediction accuracies obtained from the PBLUP model suggest the current pedi-
gree records provide limited information to the genetic evaluation of animals in this herd.
Whereas the genomic information provides a significant contribution to the evaluation, as
shown by the increased prediction accuracies. Despite this increase, these accuracies are
much lower than those reported in other dairy goat populations. Multiple studies using
ssGBLUP approaches have published prediction accuracies for milk traits in dairy goats,
including accuracies of 0.61 for MY in the UK [22]; 0.69 for MY in Spain [23]; from 0.64 to
0.74 for MY, FY, and PY [24]; and from 0.73 to 0.77 for the protein content in France [25].
These studies [22–25] reported that the genomic models only increased accuracies by +5%
to +12% compared with the PBLUP model, while, in the current study, the accuracies
increased from +64% to +103%. The minimal increase in accuracy in the UK, Spanish, and
French populations demonstrates that, when the population has rich pedigree records,
including genomic information is not as advantageous. Meanwhile, the significant increase
in accuracy obtained in the current population demonstrates the substantial benefits that
genomic information can have on the prediction of GBVs in this population. This is due
to the ability of the ssBC model to capture additive genetic relationships between the
individual and its relatives from their shared genotypes. In addition, SNPs can help with
the identification of breed components and, therefore, considering the effects of admixture.
This admixture effect may be lower in more well-established dairy goat industries relative
to the New Zealand population, where there is limited sharing of genetics and the industry
is still relatively nascent.

The accuracy of the GBVs of the FY and ASCS was slightly greater when the dam
was recorded in the pedigree and had her own lactation record, compared with the animal
having no pedigree records. However, the prediction accuracy was lower for the prediction
of the MY and PY GBVs. These contradictory accuracies of GBVs could be due to the
limited number of animals in the validation population that had dams with lactation
records (six animals) and, therefore, was not an accurate representation of the true effect of
having this additional information in the reference population. On the other hand, these
differing accuracies between traits could suggest that the inclusion of the dam and her
lactation records does not add much to the accuracy of the genomic predictions. The latter
coincides with other genomic prediction studies, which also suggest that adding females
to the reference population does not contribute a great deal to the accuracy of genomic
predictions [22,26].
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When the animals have a sire recorded in the pedigree that has at least five progeny
records, the average prediction accuracy of both models was greater than the accuracies
obtained when the dam was recorded in the pedigree and had her own lactation record.
This difference in accuracy suggests that most of the information is captured by the males
present in the reference population, rather than the females. Although actual sires were not
included in the reference population, the link between the sires and their progeny provides
greater benefits to the predictions compared with the information provided by the dams
with lactation records.

The prediction accuracies of EBVs and GBVs when animals have a sire recorded that
has at least five progenies obtained the same prediction accuracies of EBVs and GBVs when
both the sire and dam are known. This suggests that animals in the validation population
that have recorded sires linked to the reference population provide as much information to
the prediction of breeding values as the animals with both the sire and dam recorded.

The accuracy of predictions is important in livestock genetic improvement programs,
as this gives confidence of a reliable estimate of the individuals true breeding values. If
the accuracy is low, there is greater risk that the EBVs and GBVs are not reliable, and
there is more chance of selecting an animal with an inflated breeding value. The accu-
racy of genomic prediction largely depends on the size of the reference population [27],
the relationship between animals in the reference population and the target animals to
be predicted [28], the linkage disequilibrium (LD) between the SNPs and QTL and the
distribution of the QTL effects [29], the heritability of the trait, and of course, the prediction
method used. All of these can be changed to improve the accuracy.

Unlike the dairy cattle industry that has high accuracies due to a well-established
recording system and large reference populations [30], the dairy goat population is signif-
icantly smaller, and pedigree records are more often incomplete. The more information
provided in the genetic evaluation, the greater the accuracy; therefore, as animals are
included in the reference population, these accuracies should increase. Due to Mendelian
sampling, the maximum reliability from additional information from siblings is constrained
to 0.25 for half-sibs and 0.5 for full sibs. To achieve greater reliabilities like the dairy cat-
tle industry requires progeny testing and/or genomic information. Likewise, the lower
accuracies obtained in this study for the across-breed EBVs and GBVs could be due to an
insufficient number of genotyped and phenotyped animals in the reference population
required to accurately represent all breeds in the validation population. Furthermore, this
study used a medium density SNP chip, which limited the LD between SNP and QTL
and, consequently, limited the prediction accuracies. However, using a denser SNP chip
or whole-genome sequencing could increase the LD, providing a greater accuracy of the
across-breed genomic predictions. Additionally, reducing the environmental or residual
components will increase the heritability of the trait, since the heritability is the proportion
of phenotypic variation attributed to genetic variation. This could be achieved by adjusting
for covariates that explain part of the environmental factors in the analysis. Lastly, the
prediction model fitted in this study was a single-step BayesC approach, which is different
to the ssGBLUP approaches generally used in genomic prediction studies of milk traits in
dairy goats [22–25]. Currently, dairy goat populations are relatively small, and therefore,
the ssGBLUP approach provides an efficient process for obtaining GBVs. In this popula-
tion, there is a large QTL known to have a significant effect on milk production in dairy
goats. While it is true that ssGBLUP assumes a normal distribution of marker effects, this
approach can accommodate different weightings for different loci [25]. However, Bayesian
methods use a prior one, allowing for genes of moderate-to-large effects; therefore, fitting a
mixture model such as BayesC seemed appropriate.

The prediction accuracies obtained in this study were lower than those obtained in
other studies that used ssGBLUP approaches; however, this could be due to the limited
information available in the current evaluation rather than the model used. The prediction
accuracies are expected to increase as the size of the reference population increases.
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In this study, the regression coefficient of the GBV on the EBV for the MY was very
close to one, indicating that the GBV and EBV for this trait were obtained in the same
scale. The regression coefficients of the GBV on the EBV for the FY, PY, and SCS were
less than one, indicating that the GBVs of these traits were slightly deflated or the EBVs
were inflated. However, these regression coefficients give confidence that the standardized
GBVs are similar to the EBVs and, given the improved accuracy of the GBVs, reiterates
the potential of including genomic information in the genetic evaluation of these traits.
Genomic relationships estimated from marker data provide more accurate estimates of
the genetic covariance between relatives than the genetic relationships estimated from
pedigree information [31]. This, in turn, leads to more accurate predictions of genomic
breeding values.

The breed effects included in the multibreed genetic evaluations can have a large
influence on the accuracy of the EBVs and GBVs and will be important for the ranking of
animals. Although this dataset is relatively small, the regression coefficients obtained for
each breed group illustrate the importance of these breed effects. Likewise, the J coefficients
obtained for the differences between the genotyped founder and non-genotyped founder
breeds are included in the across-breed GBVs for each animal, where the values for the
non-genotyped animals will vary widely, depending on how closely related they are to the
genotyped animals and their breed proportions of each breed group. Previously, the GBVs
were predicted based solely on their pedigrees and genotypes, which led to overestimation,
as the genotyped animals were generally the most superior in the population. However,
correcting for the differences between the genotyped and non-genotyped founder breeds
enables the prediction of genetic merit in a population where selection is absent as the
analysis is conditional on the data used for selection.

A single-step approach that includes both genotyped and non-genotyped animals
would be recommended for the genetic evaluation of the New Zealand dairy goat popula-
tion, as the inclusion of genomic information improved the accuracy of prediction of the
across-breed breeding values for all traits and for all scenarios. The accuracies obtained
for the different scenarios demonstrated what farmers could expect with varying degrees
of relationships to the reference animals. The results from this study suggest genomic
prediction is possible in the New Zealand dairy goat population; however, this was based
on a single herd and requires further investigation before implementing for the entire
population.

5. Conclusions

Including genomic information improved the prediction accuracy of breeding values
compared with the pedigree-based BLUP method currently implemented in the New
Zealand dairy goat industry. The prediction accuracies were slightly lower than other
populations, but these accuracies are expected to increase as more animals enter the
reference population. The use of a higher density SNP chip or whole-genome sequencing
would increase the extent of the LD, which would improve accuracies of the across-breed
genomic predictions. The inclusion of genomic information would enable the prediction
of the GBVs for all animals, even those without known pedigree or phenotypic records,
which would benefit the New Zealand dairy goat population.
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