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Simple Summary: The monitoring of milk quality and the presence of major mastitis pathogens is an
important part of milk quality assurance program. Bulk tank milk has been used in many countries
to identify multiple milk quality problems and mastitis pathogens that might exist in a dairy herd.
This study aimed to compare the presence of mastitis pathogens and the antimicrobial resistance
of the isolates from bulk tank milk by dairy companies. The results showed that the prevalence
of mastitis pathogens and the antimicrobial resistance of the isolates were significantly different
among factories, and support the development of strong monitoring and prevention programs in
dairy operations.

Abstract: In many countries, bulk tank milk (BTM) has been used for examining milk and analyzed
as an important part of milk quality assurance programs. The objectives of this study were to
investigate milk quality and the presence of major mastitis pathogens in BTM, and to compare the
characteristics of BTM by dairy factory or company. A total of 1588 batches of BTM samples were
collected from 396 dairy farms of seven dairy factories owned by four companies in Korea. The means
of individual bacterial counts (IBC) and somatic cell count (SCC) were 3.7 × 104 cells/mL and
1.1 × 105 cells/mL, respectively, and no significant differences among dairy factories were observed.
The most common pathogen was Staphylococcus spp. (60.1%), followed by E. faecalis (53.8%), E. coli
(37.6%) and Streptococcus spp. (22.5%). Enterococcus spp. showed the highest resistance to tetracyclines
(51.1% to 73.9%) and macrolides (46.5%). S. aureus and coagulase-negative staphylococci (CNS)
showed the highest resistance to penicillin (28.4% and 40.2%, respectively), and three (3.2%) S. aureus
and seven (3.3%) CNS were also methicillin-resistant. These data show the diverse prevalence and
characteristics of major mastitis pathogens among factories, and support the development of strong
monitoring and prevention programs of mastitis pathogens by commercial dairy operations.
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1. Introduction

Bulk tank milk (BTM) has been used for identifying multiple milk quality problems and mastitis
pathogens that might exist in a dairy herd. It is analyzed as an important part of milk quality assurance
programs in many countries [1–4]. Microbiological screening of all cows in a herd can be laborious and
expensive, so performing tests using BTM is convenient and economical [5]. The isolation of mastitis
pathogens from BTM indicates that contamination or intramammary infection is present in one or
more cows on the farm [6], so monitoring BTM samples is useful in controlling mastitis on dairy farms
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because early detection of the causative pathogens is the most effective way to prevent disease and
guide treatment [7].

In most countries, the bacterial quality of BTM is monitored by individual bacterial counts
(IBC) and somatic cell count (SCC) [8,9]. In particular, the majority of somatic cells are leukocytes,
which increase in milk, usually as an immune response to mastitis. A threshold SCC of 2 × 105 cells/mL
would determine the financial penalty of milk, and an SCC of more than 5 × 105 cells/mL makes milk
deemed unfit for human consumption in Korea [10]. Not only the contagious pathogens, such as
S. aureus and Streptococcus spp., which can be transferred from cow to cow, but also environmental
pathogens such as E. coli, Enterococcus spp. and coagulase-negative staphylococci (CNS), which are
considered opportunistic pathogens responsible for subclinical mastitis, can be spread to other cows
through a contaminated environment in the barn and the milking process [11].

Antimicrobial therapy is common in Korea, which is one of the key components for the control of
infectious mastitis, so the emergence of the antimicrobial resistance in major mastitis pathogens such
as methicillin-resistant S. aureus (MRSA) has been reported [12], and is a public health concern [13].
The dairy farm environment has also been reported as a reservoir for the distribution of antimicrobial
resistance [14]. The purpose of this study was to investigate the milk quality and the presence of
contagious and environmental mastitis pathogens, such as E. coli, Enterococcus spp., S. aureus, CNS and
Streptococcus spp. in BTM, which consists of raw milk from cows of dairy farms where mastitis has
not been detected, and to compare the characteristics of BTM by dairy factory or company. To our
knowledge, there are no reports on monitoring and comparing the quality of BTM among dairy
factories in Korea.

2. Materials and Methods

2.1. Collection of Samples

A total of 1588 batches of BTM were collected from 396 dairy farms of seven dairy factories
operated by four companies in Korea. Milk samples, 50 mL each, were aseptically collected two
times in the summer and winter season during the study period (July–December 2019) and sent to
the laboratory under 4 ◦C conditions. All samples were then individually tested for IBC, SCC and
identification of bacterial isolates within 24 h.

2.2. IBC and SCC

All batches of BTM were analyzed for IBC and SCC using BactoScan FC (Foss Electric, Hillerød,
Denmark) and Milkoscan CombiFoss 6000 (Foss Electric, Oceanside, CA, USA), respectively.

2.3. Bacterial Identification

The isolation and identification of mastitis pathogens were performed following the standard
microbiological protocols published by the Ministry of Food and Drug Safety (2018) [15]. Among the
many mastitis pathogens, E. coli, Enterococcus spp., Staphylococcus spp. and Streptococcus spp. were
investigated in this study. Briefly, one mL of each milk sample was aerobically cultured in 9 mL of mEC
(Merck, Darmstadt, Germany), tryptic soy broth with 6% NaCl (BD Biosciences, Sparks, MD, USA) and
Todd Hewitt broth (BD Biosciences) for E. coli, Staphylococcus spp. and Streptococcus spp., respectively.
After incubation at 37 ◦C for 24 h, each medium was streaked onto MacConeky agar (BD Biosciences),
Baird-Parker agar (BD Biosciences) and 5% sheep blood agar (KOMED, Seoul, Korea), respectively.
For isolation of Enterococcus spp., one mL of the milk sample was cultured in 9 mL of buffered peptone
water (BPW; BD Biosciences). Then, pre-enriched BPW was mixed with Enterococcosel broth (BD
Biosciences) at a 1:10 ratio. After incubation at 37 ◦C for 18–24 h, each medium was streaked onto
Enterococcosel agar (BD Biosciences). Suspected colonies were transferred to each selective medium for
bacterial identification. Confirmation of E. coli, E. faecalis, E. faecium, S. aureus and Streptococcus spp. was
performed using PCR with specific primers (Table 1). Classification of CNS spp. and Streptococcus spp.
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was performed by MALDI-TOF mass spectrometry (Biomerieux, Marcy-l’Étoile, France) based on the
protein expression profiles using VITEK MS system (Biomerieux). If two isolates of the same origin
showed the same antimicrobial susceptibility patterns, only one isolate was randomly chosen and
included in this study.

Table 1. PCR primers used in this study.

Target
Microorganism Target Gene Primer Sequence (5′–3′) Amplicon

Size (bp)
Annealing

Temperature (◦C) References

E. coli malB malBF TCGCCACACGCTGACGCTGACCA 585 55 [16]
malBR TTACATGACCTCGGTTTAGTTCACAGA

E. faecalis ddl1 ddl1F TGTTGTATGGCGGCAGAAGT 941 54 [17]
ddl1R TCAGGTGTTTGTGCCCAAGT

E. faecium ddl2 ddl2F ATGGGACCCAAGTGGACAGA 550 54 [17]
ddl2R ATTTCGCGCGCTTCAATTCC

S. aureus nuc NucF GCGATTGATGGTGATACGGTT 279 55 [18]
NucR AGCCAAGCCTTGACGAACTAAAGC

Streptococcus 16S-23S
rRNA

SU-F2 AGCCGCCTAAGGTGGGAT 220–230 60 [19]
SU-R ATGGAGCCTAGCGGGATC

2.4. Antimicrobial Susceptibility Testing

Based on the Clinical and Laboratory Standards Institute guidelines (CLSI, 2019) [20], all pathogens
were investigated for antimicrobial resistance using the disc diffusion test with the following discs
(BD Biosciences): amikacin (A, 30 µg), ampicillin (AM, 10 µg), amoxicillin-clavulanate (AMC, 20 µg),
chloramphenicol (C, 30 µg), ceftazidime (CAZ, 30 µg), clindamycin (CC, 2 µg), cefadroxil (CDX,
30 µg), cephalothin (CF, 30 µg), ciprofloxacin (CIP, 5 µg), colistin (CL, 10 µg), cefotaxime (CTX, 30 µg),
cefuroxime (CXM, 30 µg), cefazoline (CZ, 30 µg), doxycycline (DOX, 30 µg), erythromycin (E, 15 µg),
nitrofurantoin (F/M, 300 µg), cefepime (FEP, 30 µg), cefoxitin (FOX, 30 µg), gentamicin (G, 10 µg),
imipenem (IPM, 10 µg), kanamycin (K, 30 µg), levofloxacin (LVX, 5 µg), nalidixic acid (Na, 30 µg),
norfloxacin (NOR, 10 µg), ofloxacin (OFX, 5 µg), oxacillin (OX, 1 µg), penicillin (P, 10 units), rifampin
(RA, 5 µg), trimethoprim/sulfamethoxazole (SXT, 1.25 µg), tetracycline (TE, 30µg), teicoplanin (TEC,
30µg) and vancomycin (VA, 30 µg). Methicillin resistance in S. aureus and CNS isolates was determined
by the results of the cefoxitin disk diffusion test as recommended by CLSI (2019) [20] and Pourmand et al.
(2014) [21]. E. coli ATCC 25922, E. faecalis ATCC 29,212 and S. aureus ATCC 29,213 were used as the
quality controls. Multidrug resistance (MDR) was defined as acquired resistance to at least one agent
in three or more antimicrobial classes [22].

2.5. Statistical Analysis

Statistical analyses were performed using SPSS 25 (IBM Corp., Armonk, NY, USA). The analysis
of the differences of the means of IBC and SCC samples collected from each dairy factory were carried
out by a logarithmic transformation of values with log base 10 as reported by Lopes Júnior (2012)
and conducted by one-way ANOVAs [8]. If a significant difference (p < 0.05) in the prevalence
of pathogens among factories was confirmed by the Chi-square test, post-hoc analyses using the
Bonferroni correction were performed for multiple tests in subsequent analyses of the seven dairy
factories, as previously reported [23].

3. Results

3.1. Comparison of IBC and SCC

Comparisons of IBC and SCC in BTM from 396 farms of seven dairy factories are shown in Table 2.
Means of log10IBC and log10SCC were 4.38 ± 0.53–4.57 ± 0.41 and 4.94 ± 0.39–5.10 ± 0.46, respectively.
The means of IBC from four of the seven factories were greater than 3.0 × 104 cells/mL.
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Table 2. Distribution of individual bacterial count (IBC) and somatic cell count (SCC) in bulk tank milk
samples from dairy factories.

Company Dairy
Factory

Number of Bulk
Tank Milk
Samples a

Log10IBC Geometric
Mean of IBC

(cells/mL)

log10SCC Geometric
Mean of SCC

(cells/mL)Mean b SD c CI d Mean e SD c CI d

A A-1 200 4.38 0.53 4.23–4.53 24,039 5.02 0.48 4.88–5.16 105,024
A-2 224 4.48 0.66 4.30–4.65 30,135 5.06 0.64 4.89–5.23 115,320

B B-1 480 4.57 0.41 4.49–4.64 36,939 5.10 0.46 5.01–5.18 124,517
C C-1 188 4.51 0.37 4.40–4.62 32,598 5.01 0.40 4.89–5.13 102,245
D D-1 232 4.43 0.37 4.33–4.53 26,955 4.94 0.39 4.83–5.04 86,570

D-2 132 4.40 0.44 4.25–4.56 25,405 4.97 0.43 4.82–5.12 92,614
D-3 128 4.43 0.53 4.24–4.62 26,651 4.95 0.48 4.78–5.13 89,975

Total 1588 4.48 0.48 4.43–4.53 30,197 5.03 0.48 4.98–5.07 107,261

a The bulk tank milk samples were collected two times, summer and winter (July to December 2019) from 396 dairy
farms of seven factories of four dairy companies. b Means of log10IBC were not significantly different among
factories (p = 0.219); c SD, standard deviation; d CI, confidence interval (95%); e Means of log10SCC were not
significantly different among factories (p = 0.418).

3.2. Distribution of Major Mastitis Pathogens

The distributions of pathogens in BTM are shown in Table 3. Although the most common
pathogens were Staphylococcus spp. (238 farms, 60.1%), the prevalence of CNS (164 farms, 41.4%) was
higher than that of S. aureus (95 farms, 24.0%). The prevalence of E. faecalis, E. coli and Streptococcus spp.
was 53.8%, 37.6% and 22.5%, respectively. In the distribution of pathogens among dairy factories, E. coli
and S. aureus were not detected from factories A-1 and A-2 and factory B-1. Moreover, the prevalence
of E. coli, Enterococcus spp. and S. aureus was significantly different among factories by application
of the Bonferroni correction. In particular, the prevalence of E. coli from factories D-2 and D-3 and
E. faecalis from factory D-3 was significantly higher than in the other factories, but factory A-2 had a
significantly higher prevalence of S. aureus than other factories had.

3.3. Antimicrobial Resistance

Antimicrobial resistance patterns of 918 pathogens isolated from BTM are shown in Table 4.
While E. coli had the lowest resistance, from 0% to 13.1%, to all antimicrobials tested, Enterococcus spp.
had the highest resistance to tetracyclines (51.1% to 73.9%) and macrolides (46.5%). S. aureus and CNS
showed the highest resistance to penicillin (28.4% and 40.2%, respectively), and three (3.2%) S. aureus
and seven (3.3%) CNS also showed methicillin resistance. Streptococcus spp. had the highest resistance
to tetracycline (49.5%), followed by clindamycin (35.5%) and cefotaxime (24.7%).
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Table 3. Species and distribution of pathogens isolated from 396 dairy farms among seven dairy factories.

Genus. Species
No. of Pathogens Isolated (%) among Farms a

Total (%) (n = 396)
A-1 (n = 50) A-2 (n = 56) B-1 (n = 120) C-1 (n = 47) D-1 (n = 58) D-2 (n = 33) D-3 (n = 32)

Escherichia coli 0 (0.0) * 0 (0.0) * 37 (30.8) 28 (59.6) * 29 (50.0) 26 (78.8) * 29 (90.6) * 149 (37.6)
Enterococcus spp. 20 (40.0) 19 (33.9) * 69 (57.5) 30 (63.8) 38 (65.5) 23 (69.7) 32 (100.0) * 231 (58.3)

Enterococcus faecalis 18 (36.0) 19 (33.9) * 64 (53.3) 25 (53.2) 35 (60.3) 21 (63.6) 31 (96.9) * 213 (53.8)
Enterococcus faecium 2 (4.0) 2 (3.6) 6 (5.0) 11 (23.4) * 6 (10.3) 2 (6.1) 1 (3.1) 30 (7.6)

Staphylococcus spp. 48 (96.0) * 52 (92.9) * 40 (33.3) * 24 (51.1) 48 (82.8) * 18 (54.5) 8 (25.0) * 238 (60.1)
Staphylococcus aureus 19 (38.0) 52 (92.9) * 0 (0.0) * 3 (6.4) * 5 (8.6) * 13 (39.4) 3 (9.4) 95 (24.0)

Coagulase-negative staphylococci 37 (74.0) * 8 (14.3) * 40 (33.3) 22 (46.8) 44 (75.9) * 8 (24.2) 5 (15.6) * 164 (41.4)
Staphylococcus chromogenes 35 (70.0) * 6 (10.7) 3 (2.5) * 2 (4.3) 12 (20.7) 4 (12.1) 1 (3.1) 63 (15.9)
Staphylococcus saprophyticus 0 (0.0) 1 (1.8) 17 (14.2) 12 (25.5) * 14 (24.1) * 1 (3.0) 0 (0.0) 45 (11.4)
Staphylococcus xylosus 1 (2.0) 1 (1.8) 6 (5.0) 3 (6.4) 6 (10.3) 0 (0.0) 0 (0.0) 17 (4.3)
Staphylococcus haemolyticus 0 (0.0) 0 (0.0) 5 (4.2) 1 (2.1) 4 (6.9) 1 (3.0) 0 (0.0) 11 (2.8)
Staphylococcus simulans 1 (2.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (1.7) 2 (6.1) 2 (6.3) 6 (1.5)
Staphylococcus sciuri 0 (0.0) 0 (0.0) 2 (1.7) 2 (4.3) 1 (1.7) 0 (0.0) 0 (0.0) 5 (1.3)
Staphylococcus capitis 0 (0.0) 0 (0.0) 2 (1.7) 0 (0.0) 1 (1.7) 0 (0.0) 0 (0.0) 3 (0.8)
Staphylococcus cohnii 0 (0.0) 0 (0.0) 1 (0.8) 0 (0.0) 1 (1.7) 0 (0.0) 0 (0.0) 2 (0.5)
Staphylococcus epidermidis 0 (0.0) 0 (0.0) 0 (0.0) 1 (2.1) 0 (0.0) 0 (0.0) 1 (3.1) 2 (0.5)
Staphylococcus equorum 0 (0.0) 0 (0.0) 0 (0.0) 1 (2.1) 1 (1.7) 0 (0.0) 0 (0.0) 2 (0.5)
Staphylococcus gallinarum 0 (0.0) 0 (0.0) 1 (0.8) 0 (0.0) 1 (1.7) 0 (0.0) 0 (0.0) 2 (0.5)
Staphylococcus succinus 0 (0.0) 0 (0.0) 2 (1.7) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 2 (0.5)
Staphylococcus hyicus 0 (0.0) 0 (0.0) 1 (0.8) 0 (0.0) 0 (0.0) 0 (0.0) 1 (3.1) 2 (0.5)
Staphylococcus arlettae 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (1.7) 0 (0.0) 0 (0.0) 1 (0.3)
Staphylococcus lentus 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (1.7) 0 (0.0) 0 (0.0) 1 (0.3)

Streptococcus spp. 6 (12.0) 9 (16.1) 27 (22.5) 10 (21.3) 16 (27.6) 18 (54.5) * 3 (9.4) 89 (22.5)
Streptococcus bovis 0 (0.0) 0 (0.0) 14 (11.7) 0 (0.0) 3 (5.2) 8 (24.2) * 0 (0.0) 25 (6.3)
Streptococcus uberis 1 (2.0) 9 (16.1) * 3 (2.5) 3 (6.4) 1 (1.7) 0 (0.0) 2 (6.3) 19 (4.8)
Streptococcus oralis 3 (6.0) 0 (0.0) 0 (0.0) 2 (4.3) 4 (6.9) 6 (18.2) * 1 (3.1) 16 (4.0)
Streptococcus infantarius 0 (0.0) 0 (0.0) 4 (3.3) 0 (0.0) 0 (0.0) 3 (9.1) * 0 (0.0) 7 (1.8)
Streptococcus agalactiae 1 (2.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.3)
Streptococcus intermedius 0 (0.0) 0 (0.0) 1 (0.8) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.3)
Unidentified 1 (2.0) 0 (0.0) 5 (4.2) 5 (10.6) 8 (13.8) * 1 (3.0) 0 (0.0) 20 (5.1)

a Seven factories were operated by four dairy companies, and the same capital letter indicates factories operated by the same company. * The asterisk indicates that prevalence of the
pathogen isolated from the factory was significantly different than that of other factories using the Bonferroni correction.
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Table 4. Antimicrobial resistance in 918 pathogens isolated from bulk tank milk.

Antibiotic (Abbreviation)
No. of Resistant Isolates (%)

E. coli
(n = 183)

Enterococcus spp.
(n = 333)

S. aureus
(n = 95)

CNS a

(n = 214)
Streptococcus spp.

(n = 93)

β-Lactams
Penicillin (P) N/A b 5 (1.5) 27 (28.4) 86 (40.2) N/A

Ampicillin (AM) 24 (13.1) 2 (0.6) 3 (3.2) 19 (8.9) N/A
Amoxicillin/clavulanate (AMC) 5 (2.7) N/A 2 (2.1) 12 (5.6) N/A

Oxacillin (OX) N/A N/A 3 (3.2) 14 (6.5) N/A
Methicillin (MET) N/A N/A 3 (3.2) 7 (3.3) N/A

Cephems
Cefazolin (CZ) 9 (4.9) N/A 3 (3.2) 3 (1.4) N/A

Cefadroxil (CDX) 5 (2.7) N/A N/A N/A N/A
Cephalothin (CF) 25 (14) N/A 1 (1.1) 2 (0.9) N/A

Cefuroxime (CXM) 3 (1.6) N/A 1 (1.1) 3 (1.4) N/A
Cefoxitin (FOX) 3 (1.6) N/A 3 (3.2) 7 (3.3) N/A

Ceftazidime (CAZ) 5 (2.7) N/A 1 (1.1) 2 (0.9) N/A
Cefotaxime (CTX) 3 (1.6) N/A 1 (1.1) 3 (1.4) 23 (24.7)

Cefepime (FEP) 3 (1.6) N/A 1 (1.1) 3 (1.4) 21 (22.6)

Glycopeptides
Vancomycin (VA) N/A 2 (0.6) 0 (0.0) 0 (0.0) N/A
Teicoplanin (TEC) N/A N/A 0 (0.0) 1 (0.5) N/A
Imipenem (IPM) 0 (0.0) N/A N/A N/A N/A

Aminoglycosides
Gentamicin (G) 19 (10) NA 1 (1.1) 3 (1.4) N/A
Amikacin (A) 0 (0.0) N/A 0 (0.0) 0 (0.0) N/A

Kanamycin (K) 4 (2.2) N/A 2 (2.1) 12 (5.6) N/A

Macrolides
Erythromycin (E) N/A 155 (46.5) 2 (2.1) 13 (6.1) 17 (18.3)

Tetracyclines
Tetracycline (TE) 26 (14.2) 246 (73.9) 2 (2.1) 65 (30.4) 46 (49.5)

Doxycycline (DOX) 9 (4.9) 170 (51.1) 0 (0.0) 12 (5.6) N/A

Quinolones
Nalidixic acid (Na) 2 (1.1) N/A N/A N/A N/A

Fluoroquinolones
Ciprofloxacin (CIP) 2 (1.1) 13 (3.9) 1 (1.1) 1 (0.5) N/A
Levofloxacin (LVX) N/A 5 (1.5) 1 (1.1) 1 (0.5) 1 (1.1)
Norfloxacin (NOR) N/A 5 (1.5) 2 (2.1) 1 (0.5) N/A

Ofloxacin (OFX) N/A N/A 1 (1.1) 1 (0.5) 2 (2.2)

Nitrofurantoins
Nitrofurantoin (F/M) N/A 0 (0.0) 0 (0.0) 0 (0.0) N/A

Lincosamides
Clindamycin (CC) N/A N/A 1 (1.1) 8 (3.7) 33 (35.5)

Folate pathway inhibitors
Trimethoprim/sulfamethoxazole (SXT) 7 (3.8) N/A 1 (1.1) 1 (0.5) 0 (0.0)

Phenicols
Chloramphenicol (C) 11 (6.0) 87 (26.1) 2 (2.1) 45 (21.0) 21 (22.6)

Ansamycins
Rifampin (RA) N/A 63 (18.9) 0 (0.0) 1 (0.5) 0 (0.0)

Polymyxins
Colistin (CL) 16 (8.7) N/A N/A N/A N/A

a CNS, coagulase-negative Staphylococcus spp. b N/A, not applicable based on CLSI (2019) guidelines.

Distribution of MDR pathogens is shown in Table 5. The highest prevalence of MDR was found
in Streptococcus spp. (29.0%), followed by Enterococcus spp. (24.3%), CNS (16.4%) and E. coli (13.5%).
The prevalence of MDR was lowest in S. aureus (2.1%). MDR to six antimicrobial classes was found
in two E. coli, one CNS and one S. aureus, which were the isolates with an intermediate prevalence
of MDR.
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Table 5. Distribution of multidrug resistance of 918 pathogens isolated from bulk tank milk.

No. of Resistant
Antimicrobial Classes

No. of Isolates (%)

E. coli
(n = 183)

Enterococcus spp.
(n = 333)

S. aureus
(n = 95)

CNS a

(n = 214)
Streptococcus spp.

(n = 93)

0 119 (65.0) 39 (11.7) 65 (68.4) 76 (35.5) 37 (39.8)
1 36 (19.7) 102 (30.6) 23 (24.2) 64 (29.9) 20 (21.5)
2 12 (6.6) 111 (33.3) 5 (5.3) 39 (18.2) 9 (9.7)
3 11 (6.0) 72 (21.6) 1 (1.1) 19 (8.9) 10 (10.8)
4 2 (1.1) 8 (2.4) 0 (0.0) 10 (4.7) 11 (11.8)
5 1 (0.5) 1 (0.3) 0 (0.0) 5 (2.3) 6 (6.5)
6 2 (1.1) 0 (0.0) 1 (1.1) 1 (0.5) 0 (0.0)

No. (%) of MDR b 16 (8.7) 81 (24.3) 2 (2.1) 35 (16.4) 27 (29.0)
a CNS, coagulase-negative Staphylococcus spp. b Multidrug resistance was defined as the acquired resistance to at
least one agent in three or more antimicrobial classes.

4. Discussion

The IBC and SCC, which are used as general indicators of milk safety, did not show significant
differences among factories (p = 0.219 and p = 0.418, respectively), which can be influenced by cow
health, environment, milking procedures and equipment sanitation [24]. In Korea, most of the milk
products are produced by five large dairy companies, which account for 84% of the total sales of dairy
products in Korea [25]. They control and operate in all phases of the dairy production system [26].
Additionally, most dairy farms consist of herds living in confined space, resulting in a higher chance of
contamination by environmental pathogens on teats of cows, as reported by Goldberg et al. (1992) [27].
In this study, the means of IBC of BTM samples from seven factories originating from four dairy
companies ranged from 2.4 × 104 to 3.7 × 104 cells/mL. Although hygiene management and cow
health have been continuously prioritized and financial penalties have been applied when the level
of IBC is over 3.0 × 104 cells/mL, the means of IBC from four out of seven factories were still over
3.0 × 104 cells/mL. IBC gives an estimate of the total number of viable aerobic bacteria present in raw
milk, and can be controlled by the consistent application of proper milking practices, udder hygiene
and mastitis prevention [28]. A high level of IBC suggests that bacteria are entering the milk from
a variety of possible sources. The most frequent cause is poor cleaning and cooling techniques of
milking systems and milk residues on equipment surfaces, which provide nutrients for growth and
multiplication of bacteria that contaminate subsequent milking [2]. Thus, dairy farms should improve
control practices to reduce bacterial infection in milking processes, as previously reported [29].

The means of SCC of seven factories showed a relatively low level (8.6 × 104–1.2 × 105 cells/mL)
compared to the established standard for financial penalties (2.0 × 105 cells/mL). Additionally, the SCC
of BTM samples had a lower level than that of raw milk samples in 2007 (2.4 × 105 cells/mL) in
Korea [30]. Although the lower SCC in BTM than the raw milk samples may be attributed to the
dilution effect of milk masking a high SCC of individual cows [31], the BTM tested in this study may
have consisted of raw milk from cows of dairy farms without clinical mastitis.

Although there were no significant differences in IBC and SCC among factories, there were
significant differences in the prevalence of major mastitis pathogens, such as S. aureus, which might be
caused by a relatively low level of pathogens in BTM, as previously reported by Fenlon et al. (1995)
and Koop et al. (2010) [32,33]. In this study, the prevalence of E. faecalis and E. coli was 53.8% and
37.6%, respectively, and the prevalence in factories of D company, in particular, was significantly
higher, although E. coli were not detected at all in the factories of A company. E. faecalis and E. coli are
considered to indicate fecal contamination, produced under poor hygienic conditions [29]. The results
in factories, including company D, may reflect poor management of fecal contamination, the most
common source of pathogens in BTM [29]. Moreover, the prevalence of S. aureus was also significantly
different among factories, and the A-2 factory of A company had a significantly higher prevalence than
other factories. Although the samples from factory A-2 also showed low SCC, continuous monitoring
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of SCC is required, because S. aureus can lead to recurrent infection and shed in a cyclical way from
mammary glands, which can result in clinical mastitis [34].

In this study, the prevalence of CNS and Streptococcus spp. was 41.4% and 22.5%, respectively.
The presence of these pathogens does not necessarily induce inflammation [35], but it should be also
monitored and controlled, because they are opportunistic pathogens that have the potential to be
hazardous [7], causing clinical signs in a susceptible host [36].

Although the samples tested in this study consisted of raw milk from cows without clinical
mastitis, the highest prevalence of antimicrobial resistance was found in Enterococcus spp. (88.2%),
followed by CNS (64.5%), Streptococcus spp. (60.2%), E. coli (40.0%) and S. aureus (31.6%). In particular,
antimicrobial resistance to tetracycline was relatively widespread in Enterococcus spp. (73.9%) and
Streptococcus spp. (49.5%), as previous studies in Korea have shown [37,38]. Additionally, the resistance
to penicillin was also high in S. aureus (28.4%) and CNS (40.2%), consistent with previous studies [37–39].
The prevalence of resistance to penicillin and tetracycline may be associated with the heavy use of
these antimicrobials in the food animals, because these antibiotics have been reported to be the most
consumed antimicrobials in Korea [40].

Cefoxitin resistance, which is considered as methicillin resistance in the CLSI (2019) guidelines,
was found in three S. aureus and seven CNS [21]. MRSA and methicillin-resistant CNS are problematic,
not only in the dairy industry but also in public health generally, because they cause resistant
Staphylococcus spp. infections in humans [21,41]. Notably, two vancomycin-resistant isolates were also
found in this study, which is concerning because of the limited therapeutic choices beyond vancomycin
for treating infections with these organisms [42]. Therefore, further investigations on the risks to
personnel on dairy farms should be conducted.

In addition, Streptococcus spp. was highly resistant to clindamycin (35.5%) and this percentage
was slightly higher than in reports from China (28.7%) and Argentina (25.5%) [13,43]. Resistance to
chloramphenicol was also found in all mastitis pathogens in this study (2.1–26.1%), as other studies
in Korea have reported [38,44]. However, clindamycin has not been approved for use in cattle,
and chloramphenicol has been withdrawn from food animal use in Korea since 1992 [45]. Phenicol
antimicrobials, such as chloramphenicol and florfenicol, and lincosamide antimicrobials, such as
clindamycin, are potent inhibitors of bacterial protein biosynthesis [46]. Although chloramphenicol
and clindamycin have not been used in veterinary medicine, florfenicol has been widely used for
veterinary medicine in Korea [47]. Resistance to phenicols and lincosamides could be mediated by
rRNA methyltransferase, which modifies RNA in the drug-binding site [46] and chloramphenicol,
florfenicol and clindamycin showed partially overlapped drug binding sites. Therefore, the use of
florfenicol can confer resistance to chloramphenicol and clindamycin [46,48].

The highest prevalence of MDR was seen in Streptococcus spp. (29.0%), followed by Enterococcus spp.
(24.3%), CNS (16.4%), E. coli (13.5%) and S. aureus (2.1%). Among them, 10 isolates showed resistance
to six antimicrobial classes. Although the use of antimicrobials in the dairy industry in Korea is
strictly monitored and managed, the emergence of antimicrobial-resistant pathogens in milk is of
concern, because antimicrobial-resistant genes and mobile genetic elements, such as transposons,
may be disseminated nationwide and transferred horizontally through mastitis pathogens [44,49].

5. Conclusions

Although there were no significant differences among factories in regards of IBC and SCC,
the prevalence of pathogens and the antimicrobial resistance of them showed significant differences
among factories, which could be affected by the management programs of dairy factories and companies.
To prevent the emergence of the mastitis pathogens and its antimicrobial resistant properties, strong
monitoring and prevention programs of mastitis pathogens should be implemented among commercial
dairy operations.
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